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Abstract: Factor Analysis is one of the data mining methods that can be 

used to analyse, mainly large-scale, multi-variable datasets. The main 

objective of this method is to derive a set of uncorrelated variables for 

further analysis when the use of highly inter-correlated variables may give 

misleading results in regression analysis. In the light of the vast and broad 

advances that have occurred in factor analysis due largely to the advent of 

electronic computers, this article attempt to provide researchers with a 

simplified approach to comprehend how exploratory factors analysis work, 

and to provide a guide of application using R. This multivariate 

mathematical method is an important tool which very often used in the 

development and evaluation of tests and measures that can be used in 

biomedical research. The paper comes to the conclusion that the factor 

analysis is a proper method used in biomedical research, just because 

clinical readers can better interpret and evaluate their goal and results.  
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1. INTRODUCTION 

In the last years, along with computer development, the need for processing 

large amount of information, i.e., Big Data concept, arose rapidly in various 

scientific domains. This created the need to develop, primarily, theoretical 

methods that could enable researchers to handle these statistical analyses and, 

more importantly, to apply them in practice through a software program. However, 

since multivariable analysis is not a solution to all statistical difficulties, the 

researcher should not only be familiar with all the existing methods in a given 

period, but also be able to develop the most appropriate way of analyzing the data 

obtained, by understanding their structure.  

Τhe past years, social and biomedical research has incorporated into the 

analytical methodologies used, the pattern recognition analysis. Pattern analysis is 

a classical multivariate statistical approach that aims to identify patterns in data in 

order to show certain attributes. Psychological characteristics, emotions and 

behaviours, socio-economic dimensions, as well as dietary patterns, are usually 

extracted through factor analysis (FA), or principal component analysis (PCA) 

(Panaretos, 2017). PCA was created to be an algebraic method that aims in 

reducing the dimensionality of multivariate data while preserving as much of the 

variance of the initial variables as possible (Hotteling, 1933). On the other hand, 

FA is a statistical method of minimizing the number of variables under 

investigation while concomitantly maximizing the amount of information in the 

analysis (Gorsuch, 1983). In recent years FA has been widely employed by 

biomedical researchers and satisfactory progress and results have been achieved 

in the field of pattern recognition, from genes to human behaviour.  

The purpose of the present review was to briefly discuss exploratory factor 

analysis as a pattern recognition tool, with an emphasis on biomedical research. 

Also, using dietary data from the ATTICA epidemiological study, we 

implemented factor analysis in R open source software - in order to extract dietary 

patterns and to provide a guide for dietary pattern recognition analysis.  

 

Brief History of Factor Analysis 

 

Factor analysis (FA) has been successfully used in a wide variety of industries and 

fields, but because of its use was pioneered in the field of psychology the technique itself 

is often mistakenly considered as psychological theory. The origin of factor analysis is 

generally ascribed to Charles Spearman (1904), a British psychologist. Spearman and his 

colleagues (e.g. Burt, 1939, 1941; Garnett, 1919; Ledermann, 1937; 1938; Spearman, 

1904, 1922, 1923, 1927, 1928, 1929, 1930; Thomson, 1934, 1936, 1938) pursued the 

concept of the Two Factor Theory. In particular, Spearman developed a statistical 

procedure, known as factor analysis, to explain the relationships among various measures 

of mental ability (memory, physical abilities, and the senses) by means of a single (factor) 

ability which he called general intelligence, or “g”. But it was obvious to Spearman, that 

g did not account for all the variance. So, in his paper “General Intelligence, Objectively 

Determined and Measured” was published in the American Journal of Psychology 

proposed two factors of intelligence: (1) general intelligence (g – factor) that constitute 

the first and most important aspect of intelligence and (2) specific intelligence (S – factor) 

that refers to the specific abilities for performing various task. The S – factor varies from 
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one act to another, while g is available at the same level from all intellectual acts 

(Spearman, 1927). On the other hand, Luis Thurstone (1938, 1947) an American 

psychologist, argued that, if the statistical procedure of factor analysis was done in a 

different way, seven factors would appear. A considerable amount of work on FA 

followed until today. The principal contributors included Hoteling (1933), Eckart & 

Young (1936), Holzinger (1937), Thomson (1951), Lawley & Maxwell (1971), Joreskog 

(1969, 1972) and Velicer (1976). Apparently, factor analysis was used primarily by 

psychology; however, its use within the health science sector has become much more 

common during the past few decades (Pett, 2003).  

 

Factor Analysis or Principal Component Analysis 

 

In 1901, Karl Pearson invented a mathematical procedure, which was similar to the 

method used in principal axes theorem in mechanics and later, Hotelling named (principal 

components analysis) and independently developed it in the form that has until nowadays 

(1934). This mean that PCA was created to be a method that aims in reducing the 

dimensionality of multivariate data while preserving as much of the variance of the initial 

variables as possible (Hotteling, 1933). That method’s main concept is to describe the 

variance of the total amount of correlated variables  

Χ1, Χ2, . . . , Χp 

creating a new total amount of uncorrelated variances  

Υ1, Υ2, . . . ,Υp. 

Each one of the new variables compose linear combination of the initial variables and are 

created in order to be vertical to each other.  

FA has similar goals to PCA, but also many conceptual differences. The basic idea is 

still that it may be possible to describe a set of n- variables X1, X2, … Xn in terms of a 

smaller number of variables (factors) and hence elucidate the relationship between these 

variables. Nevertheless, there are some fundamentals similarities and differences between 

FA and PCA (Mulaik, 2010; Ogasawara, 2000; Schonemann and Steiger, 1978; Steiger, 

1994; Velicer and Jackson, 1990; Widaman, 2007).  Both are data reduction techniques 

and allow us to capture the variance in variables in a smaller set. Also, the steps are the 

same:  extraction, interpretation, rotation, choosing the number of factors or components.  

Despite all these similarities, there is a fundamental difference between them. The 

primary difference between FA and PCA is that the former is based upon a 

decomposition of the covariance matrix in which the diagonal contains the squared-

multiple correlation (or some other initial estimate of explained variance in each observed 

variable), whereas PCA is a true covariance matrix, with standardized variances on the 

diagonal. PCA is a linear combination of variables, while FA is a measurement model of 

a latent variable. In particular, PCA models represent singular value decompositions of 

random association matrices, whereas a FA incorporates an a priori structure of the error 

terms. Generally the factor has to be run, if it assumed to test a theoretical model of latent 

factors causing observed variables, while has to be run PCA if our aim is to simply 

reduce your correlated observed variables to a smaller set of important independent 

composite variables (Basilevsky, 2008).  

Both methodologies have several applications in research, and particularly in social 

and biomedical sciences. These multivariate statistical analysis techniques are applied 

when the interesting is about the inter-relationships of more than one variable at the same 

time. It is very rare for a researcher to isolate and analyze each variable. The most 

common procedure that has to be followed is all the variables to be analyzed at the same 

time in order to reveal the structure of data. 
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Factor Analysis Model  

 

Factor Analysis is based on the fundamental assumption that some latent variables, 

which smaller in number than the number of observed variables, are responsible for the 

co-variation among the observed variables (Kim, 1978).  

To illustrate the model, let examine the simplest case where one latent variable, 

called factor, is responsible for the co-variation between two observed variables. Because 

F is common to both X1 and X2, it called common factor; likewise, because U1 and U2 

are unique to each observed variable, they called unique factors. In algebraic form, the 

following two equations hold:  

X1 = λ1F + U1 

and  

X2 = λ2F + U2 

where λi, are called factor loadings, and express the relationship (i.e., in a form of a 

correlation) of each variable to the common factor F, when the data are standardized. 

There are two differences between the common and the unique factors. Firstly, a 

common factor affects several variables Xi (i = 1, 2, ….n) at the same time – thereby 

producing one special pattern of relations among the variables – whereas a unique factor 

affect only one variable at the same time. Secondly, a variable Xi can at the same time be 

dependent by more than one common factor, but only by one unique factor (Schilderinck, 

1977). The factor loadings give an idea about how much the variable has contributed to 

the factor; the larger the factor loading the more the variable has contributed to that factor 

(Harman, 1976). 

Let’s assume a set of observed variables X = [x1, x2, …, xn], supposed to be linked 

to a smaller number of common factors F = [f1, f2, …, fp], where p ≤ n by a regression 

model of the form (U = [u1, u2, …un] represents the error term): 

x1 =  λ11f1 + λ12f2 + . . . + λ1kfp + u1 

x2 =  λ21f1 + λ22f2 + . . . + λ2kfp + u2 

… 

xn =  λp1f1 + λp2f2 + . . . + λpkfp + un 

Also the aforementioned may be written as  

X = Λ*f + U 

where X, U are column vectors of n components, f is a column vector of p (≤ n) 

components and Λ is a nΧp matrix. Let’s assume that the unique factors are uncorrelated 

with each other and are distributed independently of common factors with zero mean.  

The factor analysis model imply that the variance of variable is given by  

σ2 = Var(xi)  =  Var(λi1f1 + λi2f2 + . . . + λijfk + ui) 

=  + + . . . + + ψi 

=  +  ψi 

where ψi is the variance of ui. 

So the factor analysis’ model implies that the variance of each observed variable can be 

split into two parts. The first given by  

=   

called communality of the variable and represent the variance shared with other variables 

via the common factors. The second part, ψi, called specificity and represent the variance 

not shared with other variables. Moreover has needed to determine the value of p, the 

number of factors, and estimate Λ and U.  
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Rotating the factors  

 

A technique that may help to better retrieve true information from the FA is the 

rotation of the information axes (factors). It has been suggested that rotation of the axes is 

required so that the extracting factors can be more interpretable. The rotation maximizes 

the variance explained of the extracted components and makes the pattern of loadings 

more well-defined. The largest part of the theory behind the rotation is derived from 

Thurstone (1947) and Cattell (1978), who advocate that using this theory simplifies FA 

and makes its interpretation easier and more reliable. The objective of factor rotation is to 

achieve the most parsimonious and simple structure possible through the manipulation of 

the factor pattern matrix. Thurstone's guidelines for rotating to simple structure have 

largely influenced the development of various rotational strategies. The most 

parsimonious solution, or simple structure, has been explained by Gorsuch (1983) in 

terms of five principles of factor rotation:  

1. Each variable should have at least one zero loading.  

2. Each factor should have a set of linearly independent variables whose factor 

loadings are zero.  

3. For every pair of factors, there should be several variables whose loadings are zero 

for one factor but not the other.  

4. For every pair of factors, a large proportion of variables should have zero loadings 

on both factors whenever more than about four factors are extracted.  

5. For every pair of factors, there should only be a small number of variables with 

nonzero loadings on both. 

The rotation can be orthogonal (the factors are uncorrelated) or non-orthogonal (the 

factors are correlated). Orthogonal rotation shifts the factors in the factor space 

maintaining 90o angles of the factors to one another to achieve the best simple structure. 

Orthogonal rotations often do not honour a given researcher's view of reality as the 

researcher may believe that two or more of the extracted and retained factors are 

correlated. Secondly, orthogonal rotation of factor solutions may oversimplify the 

relationships between the variables and the factors and may not always accurately 

represent these relationships. On the other hand, a non-orthogonal rotation follows the 

same rotation principles as an orthogonal rotation, but because the factors are not 

independent, a 900 angle of rotation is not fixed between the axes (Cattel, 1978). The 

major methods of orthogonal rotation are Varimax, Quartimax and Equimax, while the 

major methods of non-orthogonal rotation are direct Oblimin and Promax. Nevertheless, 

there are many additional methods of orthogonal and non-orthogonal rotation like 

biquartimax, covarimin or biquartimin criterion and oblimax, orthoblique (Harris & 

Kaiser, 1964) or “Procrustes method”, respectively (in the Greek Mythology, Procrustes 

was a rogue smith and bandit from Attica region in Ancient Greece, who physically 

attacked people by stretching them or cutting off their legs, so as to force them to fit the 

size of an iron bed) (Figure 1).  

Varimax, which was proposed by Kaiser (1958), is considered as the most popular 

rotation method. Each factor has a small number of large loadings and a large number of 

zero or small loadings. This simplifies the interpretation because after a varimax rotation 

each original variable tends to be associated with one (or a small number) of the factors, 

and each factor represents a small number of variables. In essence, higher loadings on a 

factor are made higher and lower loadings are made lower (Tabachnick & Fidell, 2001). 

A varimax solution is easily interpreted and provides relatively clear information about 

which items correlate most strongly with a given factor. A disadvantage of Varimax is 

that it tends to split up the variances of the major factors among the less important factors, 
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thus reducing the possibility of identifying an overall general factor. Therefore, if the 

researcher believes that there will be one general factor that accounts for most of the 

variance, then Quartimax becomes the logical choice. 

Quartimax (Carroll, 1953; Neuhaus & Wrigley, 1954; Saunders, 1960) is an 

orthogonal rotation which minimizes the number of factors needed to explain each 

variable. This type of rotation often generates a general factor on which most variables 

are loaded to a high or medium degree (Hair, 1995). The variables are much easier to 

interpret in this case, but the factors are more difficult to interpret since all variables are 

primarily associated with a single factor. Equimax rotation (Saunders, 1962) is a 

compound between Varimax and Quartimax methods. This method behaves somewhat 

erratically and should be used only when the number of factors has been clearly identified 

(Tabachnick & Fidell, 2001).  

Direct oblimin (Jennrich & Sampson, 1966) is a non-orthogonal rotation, which 

results in higher eigenvalues but diminished interpretability of the factors.  Promax 

(Hendrickson & White, 1964) is similar to direct oblimin but it is mostly used for very 

large datasets. The promax rotation has the advantage of being fast and conceptually 

simple, by comparison with Oblimin.  

Orthogonal or non-orthogonal rotation? 

The decision to rotate orthogonally or non-orthogonally is often difficult for 

researchers and is largely based on the goal of the analysis. If the goal of the analysis is to 

generate results that best fit the data, then oblique rotation seems to be the logical choice. 

Conversely, if the reliability of the factor analytic results is the primary focus of the 

analysis, then an orthogonal rotation might be preferable since results from orthogonal 

rotation tend to be more parsimonious. As already mentioned, in the orthogonal case the 

factors are uncorrelated, while in the oblique case the factors are correlated. In this 

perspective, the decision as to whether one should use an orthogonal or oblique rotation 

should be based upon the estimated inter-factor correlations from the oblique. If these are 

all close to 0, then the orthogonal is an appropriate procedure, but if any of them diverge 

from 0 then an non-orthogonal rotation should be used (Kieffer, Kevin M. 1998). 

Exploratory Factors Analysis in Biomedical Research  

Exploratory factor analysis (EFA) is the most commonly used method in health care 

research. EFA is used when the researcher does not know how many factors are 

necessary to explain the inter-behaviour among a set of medical characteristics. Therefore, 

the researcher uses the techniques of factor analysis to explore the underlying dimensions 

of the construct of interest. Moreover, examining single items in biomedical research 

studies makes the estimation of the effect size measure inaccurate and problematic, 

mainly due to the multicollinearity effect that was observed because of the high level of 

the correlations between them; therefore, FA for pattern recognition seems to be the 

“solution” to this problem. In particular, FA uses in order to examine the relationship 

between diet and risk of chronic diseases. Therefore, instead of looking at individual 

nutrients or foods consumed and their relationships with disease outcomes, FA evaluates 

and examines the effects of overall diet on human health. Moreover, FA is often used to 

explore the dimensionality of constructs in psychiatry (McKay, 1995, Jacob, 1998) and 

education (Hoban, 2005). 

Application of Factor Analysis using R; using the dietary information from the 

ATTICA epidemiological study  

It would be useful to provide an example of exploratory factor analysis an open-

source software system, called R. Briefly, R began as a research project of Ross Ihaka 

and Robert Gentleman in the 1990s, described in a paper in 1996. It has since expanded 

into software used to implement and communicate most new statistical techniques. The 
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software in R implements a version of the S language, which was designed much earlier 

by a group at Bell Laboratories (John M. Chambers, 1998).  

In the following example is used a dataset from the ATTICA Study (Pitsavos, 2003). 

The “ATTICA” study is a health and nutrition survey, which started collecting data from 

people in Greece, during 2001-2002, in the greater Athens area. The dietary evaluation 

was based on a validated semi-quantitative food-frequency questionnaire, which was 

kindly provided by the Unit of Nutrition of Athens University Medical School 

(Katsouyanni, 1997). The frequency of consumption was then quantified approximately 

in terms of the number of times per month a food was consumed. From the entire 

database 18 foods and food groups of 3042 responses were selected mainly according to 

their macronutrient composition, i.e., dairy products, fruits, vegetables, legumes, cereals, 

etc. Factor analysis, using the maximum likelihood method, was applied in order to 

extract dietary patterns based on foods.  

At first, our datasets have been read into R and stored their contents in variables. 

> my.data <- read.csv("ATTICA_EFA.csv", header=TRUE) 

# if data as NAs, it is better to omit them: 

# my.data <- na.omit(my.data) 

> head(my.data) # to see the first several rows of the data frame and confirm that the 

data has been stored correctly 

 

Next, after installing the psych package by William Revelle (2016), importing that 

package to the current namespace by calling library() as follows:  

> install.packages("psych") 

> library(psych) 

 

Then will be found out the number of factors that selecting for factor analysis. This 

can be evaluated via methods such as Parallel Analysis and eigenvalue, etc. In our case, a 

Parallel Analysis function was executed using Psych package’s fa.parallel. The following 

code was run, to find acceptable number of factors and generate the scree plot (Figure 2); 

the blue line shows eigenvalues of actual data and the two red lines (placed on top of each 

other) show simulated and resampled data. Simulated data were generated using R 

software to have characteristics (i.e., mean and variance) like those of the original data, 

but with no correlations among the observed varioables (i.e., no underlying structure). 

Resampled data where generated from the original sample using a resampling method. 

Parallel analysis is a method for determining the number of components or factors to 

retain from PCA or factor analysis. Parallel analysis is an alternative technique that 

compares the scree plots of factors of the observed data, with that of a random data 

matrix of the same size as the original. The correlation matrix is computed from the 

randomly generated dataset and, then, eigenvalues of the correlation matrix are calculated. 

If the eigenvalues from the random data are larger than the eigenvalues from the original 

factor analysis, the extracted factors from the original data are mostly random noise.Also 

the point of inflection is located – i.e., the point where the gap between simulated data 

and actual data tends to be the lowest. Looking at the scree plot and parallel analysis, 

anywhere between 4 to 6 factors should be retained. Thys, the analysis was based on a 5 

factors solution. In order to perform factor analysis, psych package’s fa() function was 

used.  

> model <- fa(foods, nfactors = 5,rotate = “varimax”,fm=”ml”) 

 

Then were loadings greater than 0.2 where considered in order to characterize each 

factor (the threshold used may vary from analysis to analysis, giving to the researcher the 
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opportunity to better interpret the extracted factors). So let’s first establish the cut off to 

improve visibility in the extracted factors solution: 

> print(model,digits=,cut=0.2, sort = TRUE) 

 

Taking into consideration that higher absolute values are indicative of the food’s 

greater contribution to the development of the factor (dietary pattern), the 5 factors 

(patterns) extracted and heavily loaded with the following food groups or foods (Table 1): 

• Factor 1: total meat and red meat 

• Factor 2: vegetables, fruits, cereals, legumes, dairy, fish and eggs 

• Factor 3:  butter, other added fat, alcohol, seed oil and olive Oil 

• Factor 4: sweets, soft drinks and potatoes 

• Factor 5: poultry 

 

                                       Factor1  Factor2  Factor3  Factor4  Factor5  

SS loadings                       1.83      1.75        1.71        1.12       1.06 

Proportion Variance          0.10      0.10        0.10        0.06      0.06   

Cumulative Variance        0.10      0.20        0.30         0.36      0.42 

 

Factor analysis explained the 42% of the total variation in intake, which is considered 

a good explanatory ability in nutrition epidemiology. To visualized the factors extracted a 

special command in R was used, by calling the function fa.diagram(model). (Figure 3) 

The square boxes are the observed variables, and the ovals are the unobserved factors. 

The straight arrows are the loadings, the correlation between the factor and the observed 

variables. The curved arrows are the correlations between the factors. If no curved arrow 

was present, then the correlation between the factors was not great.  

Concluding remarks 

Factor analysis is an “old” multivariate statistical procedure for data analysis that has 

many uses nowadays in various fields of behavioural sciences, like sociology, psychology, 

molecular biology and genetics, medicine and nutrition, as well as other disciplines, that 

it is often not possible to measure directly the concepts of primary interest. This method 

of analysis most generally used to uncover the “hidden” relationships between the 

assumed latent variables and the initial observed variables. By understanding the 

concepts and the procedures of factor analysis, readers can better evaluate the reported 

results.  
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Figure 1: Schematic representations of factor rotation. The left graph displays orthogonal 

rotation whereas the right graph displays oblique rotation. θ is the angle through which the 

axes are rotated.   
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Figure 2. Parallel Analysis Scree Plot for determining the number of factors in Exploratory 

Factor Analysis, using the ATTICA study dietary database. 

Dimitris Panaretos1,George Tzavelas2, Malvina Vamvakari3, Demosthenes Panagiotakos4 627



 

 

Figure 3. An example of factor analysis using graphic representation of the 5 factors 

extracted from the ATTICA Study dietary database (using fa.diagram command). Factors 

were transformed to an orthogonal solution using varimax rotation. 
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Table 1. Factor coefficients loadings regarding foods or food groups consumed by Greek 

ATTICA study participants (n=3042)  at baseline  

 Loadings  

Food / Food group Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Total meat 0.90     

Red meat 0.89     

Vegetables  0.71    

Fruits  0.61    

Cereals  0.49    

Legumes (lentils, beans, etc)  0.48    

Dairy (milk, yogurt)  0.39    

Fish  0.32    

Eggs  0.23    

Butter   0.93   

Other added fat   -0.81   

Alcohol   0.28   

Seed oil        -0.22   

Olive Oil   0.22   

Sweets    0.61  

Soft drinks    0.44  

Potatoes    0.43  

Poultry     0.97 
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