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Abstract: In this article, we introduce an extension referred to as the exponentiated 

Weibull power function distribution based on the exponentiated Weibull-G family 

of distributions. The proposed model serves as an extension of the two-parameter 

power function distribution as well as a generalization to the Weibull power 

function presented by Tahir et al. (2016 a).  Various mathematical properties of 

the subject distribution are studied. General explicit expressions for the quantile 

function, expansion of density and distribution functions, moments, generating 

function, incomplete moments, conditional moments, residual life function, mean 

deviation, inequality measures, Rényi and q – entropies, probability weighted 

moments and order statistics are obtained. The estimation of the model parameters 

is discussed using maximum likelihood method. Finally, the practical importance 

of the proposed distribution is examined through three real data sets.  It has been 

concluded that the new distribution works better than other competing models.  
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1. Introduction 

Power function (PF) distribution arises in several scientific fields. It is a flexible life time 

distribution that may offer a suitable fit to some sets of failure data. The power function 

distribution is a special model from the uniform distribution. Dallas (1976) showed that the 

power function is the inverse of Pareto distribution, that is, if has the power function then 

 has Pareto distribution. Meniconi and Barry (1996) mentioned in their studies that the 

power function distribution is preferred over exponential, lognormal and Weibull because it 

provides a better fit for failure data.  More details on this distribution and its applications can be 

found in Ahsanullah and Lutful-Kabir (1974), Chang (2007) and Tavangar (2011). 

The probability density function (pdf) of PF distribution is given by 

  

where, λ > 0  is the scale parameter and θ > 0  is the shape parameter. The corresponding 

cumulative distribution function (cdf) is given by 
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In the last few years, new generated families of continuous distributions have attracted 

several statisticians to develop new models as well as provide great flexibility in modelling real 

data. These families are obtained by introducing one or more additional shape parameter(s) to 

the baseline distribution. We list some of the generated families as follows:  the beta-G  by  

Eugene et al.( 2002) and  Jones (2004), gamma-G (type 1) by  Zografos and Balakrishanan 

(2009), Kumaraswamy-G by Cordeiro and de Castro ( 2011), McDonald-G by Alexander et al. 

(2012), gamma-G (type 2) by Risti ć and Balakrishanan (2012), exponentiated generalized 

class by Cordeiro et al. (2013),  transformed-transformer by Alzaatreh et al. (2013), Weibull- G 

by Bourguignon et al. (2014), the Kumaraswamy transmuted-G family by Afify et al. (2016), 

Kumaraswamy Weibull-G by Hassan and Elgarhy (2016a), exponentiated Weibull-G by 

Hassan and Elgarhy (2016 b) and additive Weibull-G by Hassan and Hemeda (2016), 

transmuted Weibull- G by Alizadeh et al. (2016), new Weibull-G by Tahir et al. (2016 b),  new 

generalized Weibull-G by Cordeiro et al. (2015), beta Weibull-G by Yousof et al. (2017), 

generalized additive Weibull-G by Hassan et al. (2017) and generalized Marshall-Olkin 

Kumaraswamy-G family of distributions by Chakraborty and Handique (2017) among others.  

Some recent extended distributions from power function have been studied by some authors.  

Beta power function distribution was presented by Cordeiro and Brito (2012) based on beta-G 

family. The Weibull power function was suggested by Tahir et al. (2016a) by using the 

Weibull-G family. Oguntunde et al. (2015) suggested the Kumaraswamy power distribution 

(KPF). Transmuted power function (TPF) was proposed by Haq et al. (2016). The 

exponentiated Kumaraswamy power function distribution was presented by Bursa and Kadilar 

(2017). 

Based on exponentiated Weibull-generated (EW−G) presented by Hassan and Elgarhy 

(2016b), the cumulative distribution function of  (EW−G) family is given by  

                                                          (3) 

where α, β > 0 are the two shape parameters and α > 0 is the scale parameter. The cdf (3) 

provides a wider family of continuous distributions. The pdf corresponding to (3) is given by 

     (4) 

In this study, we introduce a new five-parameter model as a competitive extension for the 

power function distribution using the EW−G family. The rest of the paper is outlined as 

follows. In Section 2, we introduce the exponentiated Weibull power function (EWPF) 

distribution. In Section 3, we derive a very useful representation for the EWPF density and 

distribution functions. In the same section, some general mathematical properties of the 

proposed distribution are derived. The maximum likelihood method is used to drive the 

estimates of the model parameters in Section 4. Simulation study is performed to obtain the 
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maximum likelihood estimates of the model paramerets in Section 5. Applicability of the 

proposed model is shown and compared with other competing probability models in Sestion 6. 

At the end, concluding remarks are outlined.  

  

2. The Exponentiated Weibull-Power Distribution 

In this section, the five-parameter EWPF distribution is obtained based on the EW−G 

family.  

The cdf of the exponentiated Weibull power function distribution, denoted by  

EWPF(𝑎, 𝛼, 𝛽, 𝜆, 𝜃) is obtained by inserting the cdf (2) in cdf (3) as follows 

                     (5) 

where, Ψ ≡ (𝑎, 𝛼, 𝛽, 𝜆, 𝜃) , is the set of parameters. The pdf of EWPF distribution is 

obtained by inserting the pdf (1) and cdf (2) into (4) as the following 

                     

(6) 

Note that; for 𝑎=1, the pdf  (6) reduces to Weibull power function which is carried out by 

Tahir et al. (2016a). The survival, hazard rate, reversed-hazard rate and cumulative hazard rate 

functions of EWPF distribution are respectively given by  

 

 

and 

 

Plots of the pdf and hazard rate function (hrf) of the EWPF are displayed in Figures 1 and 2 

for selected parameter values. It is clear from Figure 1 that the EWPF densities take various 
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shapes such as symmetrical, left-skewed, reversed-J, right skewed and unimodal.  Also, 

Figure 2 indicates that EWPF hrfs can have increasing, decreasing, constant and U-shaped. This 

fact implies that the EWPF can be very useful for fitting data sets with various shapes. 

Figure 1 Plots of the  pdf for some parameters   Figure 2 Plots of the  hrf  for some parameters 

 

3. Statistical Properties 

Here, we provide some properties of the EWPF distribution. 

  

3.1 Important Expansions  

In this subection, two usefuel representations of the pdf and cdf for exponentiated Weibull 

power function  distribution are derived.  

The pdf (6) can be rewritten as follows 

 

The generalized binomial theorem, for β>0 is real non integer and |𝑍|<1 is given by  

                (8) 

Then, by applying the binomial theorem (8) in (7), the probability density function of 

EWPF distribution where 𝑎 is a real non integer becomes  

 

 

 



 

 
                                          

                                         
 

 

 

By using the power series for the exponential function and the following binomial expansion 

 

Hence the pdf of the EWPF distribution takes the following form  

 

Where 𝑔𝜃(𝛽+𝛽𝑖+𝑘)(𝑥) denotes the pdf of PF distribution with parameters θ(β + 𝛽𝑖 + k) and 

λ. 

Furtheremore, an expansion for the cumulative distribution function is derived. Using 

binomial expansion for (F(x; Ψ))s, where s is an integer and 𝑎 is a real non integer, leads to: 

 

Applying the power series for the exponential function and the relation (10) where β is real 

non integer, then the previous cdf takes the following form 

 
Or, it can also be written as, 

 

 

3.2 Quantile Function 

The quantile function, say x = Q(u) = 𝐹−1(𝑢) of X can be obtained by inverting (5) as 

follows 
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where, u is a uniform random variable on the unit interval (0,1). In particular, the first quartile, 

median and third quartile are obtained by subsituting  u=0.25,0.5 and u=0.75 in (13). 

The Bowley skewness introduced by Kenney and Keeping (1962) based on quartiles is given by 

 

The Moors kurtosis (see Moors (1988)) based on octiles is given by 

 

where Q(.) denotes the quantile function. Plots of the skewness and kurtosis for some choices 

of 𝑎 as function of β are shown in Figure 3. The plots indicate the variability of these measures 

on the shape parameters.  

 

3.3 Moments 

This subsection concerns with the rth moment and the moment generating function for 

EWPF distribution. 

 

 
 

  

 

(i) (ii) 

Figure 3: Skewness (i) and kurtosis (ii) plots for EWPF distribution based on quantile function 
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If X has the pdf (11), then its rth moment can be obtained as follows 

             (14)

 

Inserting (11) into (14) yields: 

 

 

Setting r=1,2,3,4 in (15), we can obtain the first four moments about zero. Generally, the 

moment generating function of EWPF distribution is obtained through the following relation 

 

 

3.4 Incomplete and Conditional Moments  

The main application of the first incomplete moment refers to the Bonferroni and Lorenz 

curves. These curves are very useful in economics, reliability, demography, insurance and 

medicine. The incomplete moments, say 𝜑𝑠(𝑡) , is given by 

 

Using (11), then 𝜑𝑠(𝑡) can be written as follows 

 

Further, the conditional moments, say  𝑟𝑠(𝑡) , is given by 

 

Hence, by using pdf (11), we can write 

 

Additionally, the mean deviation can be calculated by the following relation 
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where, T(q) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑞

0
 which is the first incomplete moment. 
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By using (11) then, 

 

 

 

3.5 Residual Life Function 

The residual life plays an important role in life testing situations and reliability theory. The 

nth moment of the residual life is given by: 

 

The nth moment of the residual life of EWPF random variable is obtained by inserting pdf 
(11) in (16) as follows 

 
So, the nth moment of the residual life of EWPF can be represented as follows 

 

 

Another interesting function is the mean residual life (MRL) function or the life expectation 

at age x defined by 𝑚1(𝑡) = [(𝑋 − 𝑡)|𝑋 > 𝑡], which represents the expected additional life 

length for a unit which is alive at age x The MRL of the EWPF distribution can be obtained by 

setting n=1 in (17). 

 

3.6 Inequality Measures 

Lorenz and Bonferroni curves are the most widely used inequality measures in income and 

wealth distribution. Zenga curve was presented by Zenga (2007). Here, the Lorenz, Bonferroni 

and Zenga curves for the EWPF distribution are derived. The Lorenz, Bonferroni and Zenga 

curves are obtained, respectively, as follows
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and 

 

where 

 

And 

 

 

3.7 Rényi and q – Entropies 

The entropy of a random variable X is a measure of variation of uncertainty and has been 

used in many fields such as physics, engineering and economics. The Rényi entropy is defined 

by 

 

By applying the binomial theory (8), (10) and exponential expansion, then the pdf 

𝑓(𝑥; Ψ)𝑠can be expressed as follows 

 

where 
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Therefore, the Rényi entropy of EWPF distribution is given by 

 

The q- entropy is defined by 

 

Therefore, the q- entropy of  distribution is given by 

 

 

3.8 The Probability Weighted Moments 

A general theory of probability weighted moments (PWMs) was initially introduced by 

Greenwood et al. (1979) to derive estimators of the parameters and quantiles of generalized 

distributions. 

The probability weighted moments of a random variable X, say 𝜏𝑟,𝑠 is formally defined by 

               (18) 

Therefore, PWM of the EWPF distribution is obtained by inserting  (11) and (12) into (18), 

as follows 

 

Hence, the PWM of exponentiated Weibull power function distribution takes the following 

form 

 

 

3.9 Order Statistics 

Let 𝑋1:𝑛 < 𝑋2:𝑛 < ⋯ < 𝑋𝑛:𝑛 be the order statistics of a random sample of size n following 

the EWPF, the pdf of the rth order statistic is given by 

       (19) 

599



 
 
                                          The Exponentiated Weibull-Power Function Distribution 

 

where, B(.,.) is the beta function. Inserting (11) and (12) into (19) by replacing s with  v +
r − 1 leads to

 

 

In particuler, the the pdf of the smallest order statistic is obtained by substituting r=1 in (20) 

as follows 

 

Further, the the pdf of the largest order statistic is obtained by subsituting  in (20) as 

follows 

 

 

4.  Maximum Likelihood Estimation   

The maximum likelihood estimators of the unknown parameters for the exponentiated 

Weibull power function distribution are determined based on complete samples. Let  𝑋1, … , 𝑋𝑛  

be observed values from the EWPF distribution with set of parameters Ψ ≡ (𝑎, 𝛼, 𝛽, 𝜆, 𝜃)𝑇. The 

total log-likelihood function for the vector of parameters Ψ can be expressed as  

 

where, 𝑍𝑖 = (
𝑥𝑖

𝜃

𝜆𝜃−𝑥𝑖
𝜃) . The λ  is known and we estimate it from the sample maxima. The 

elements of the score function   U(Ψ) = (𝑈𝑎 , 𝑈𝛼 , 𝑈𝛽 , 𝑈𝜃) are given by 

                              (21) 
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and 

 

 Then the maximum likelihood estimates (MLEs) of the parameters a, α, β and θ  are 

obtained by setting equations (21 -24) to be zero and solving them numerically.    

 

5. Simulation Study 

In this section, a simulation study is carried out to evaluate the performance of the MLEs of 

the EWPF parameters with respect to sample size. The numerical procedures are described 

through the following algorithm. 

Step(1): A random sample 𝑋1, … , 𝑋𝑛 of sizes n=(10, 20, 30, 50, 100, 200) are selected, these 

random samples are generated from the EWPF distribution.  

Step(2): Assume that λ to be known and we will take it to be one in all experiments. Eight 

selected parameter combinations are considered as follows:  set I (α=0.5, β=1,  𝜃 = 1, a=0.5), 

set II (α=1.5, β=1,  𝜃 = 1.5, a=0.5), set III (α=0.5, β=0.5,  𝜃 = 1.5, a=0.5),  set IV (α=1.5, 

β=0.5,  𝜃 = 0.5 a=1), set V (α=0.5, β=0.5,  𝜃 = 0.5, a=0.5), set VI (α=0.5, β=0.5,  𝜃 = 0.5, 
a=1.5), set VII (α=0.5, β=0.5,  𝜃 = 0.5, a=1.5), set VIII (α=0.5, β=0.5,  𝜃 = 1, a=1.5).   

Step (3): For each model parameters and for each sample size, the MLEs of α, β, θ and a are 

computed.  

Step (4): Steps from 1 to 3 are repeated 1000 times for each sample size and for selected sets of 

parameters. Then, the MLEs of the parameters, their biases and standard errors (SE) are 

computed.  

From simulation results, the following observations can be made: 

1. The standard errors for each parameter generally decrease as the sample size increases 

for all set of parameters as shown in Figure (4). 

2. The SEs of α for set I have the smallest values corresponding to the other set of 

parameters (see Figure 4(i)), the SEs of β for set VI have the smallest values corresponding to 

the other set of parameters (see Figure 4(ii)). Also, the SEs of θ for set II have the smallest 

values corresponding to the other set of parameters (see Figure 4(iii)), the SEs of a for set IV 

have the smallest values corresponding to the other set of parameters (see Figure 4(iv)). 
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(i) (ii)  

 

 

 (iii)
 

(iv)
 

Figure 4: Standard errors of α, β, θ and a  for eight set of parameters 

 

3. Most of the estimates for different parameters are positively and negatively biased which 

indicates that the estimates are overestimate and underestimates respectively as shown in Figure 

5. Generally, the biases for each parameter decrease as the sample size increases expect for few 

cases (see Figure 5). 
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4. The SEs for β in sets III, V, VI, VII and VIII take the smallest values compared to the 

corresponding SEs for θ, α, a ; while the SEs for θ in sets I, II, IV take the smallest values 

compared to the corresponding SEs for β, α, a (see Figure 6 as particular cases). 

  

  

Figure 5: Biases of α, β, θ and a  for eight set of parameters 
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Figure 6: Standard errors of α, β, θ and a  for set VI and set II  

 

6. Data Analysis 

In this section, three real data sets are analyzed to illustrate the merit of EWPF distribution 

compared with some other models; namely, Weibull power function (WPF), beta Weibull (BW), 

beta modified Weibull (BMW) (see Silva et al. (2010)), exponentiated generalized modified 

Weibull (EGMW) (see Aryal and Elbatal (2015)), Kumerswmay power function (KPF), PF and  

transmuated power function ( TPF).  

We obtain the MLE and their corresponding standard errors (in parentheses) of the model 

parameters. To compare the distribution models, we consider criteria like; Kolmogorov-

Smirnov (K-S) statistic, Akaike information criterion (AIC), the correct Akaike information 

criterion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn information 

criterion (HQIC). However, the better distribution corresponds to the smaller values of  AIC 

BIC, CAIC, HQIC criteria and K-S statistic. Further, we plot the histogram and empirical cdfs 

for each data set and the estimated pdf of the EWPF, WPF, BMW, BW, EGMW, KPF, PF and 

TPF models.  

 
6.1 Data Set 1: Acute Myelogenous data 

The first data were first analyzed by Feigl and Zelen (1965). The data represent the survival 

times, in weeks, of  33 patients suffering from Acute Myelogenous Leukaemia. The data are: 65, 

156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3,8, 

4, 3, 30, 4, 43. 

Table 1 lists the values of  MLEs of parameters and their standard errors (SE) in parenthesis. 

Table 2 lists  the values of  AIC, CAIC, BIC, HQIC and K-S. 
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Table 1: MLEs and their SEs (in parentheses) for Acute Myelogenous data 

 

 Table 2: Statistics measures for Acute Myelogenous data 

It is clear from Table 2 that the EWPF distribution provides a better fit than the other 

competitive models. It has the the smallest values for K-S, AIC, CAIC, BIC and HQIC  among 

those considered here. Plots of the fitted densities and the histogram are given in Figure 7.  

 

Models 
Estimated Parameters 

a α β   b   

EWPF 
63.968 

(0.0042) 

6.082 
(0.376) 

0.083 
(0.01) 

156 
1.681 

(0.000088) 
- - - 

BMW 
0.079 
(0.1) 

37.15 
(46.903)  

0.00006 
(0.003) 

 
0.883 

(0.177) 
0.001 

(0.00014)  

EGMW - 
0.229 

(0.008) 
0.678 

(0.0003) 
1 

(0.016) 
0.082 

(0.153) 
- - 

.00031 
(4.838) 

WPF 
2.681 

( 0.631) 
156 

4.391 
( 2.377) 

 
4.391 

( 2.377) 
0.16 

( 0.076) 
  

PF - 
0.449 

(0.078) 
- 156 - - - - 

KP 
0.5 

( 0.1180) 
0.392 

( 0.124) 
- 156 - 

0.392 
( 0.124) 

- - 

TPF - 
0.817 

(0.108) 
156 - 

1.194 
(0.064) 

- - - 

Models AIC BIC CAIC HQIC K-S 

EWPF 305.852 313.335 308.074 308.37 0.1199 

BMW 318.967 326.449 321.189 321.484 0.939 

EGMW 317.303 324.786 319.525 318.821 0.138 

WPF 307.804 313.79 309.232 309.818 0.1214 

PF 965.418 968.411 965.818 966.425 0.145 

KP 329.734 335.72 331.162 331.748 0.2645 

TPF 335.131 339.62 335.959 336.642 0.183 
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(a) Estimated pdfs (b) Estimated cdfs 

Figure 7. Plots of the estimated pdfs and cdfs for the EWPF, BMW, EGMW, WPF, KPF, PF and TPF models  

for Acute Myelogenous data 

 

6.2 Data Set 2: Actual Taxes data 

The second real data have been used by Nassar and Nada (2011). The data represent the 

monthly actual taxes revenue in Egypt from January 2006 to November 2010. The distribution 

is highly skewed to the right. The actual taxes revenue data (in 1000 million Egyptian pounds) 

are: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1,6.7, 17, 8.6, 9.7, 

39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9,16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 

20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6,12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 

10.8.  
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Table 3: MLEs and their SEs (in parentheses) for the Actual Taxes data 

 

 

 

 

 

 

 

Table 4: Statistics measures for the Actual Taxes data. 

  

 

 

 

It is clear from Table 4 that the EWPF distribution provides a better fit than the other 

comptitive models. It has the the smallest K-S, AIC, CAIC, BIC and HQIC values among those 

considered here. Plots of the fitted densities and the histogram are given in Figure 8. 

 

 

Models 
Estimated Parameters   

a α β   b  

EWPF 63.574 

( 0.00455) 

8.364 

( 0.5902) 

 

0.066 

( 0.00621) 

39.2 7.377 

( 0.00019) 

- - 

BW 55.574 
(42.263) 

1.391 
(0.403) 

- - - 0.031 
(0.00561) 

1.238 
(0.222) 

WPF 5.666 

(1.036) 

- 

 

39.2 - 15.321 

( 10.509) 

0.118 

( 0.078) 
- 

PF - 0.81 

( 0.1055) 

- 39.2 - - - 

KPF 0.5 

( 0.09934) 

0.44 

( 0.104) 

- 39.2 - 0.44 

( 0.104) 
- 

TPF - 1.172 

(0.1194) 

- 39.2 0.962 

(0.093) 

- - 

Models AIC BIC CAIC HQIC K-S 

EWPF 383.784 394.172 384.916 387.84 0.08234 

BW 401.277 409.588 402.018 404.521 5.212 
WPF 401.037 409.347 401.778 404.28 0.14317 

PF 12600 126600 126200 126300 0.304 

KPF 499.825 508.135 500.565 503.06 0.4087 

TPF 417.729 423.961 418.165 420.16 0.195 
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(a) Estimated pdfs (b) Estimated cdfs 

Figure 8. Plots of the estimated pdfs and cdfs for the EWPF, BW, WPF, KPF, PF and TPF models  for 

the Actual Taxes data 

 

6.3 Data set 3: Failure Time Data 

 The third data set are provided in Murthy et al. (2004) about time between failures for 30 

repairable items. The data are listed as the following: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 

2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 

0.63, 1.23, 1.24, 1.97, 1.86, 1.17. 

Table 5: MLEs and their SEs (in parentheses) for the failure time data 

 

 

 

 

 

 

 

 

Models 
Estimated Parameters 

a α β   b  

EWPF 
39.68 

( 0.02) 

5.629 

( 0.3977) 

0.248 

( 0.032) 
4.73 

1.033 

( 0.00012) 
  

BMW 
0.539 

(0.934) 

50.552 

(112.102) 
- 

0.274 

(0.189) 

 

- 

772 

(0.016) 

 

0.857 

(0.333) 

WPF 
5.636 

( 1.5679) 
4.73 - - 

6.539 

( 6.845) 

0.22 

( 0.221) 
- 

PF - 
0.631 

( 0.1151) 
- 4.73 -   

KPF 
1 

( 0.2939) 

0.646 

( 0.177) 
- 4.73 - 

0.646 

( 0.177) 
- 

TPF - 
1.075 

(0.1637) 
- 4.73 

1.44 

(0.209) 
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Table 6: Statistics measures for the failure time data 

 

 

 

 

 

As shown in Table 6; the EWPF distribution provides a better fit than the other competitive 

models, since it has the the smallest K-S, AIC, CAIC, BIC and HQIC values. Plots of the fitted 

densities and the histogram are given in Figure 9.  

 

  
(a) Estimated pdfs (b) Estimated cdfs 

Figure 9. Plots of the estimated pdfs and cdfs for the EWPF, BMW, WPF, KPF, PF and TPF 

 models for failure time data 

 

7. Concluding Remarks 

In this paper, a new five-parameter, called the exponentiated Weibull power function 

distribution is introduced based on exponentiated Weibull-G family. The exponentiated 

Weibull power function distribution includes the Weibull power function distribution presented 

by Tahir et al. (2016 a). Some mathematical properties are derived. The maximum likelihood 

method is employed for estimating the model parameters. A simulation study is presented to 

evaluate the maximum likelihood estimates for model parameters. The practical importance of 

the EWPF distribution was demonstrated in three applications to show superior performance in 

comparison with several other former lifetime distributions. Applications showed that the 

Models AIC BIC CAIC HQIC K-S 

EWPF 89.248 96.254 91.748 91.489 0.07328 

BMW 94.406 101.412 96.906 96.647 0.86667 

WPF 92.324 97.929 93.924 94.117 0.07705 

PF 445.571 448.373 446.015 446.46 0.288 

KPF 109.747 115.352 111.347 111.54 0.26293 

TPF 101.458 105.662 102.381 102.80 0.139 
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EWPF model can be performed better than the Weibull power function, power function, 

Kumerswmay power function, beta Weibull, beta modified Weibull, exponentiated generalized 

modified Weibull and the transmuted power function distributions.  
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