
Journal of Data Science 829-856 , DOI: 10.6339/JDS.201810_16(4).00009 

AN INTERVAL-CENSORED PROPORTIONAL HAZARDS MODEL 

 

John M. Williamson
*
, Hung-Mo Lin

1
, Hae-Young Kim

2 

 
*
Division of Parasitic Diseases and Malaria, National Center of Global Health, 

Centers for Disease Control and Prevention (MS A-06), 1600 Clifton Road, Atlanta, GA 

30329, U.S.A. 

1
Department of Population Health Science and Policy, Icahn School of Medicine at 

Mount Sinai, One Gustave L. Levy Place, Box 1077, New York, NY 10029, U.S.A. 

2
Department of Public Health, New York Medical College, 40 Sunshine Cottage Rd, 

Valhalla, NY 10595, U.S.A. 

 

ABSTRACT 

We fit a Cox proportional hazards (PH) model to interval-censored 

survival data by first subdividing each individual's failure interval into non-

overlapping sub-intervals. Using the set of all interval endpoints in the data 

set, those that fall into the individual's interval are then used as the cut 

points for the sub-intervals. Each sub-interval has an accompanying weight 

calculated from a parametric Weibull model based on the current parameter 

estimates. A weighted PH model is then fit with multiple lines of 

observations corresponding to the sub-intervals for each individual, where 

the lower end of each sub-interval is used as the observed failure time with 

the accompanying weights incorporated. Right-censored observations are 

handled in the usual manner. We iterate between estimating the baseline 

Weibull distribution and fitting the weighted PH model until the regression 

parameters of interest converge. The regression parameter estimates are 

fixed as an offset when we update the estimates of the Weibull distribution 

and recalculate the weights. Our approach is similar to Satten et al.'s (1998) 

method for interval-censored survival analysis that used imputed failure 

times generated from a parametric model in a PH model. Simulation results 

demonstrate apparently unbiased parameter estimation for the correctly 

specified Weibull model and little to no bias for a mis-specified log-logistic 
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model. Breast cosmetic deterioration data and ICU hyperlactemia data are 

analyzed. 

 

Key words: Accelerated failure time model; Interval-censored failure time 

data; Parametric survival analysis; Proportional hazards model 
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1. Introduction 

Interval-censored failure data are a special case of survival data in which the only 

information available to the investigator is whether an event occurred before or after 

one or more visit (examination) times. For example, in HIV studies, investigators 

cannot observe the exact moment when the virus develops, only whether the virus 

developed before or after the test. Interval-censored failure data often occur in 

observational or follow-up studies where patients are not continuously being observed. 

Whether or not the event occurred is ascertained at the observation times, and the 

failure time of the event itself is not available. Such data are increasing in medical 

studies due in part to the greater use of biomarkers that define a disease progression 

endpoint (Heller (2011)). A special case of interval-censored data is current-status data, 

where individuals are seen only once after enrollment (Diamond et al. (1986), 

Grummer-Strawn (1993)). Thus, the observations are either of the form (0,C] or (C,∞) 

(i.e., left- or right- censored). These data are also commonly referred to as case 1 

interval-censored data (Huang (1996)). 

There have been numerous methods proposed for the analysis of interval-censored 

failure data. Peto and Peto (1972) first considered the comparison of the interval-

censored survival curves of two samples. Finkelstein (1986) proposed a semiparametric 

method in which the baseline distribution and regression parameters are fit 

simultaneously by maximizing the full likelihood of the data. Sun (1996) proposed a 

test statistic for interval-censored failure data having the same algebraic form as the 

original log-rank test. Zhao and Sun (2004) generalized Sun's log-rank test (1996) to 

include exact failure times in interval-censored data. Sun, Zhao, and Zhao (2005) 

proposed a class of non-parametric tests for the comparison of k interval-censored 

survival curves that are generalizations of Peto and Peto's log-rank test (1972). 

Satten (1996) considered a marginal likelihood approach to fitting the proportional 

hazards (PH) model (Cox (1972), Cox (1975)) by maximizing a likelihood that is the 

sum over all rankings of the data that are consistent with the observed censoring 

intervals. Satten et al. (1998) suggested a parametric model for the baseline hazard to 

generate imputed failure times. In their model the usual PH model for right-censored 

data is used to estimate the regression parameters. Heller (2011) proposed a method for 

estimation and inference of the regression parameters in the Cox PH model with 

interval censoring based on estimating equations and using an inverse probability 

weight to select event time pairs where the ordering is unambiguous. A Bayesian 

estimation approach has recently been proposed for analyzing interval-censored data 

under the PH model (Lin et al. (2015)). The PH models and tests referenced above for 

analyzing interval-censored data can be used for the analysis of current status data. 

Murphy and van der Vaart (1997) considered semiparametric likelihood ratio inference 
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and proposed a test for significance of the regression coefficient in Cox's regression 

model for current status data. 

To fit a Cox PH model to interval-censored failure time data, we begin by 

subdividing each individual's failure interval into non-overlapping sub-intervals. Using 

the set of all interval endpoints in the data set, those that fall into the individual's 

interval are then used as the cut points for the sub-intervals. Then for each sub-interval, 

an exact failure time is assumed and the accompanying weight is calculated. The sum 

of the weights for each individual is 1.0. Our approach is similar to Satten et al.'s 

method (1998) for interval-censored survival analysis who used imputed failure times 

generated from a parametric model in a PH model. 

We present the details of our approach in Section 2. In Section 3 we present 

simulation studies to detail its performance and compare it with Satten et al.'s approach 

(1998). We illustrate the proposed PH approach in Section 4 with analysis of breast 

cancer study data and intensive care unit hyperlactemia data. We conclude with a short 

discussion on the merits of the proposed approach. 

 

2. Methods 

Let 𝑇𝑖 denote the log-transformed failure time for the 𝑖𝑡ℎ observation (𝑖 = 1,… , 𝑛 

where 𝑛 is the sample size). If data are interval censored, then for each individual, 

instead of a failure time, we observe a censoring interval ( 𝑙𝑖 , 𝑢𝑖] that is known to 

contain the actual failure time. The failure indicator is defined as 𝛿𝑖 = 1 if the 𝑖𝑡ℎ 

observation is of the form (𝑙𝑖 , 𝑢𝑖] (interval censored, or left-censored if 𝑙𝑖 = 0). For 

right-censored observations 𝛿𝑖 = 0. We assume throughout that the censoring/dropout 

mechanism is independent of both the response time and the covariates. 

Let the survivor distribution for 𝑇  be denoted by 𝑆(𝑡; 𝜃, 𝛽) = 𝑃𝑟(𝑇 ≥ 𝑡), where 

𝑡 ≥ 0, 𝜃 is a column vector of intercept (∆) and scale (𝜎) parameters, and 𝛽 is a (𝑝 × 1) 

column vector of regression parameters.  The log-likelihood for such interval-censored 

failure data is 

l(𝑙𝑖 , 𝑢𝑖 , 𝛿𝑖 , β, θ) = ∑{𝛿𝑖 log𝑆(𝑙𝑖) − 𝑆(𝑢𝑖) + (1 − 𝛿𝑖) log[𝑆(𝑙𝑖)]}

𝑛

𝑖=1

 (1) 

with 𝑆(0) = 1. We assume that the observed data comprise iid samples. Further assume 

that 𝑇  follows a Weibull distribution.  Let 𝑧𝑖 = (𝑢𝑖 − ∆ − 𝑥𝑖′𝛽𝐴𝐹𝑇)/𝜎 and 𝑣𝑖 = (𝑙𝑖 −

∆ − 𝑥𝑖′𝛽𝐴𝐹𝑇)/𝜎, where 𝑥𝑖 is a column vector of mean-centered covariates and 𝛽𝐴𝐹𝑇 are 

parameters fit with an accelerated failure time (AFT) model. Then 𝑆(𝑧𝑖) =

exp{− exp(𝑧𝑖)}, 𝑓(𝑧𝑖) = (1 𝜎⁄ ) exp(𝑧𝑖) exp{− exp(𝑧𝑖)} and the corresponding survivor 

and pdf functions for 𝑣𝑖 . Also assume the baseline survival function 𝑆(𝑡) at a given 

event time 𝑡 can be estimated when each component of the covariate vector 𝑥 equals 
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zero. The Weibull distribution belongs to both the AFT and PH families. Therefore, 

there is an interchangeable relationship between the 𝛽 parameters fit by the parametric 

Weibull AFT and PH models: 𝛽𝐴𝐹𝑇 = −𝜎 × 𝛽𝑃𝐻. Hereafter, if 𝛽 has no subscript then 

it refers to the PH parameters, 𝛽𝑃𝐻 . We also choose the Weibull model for the 

underlying distribution because of its flexibility and easy generalizability to other 

settings (Alkarni (2016), Mustafa et al. (2016), Pu et al. (2016)). 

Here we propose to estimate 𝛽𝑃𝐻 based on the partial likelihood derived from the 

PH model, instead of a full likelihood approach where we would be required to make a 

parametric assumption on the failure time distribution. The partial likelihood only 

assigns a relative weighting to the possible rank orderings of failure times and is less 

sensitive to misspecification of the form of the failure time distribution than a fully 

parametric based likelihood, which requires that the distribution of 𝑇  be correctly 

specified (Satten et al. (1998)). Specifying the failure distribution can be challenging 

for interval-censored failure data as the exact failure times are not observed. Fitting a 

Cox PH model requires knowledge of the exact failure (censoring) times of individuals 

in the study in order to obtain the ranking of observations for computation of the partial 

likelihood. Satten et al. (1998) proposed to impute a number of failure times within 

each observed interval for interval-censored individuals. A parametric distribution for 

the failure time data needs to be assumed for imputation; however, the imputed data are 

then analyzed using the PH model. They propose to estimate 𝛽 solving 

𝑆𝛽(𝛽, 𝜃) = 𝐸𝐹[𝑆(𝑡|𝛿, 𝑋, 𝛽)] = ∫𝑆(𝑡|𝛿, 𝑋; 𝛽) 𝑑𝐹(𝑡|𝛿, 𝑋; 𝛽) (2) 

where 𝐹(𝑡|𝛿, 𝑋; 𝛽) is a parametric family of conditional distributions of failure times 𝑡 

given the observed censoring intervals, covariates, and right-censored indicator 𝛿, and 

assuming that this family of distributions contains the true distribution of 𝑡 and that the 

distribution of 𝑡𝑖 conditional on 𝑥𝑖 is in the proportional hazards family. 

Our method mimics this approach but uses weighting instead of imputation. We 

begin with subdividing each individual's failure interval into non-overlapping sub-

intervals. Using the set of all interval endpoints in the data set, those that fall into the 

individual's interval are then used as the cut points for the sub-intervals. This is a 

natural choice as the rank order of failure times is the only relevant information in a 

Cox model. Each sub-interval has an accompanying weight calculated from a 

parametric Weibull model (e.g., fit in SAS PROC LIFEREG) based on the current 

parameter estimates. The sum of the weights for each individual across their sub-

intervals equals 1.0. For right-censored individuals, there are no sub-intervals and the 

accompanying weight is 1.0. 

Suppose there are 𝑄𝑖 − 1 failure interval endpoints from other individuals contained 

in the 𝑖𝑡ℎ person's failure interval, resulting in 𝑄𝑖 subintervals for that person. Denote 

the endpoints of the subintervals by 𝑡𝑖0, 𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑄𝑖
, with 𝑡𝑖0 = 𝑙𝑖 and 𝑡𝑖𝑄𝑖

= 𝑢𝑖. For 



834                         AN INTERVAL-CENSORED PROPORTIONAL HAZARDS MODEL

 

convenience, we assign a pseudo failure time 𝑡𝑖𝑞
∗  using the lower bound value of the 

interval 𝑡𝑖𝑞
∗ = 𝑡𝑖(𝑞−1) + 0.001 for each sub-interval 𝑞 for the 𝑖𝑡ℎ individual. The actual 

failure time within a sub-interval is not important as long as the ranks of failure times in 

the data set are preserved. This will create some tied observations in the weighted PH 

model and we use Breslow's method (1974) for handling them. Efron's method (1977) 

for handling ties is an alternative but takes more computation time. Denote the 

corresponding 𝑞𝑡ℎ weight for the 𝑖𝑡ℎ individual by 𝜔𝑖𝑞. Then, 

𝜔𝑖1 = [𝑆𝑖(𝑙𝑖) − 𝑆𝑖(𝑡𝑖1)]/[𝑆𝑖(𝑙𝑖) − 𝑆𝑖(𝑢𝑖)] 

𝑤𝑖2 = [𝑆𝑖(𝑡𝑖1) − 𝑆𝑖(𝑡𝑖2)]/[𝑆𝑖(𝑙𝑖) − 𝑆𝑖(𝑢𝑖)] 

… 

𝜔𝑖2(𝑄𝑖) = [𝑆𝑖(𝑡𝑖(𝑄𝑖−1)) − 𝑆𝑖(𝑢𝑖)]/[𝑆𝑖(𝑙𝑖) − 𝑆𝑖(𝑢𝑖)]. 

 

It clearly follows that ∑ 𝜔𝑖𝑞
𝑄𝑖
𝑞=1 = 1 . The corresponding weighted log partial-

likelihood is 

𝑙(𝛽, 𝜃) = ∑ ∑ 𝜔𝑖𝑞

𝑄𝑖

𝑞=1

𝑛

𝑖=1

𝛿𝑖 {𝑋𝑖
′(𝑡𝑖𝑞

∗ )𝛽 − log [ ∑ 𝜔𝑌1(𝑡𝑖𝑞
∗ )𝑒𝑥1

′(𝑡𝑖𝑞
∗ )𝛽

𝑙𝜖𝑅(𝑡𝑖𝑞
∗ )

]}, 

 

where 𝑅(𝑡𝑖𝑞
∗ ) is the risk set at time 𝑡𝑖𝑞

∗  and 𝑌𝑙(𝑡𝑖𝑞
∗ ) = 𝐼(𝑇𝑙 ≥ 𝑡𝑖𝑞

∗ ). 

An expanded data set will be generated with multiple lines for each individual 

corresponding to the sub-intervals. Each line will have the assigned pseudo failure time 

with the accompanying weight. Right-censored observations are handled in the usual 

manner. We iterate between estimating the baseline Weibull distribution and fitting the 

weighted PH model until the regression parameters converge. The linear predictor 

(𝒙𝑖′𝜷𝑨𝑭𝑻) is fixed as an offset when we update the estimates of the Weibull distribution 

and recalculate the weights. 

 

2.1 Implementation 

Specifically, our proposed approach is implemented as follows: 

1. Center the covariates and fit a Weibull survival model (e.g., in SAS PROC 

LIFEREG) to obtain an initial estimate of 𝛽𝐴𝐹𝑇, denoted 𝛽𝐴𝐹𝑇,0, and the survival 

distribution parameters (intercept ∆ and scale 𝜎). The Weibull distribution is chosen 

as it is in both the AFT and PH families. 

2. Calculate the corresponding parameters for the PH model, denoted 𝛽𝑃𝐻,0, by 

dividing −�̂�𝐴𝐹𝑇,0 by the estimate of the Weibull scale parameter (𝜎). 

3. Combine non-zero and non-missing 𝑙𝑖 and 𝑢𝑖 values and rank them in increasing 

order. 
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4. Use the ranked interval endpoints to create sub-intervals for interval-censored 

individuals. 

5. Calculate a weight for each left- or interval-censored observation based on the fitted 

Weibull model. Set the weight = 1.0 for right-censored observations. 

6. Create an expanded data set with multiple lines that includes the pseudo failure 

times and accompanying weights corresponding to the sub-intervals for each 

individual. 

7. Fit a weighted PH model (e.g., in SAS PROC PHREG) to obtain an estimate of 𝛽𝑃𝐻, 

denoted �̂�𝑃𝐻. 

8. Refit the Weibull survival model to obtain new estimates of the intercept and scale 

parameters but hold 𝑋’�̂�𝐴𝐹𝑇(= −𝑋’�̂�𝑃𝐻 × 𝜎) fixed with an OFFSET statement. 

9. Return to step (5) and update the subinterval weights. Iterate until convergence, e.g.  

|�̂�𝑃𝐻,𝑗 − �̂�𝑃𝐻,𝑗−1| < 𝜖 where 𝜖 = 0.00001. 

 

2.2 Parameter estimate standard errors 

Our proposed estimator �̂� is asymptotically normally distributed: 

𝑛
1

2(�̂� − 𝛽0) → 𝑁(0, 𝑉). 

Standard software packages assume the weights in the weighted PH model are 

known. In comparison, the sub-interval weight for an individual here describes the 

probability that the exact failure time occurs within the sub-interval. The weight is a 

random variable subject to variability depending on the data and is estimated using the 

Weibull survival model. As a result, the usual standard errors of �̂� from the weighted 

PH model will be underestimated. Let 𝑆𝛽(𝛽, 𝜃)  and 𝑈𝜃
0(𝛽, 𝜃)  denote the score 

equations obtained from the usual weighted PH model and the AFT interval-censored 

Weibull model, respectively. Similar to Satten et al. (1998) we propose a sandwich 

estimator for the variance-covariance matrix of parameter estimates [�̂�′, 𝜃′]′, which we 

will denote by 𝑉, with 

𝑉 = 𝐴′−1Ψ𝐴−1,where −𝑛𝐴(𝛽, 𝜃) is the expected value of the Jacobian matrix of 

the score equations given by 

A(β, θ) = [
𝐴11(𝛽, 𝜃) 𝐴12(𝛽, 𝜃)
𝐴21(𝛽, 𝜃) 𝐴22(𝛽, 𝜃)

]  

that can be consistently estimated by 

�̂�𝑛(�̂�, 𝜃) = −
1

𝑛

[
 
 
 
 

𝜕

𝜕𝛽
𝑆𝛽(�̂�, 𝜃)

𝜕

𝜕𝜃
𝑆𝛽(�̂�, 𝜃)

𝜕

𝜕𝛽
𝑈𝜃

𝑜(�̂�, 𝜃)
𝜕

𝜕𝜃
𝑈𝜃

𝑜(�̂�, 𝜃)
]
 
 
 
 

  

Essentially, 𝐴22 is the information matrix of 𝜃 and thus can be easily estimated by 
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inverting the variance-covariance matrix of 𝜃 from the parametric Weibull model (e.g., 

SAS PROC LIFEREG). As for 𝐴21, it is the derivative of the score equation 𝑈𝜃
0(𝛽, 𝜃) 

from the interval-censored Weibull model with respective to the PH model's 𝛽 . 

Derivation of 𝐴11 and 𝐴12 is not straightforward as the score equations from the PH 

model 𝑆𝛽(𝛽, 𝜃)  involve multiple observations (i.e., the sub-intervals) for each 

individual, and the corresponding weights also require estimation.  See Appendix 1 for 

the score function for the parametric interval-censored Weibull survival model and 

Appendix 2 for the derivations of the consistent estimators for 𝐴11, 𝐴12 and 𝐴21. 

To develop an estimate for Ψ, we first write 

�̂�(�̂�, 𝜃) = [
𝛹11̂(�̂�, 𝜃) 𝛹12̂(�̂�, 𝜃)

𝛹21̂(�̂�, 𝜃) 𝛹22̂(�̂�, 𝜃)
]  

Following Satten et al. (1998),  

ψ̂11(�̂�, 𝜃) = (
1

𝑛
)∑�̂�𝑖

𝑛

𝑖=1

�̂�𝑖
′, 

ψ̂12(�̂�, 𝜃) = (
1

𝑛
)∑�̂�𝑖

𝑛

𝑖=1

𝑈𝑖𝜃
𝑜 (�̂�, 𝜃)′, 

 

and 

ψ̂22(�̂�, 𝜃) = (
1

𝑛
)∑ 𝑈𝑖𝜃

𝑜
𝑛

𝑖=1
(�̂�, 𝜃)𝑈𝑖𝜃

𝑜 �̂�, 𝜃)′,  

where�̂�𝑖  is the influence function for the 𝑖𝑡ℎ  subject in the PH model (Reid et al. 

(1985)),  

Ψ̂i = {
∑ 𝜔𝑖𝑞�̂�𝑖𝑞

𝑃𝐻
𝑄𝑖

𝑞=1
𝑖𝑓𝛿𝑖 = 1

�̂�𝑖
𝑃𝐻𝑖𝑓𝛿𝑖 = 0

 (3) 

In equation (3), 𝑆𝑖𝑞
𝑃𝐻 is the individual contribution from the 𝑞𝑡ℎ sub-interval of the 

𝑖𝑡ℎ subject to the partial derivative of the log likelihood with respect to 𝛽 under the PH 

model. Lin and Wei (1989) showed that the partial likelihood score function of 𝛽 for 

the PH model can be approximated by a sum of iid terms of the score residuals. Here 

we propose to estimate 𝑆𝑖𝑞
𝑃𝐻 using score residuals.  Specifically, 

�̂�𝑖𝑞
𝑃𝐻 = 𝛿𝑖{𝑥𝑖(𝑡𝑖𝑞

∗ ) − �̅�(𝑡𝑖𝑞
∗ )} − ∑ ∑ 𝛿𝑗

𝑌𝑖(𝑡𝑗𝑞
∗ )𝑒𝑥𝑖

′(𝑡𝑗𝑞
∗ )�̂�

∑ 𝑌𝑖(𝑡𝑗𝑞
∗ )

𝑙𝜖𝑅(𝑡𝑗𝑞
∗ )

𝑒𝑥𝑙
′(𝑡𝑗𝑞

∗ )�̂�

𝑄

𝑞=1

𝑛

𝑗=1

{𝑥𝑖(𝑡𝑗𝑞
∗ ) − �̅�(𝑡𝑗𝑞

∗ )} (4) 

where �̅�(𝑡.𝑞
∗ ) =

∑ 𝑌𝑙(𝑡.𝑞
∗ )𝑥𝑙(𝑡.𝑞

∗ )𝑒𝑥𝑙′(𝑡.𝑞
∗ )�̂�

𝑙∈𝑅(𝑡.𝑞
∗ )

∑ 𝑌𝑙(𝑡.𝑞
∗ )𝑒

𝑥𝑙′(𝑡.𝑞
∗ )�̂�

𝑙∈𝑅(𝑡.𝑞
∗ )

, with . = 𝑖  or 𝑗 . Hence �̂�𝑖  is the weighted 
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version of the score residual vector �̂�𝑖𝑞
𝑃𝐻. 
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3. Simulations 

We conducted two simulation trials to assess the performance of our proposed 

approach for fitting the Cox PH model to interval-censored failure time data. For the 

first set of simulations, we generated failure times with an underlying Weibull 

distribution as follows: 

𝑃𝑟(𝑇𝑖 ≥ 𝑡𝑖) = 𝑆(𝑡𝑖; 𝜃, 𝛽) = [𝑆0(𝑡𝑖; 𝜃)]exp(𝑥1𝑖𝛽1+𝑥2𝑖𝛽2),  

for 𝑖 = 1, …𝑛, where 𝑆0(𝑡𝑖; 𝜃) = exp(−𝑒(𝑡𝑖−∆)/𝜎), 𝑥1𝑖 = −0.5, 0.5 is binary with equal 

group sizes, and 𝑥2𝑖~(−1.0, 1.0) . The intercept parameter was specified as ∆=

log(100), the scale parameter as 𝜎 = 0.5, and 𝛽1 = 𝛽2 = log(2.0) = 0.693. Simulated 

data sets are of total size 𝑛 = 100, 500, 1000. Following Satten et al. (1998), interval 

censoring was conducted by starting an independent renewal process for each 

observation in each data set at 0. The increments followed a lognormal distribution with 

mean 18.7 and standard error 209.4 for this simulation. A maximum number of 22 

renewals was set. If one of the renewal intervals contained the true failure time, then 

this interval was used as the censoring interval; otherwise the observation was 

considered to be right censored at the last renewal time. Approximately 18% of the 

observations were right censored. 

Two thousand data sets were generated for each sample size and were analyzed 

with our approach. For comparison, we analyzed the data with a parametric Weibull 

model using PROC LIFEREG in SAS (v 9.4). We also analyzed the exact survival 

times with the Cox PH model using PROC PHREG in SAS (v 9.4). Average parameter 

estimates over the 2000 data sets, average parameter estimate standard errors, and 

empirical parameter estimate standard errors were calculated for all approaches. 
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Table 1: Simulation results using 2000 data sets with various analytic approaches. The failure 

times are generated with an underlying Weibull distribution as follows: 𝑃𝑟(𝑇𝑖 ≥ 𝑡𝑖) =

𝑆(𝑡𝑖; 𝜃, 𝛽) = [𝑆0(𝑡𝑖; 𝜃)]exp(𝑥1𝑖𝛽1+𝑥2𝑖𝛽2), where 𝑆0(𝑡𝑖; 𝜃) = exp(−𝑒(𝑡𝑖−∆)/𝜎) with 𝑥1𝑖 =

−0.5, 0.5 (equal group size), and 𝑥2𝑖~𝑈(−1.0, 1.0).The interecept parameter was specified as 

∆= log(100), the scale parameter as 𝜎 = 0.5, and 𝛽1 = 𝛽2 = log(2.0) = 0.693. Data sets are 

of total size 𝑛 = 100, 500, 1000. 

Method Distribution �̂�1
𝑎 s.e.

(�̂�1)
𝑏 

ese(�̂�1)
𝑐 �̂�2

𝑎 s.e.

(�̂�2)
𝑏 

ese(�̂�2)
𝑐 

N = 100 

Exact Cox PHd  0.707 0.216 0.219 0.712 0.192 0.200 

Parametrice Weibull 0.722 0.255 0.269 0.725 0.220 0.234 

Proposedf Weibull 0.710 0.243 0.265 0.713 0.213 0.233 

Unadjusted standard 

errorg 

Weibull  0.234   0.207  

N = 500 

Exact Cox PH  0.696 0.095 0.096 0.696 0.083 0.084 

Parametric Weibull 0.699 0.112 0.115 0.698 0.098 0.101 

Proposed Weibull 0.697 0.109 0.115 0.696 0.095 0.101 

Unadjusted standard error Weibull  0.103   0.090  

N = 1000 

Exact Cox PH  0.695 0.067 0.068 0.694 0.059 0.059 

Parametric Weibull 0.694 0.079 0.079 0.694 0.069 0.070 

Proposed Weibull 0.693 0.077 0.079 0.693 0.068 0.070 

Unadjusted standard error Weibull  0.072   0.064  

 
a Average parameter estimate over 2000 simulated data sets. 
b Average standard error over 2000 simulated data sets. 
c Empirical standard error. 
d Cox PH model on the exact failure times. 
e Parametric Weibull AFT model using PROC LIFEREG in SAS with parameters transformed to 

PH interpretation. 
f Proposed PH interval-censored failure time model. 
g Proposed PH interval-censored failure time model with standard errors unadjusted for estimation 

of weights. 

 

The simulation results are presented in Table 1. The average parameter estimates 

for 𝛽1 and 𝛽2 over the 2000 simulated data sets using our approach were, respectively, 

0.710 and 0.713 for 𝑛 = 100, 0.697 and 0.696 for 𝑛 = 500, and 0.692 and 0.693 for 

𝑛 = 1000, comparable to the parameter estimates from both the parametric Weibull 

model and the Cox model on the exact times. As expected, the parameter estimates for 

all approaches were closer to 0.693 as 𝑛 increased. The proposed parameter estimate 

standard errors from Section 2.2 slightly underestimated the empirical parameter 

estimate standard errors for 𝛽1  and 𝛽2  for small sample sizes (𝑛 = 100), but were 
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similar to them for the larger sample sizes (𝑛 = 500,1000). The naive parameter 

estimate standard errors without taking into account the adjustment due to estimating 

the weights underestimated the empirical parameter estimate standard errors by about 

10%. 

We conducted a second simulation trial with misspecified data. We generated 

failure times with an underlying log-logistic distribution as follows: 

𝑃𝑟(𝑇𝑖 ≥ 𝑡𝑖) = 𝑆(𝑡𝑖; 𝜃, 𝛽) = [𝑆0(𝑡𝑖; 𝜃)]exp(𝑥1𝑖𝛽1+𝑥2𝑖𝛽2)  

for 𝑖 = 1, … , 𝑛, with 𝑆0(𝑡𝑖; 𝜃) = (1 + 𝑒(𝑡𝑖−∆)/𝜎)−1, and 𝑥1, 𝑥2, 𝛽1, and 𝛽2 as in the first 

set of simulations. The intercept parameter was specified as ∆= log(100) and the scale 

parameter as 𝜎 = 0.15. As such, the generated survival model still satisfies the PH 

assumption; however it does not belong to the PH family. Interval censoring was 

conducted in the same manner as for the first set of simulations except the lognormal 

distribution of the renewal process had mean 15 and standard error 109.8. A maximum 

number of 24 renewals was set and approximately 15% of the observations were right 

censored. See Figure 1 for a plot of the survival and hazard curves for the underlying 

survival distributions of the two sets of simulations. Two thousand data sets were 

generated again of size 𝑛 = 100, 500, 1000. The data sets were analyzed with the 

same analytic approaches as in the first set of simulations. 

 

 
Figure 1: (a) Survival curves and (b) hazard curves, for the Weibull (𝑃𝑟(𝑇 ≥ 𝑡) = 𝑆(𝑡; 𝜃) =

exp(−𝑒(𝑡−∆)/𝜎) with ∆= log(100), and 𝜎 = 0.5) and Log-Logistic (𝑃𝑟(𝑇 ≥ 𝑡) = 𝑆(𝑡; 𝜃) =

(1 + 𝑒(𝑡−∆)/𝜎)−1 with ∆= log(100), and 𝜎 = 0.15) distributions. The x-axis is in original time 

scale before the log-transformation. 
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Table 2: Simulation results using 2000 data sets with various analytic approaches. The log-

transformed failure times are generated with an underlying log-logistic distribution as follows: 

(𝑃𝑟(𝑇𝑖 ≥ 𝑡𝑖) = 𝑆(𝑡𝑖; 𝜃, 𝛽) = [𝑆0(𝑡𝑖; 𝜃)]exp(𝑥1𝑖𝛽1+𝑥2𝑖𝛽2), where 𝑆0(𝑡𝑖; 𝜃) = (1 + 𝑒(𝑡𝑖−∆)/𝜎)−1 

with 𝑥1𝑖 = −0.5, 0.5 (equal group size), and 𝑥2𝑖~𝑈(−1.0, 1.0). The interecept parameter was 

specified as∆= log(100), the scale parameter as 𝜎 = 0.15, and 𝛽1 = 𝛽2 = log(2.0) = 0.693. 

Data sets are of total size 𝑛 = 100, 500, 1000. 

Method Distribution �̂�1
𝑎 s.e.

(�̂�1)
𝑏 

ese(�̂�1)
𝑐 �̂�2

𝑎 s.e.

(�̂�2)
𝑏 

ese(�̂�2)
𝑐 

N = 100 

Exact Cox PHd  0.707 0.216 0.218 0.712 0.192 0.198 

Parametrice Weibull 0.836 0.281 0.319 0.842 0.249 0.287 

Proposedf Weibull 0.712 0.269 0.276 0.723 0.242 0.251 

Unadjusted standard 

errorg 

Weibull  0.232   0.206  

N = 500 

Exact Cox PH  0.697 0.094 0.096 0.697 0.083 0.084 

Parametric Weibull 0.812 0.122 0.135 0.813 0.106 0.126 

Proposed Weibull 0.698 0.126 0.116 0.699 0.114 0.106 

Unadjusted standard error Weibull  0.102   0.089  

N = 1000 

Exact Cox PH  0.694 0.067 0.069 0.694 0.059 0.057 

Parametric Weibull 0.809 0.086 0.097 0.808 0.075 0.084 

Proposed Weibull 0.696 0.092 0.084 0.694 0.084 0.072 

Unadjusted standard error Weibull  0.072   0.063  

 
a Average parameter estimate over 2000 simulated data sets. 
b Average standard error over 2000 simulated data sets. 
c Empirical standard error. 
d Cox PH model on the exact failure times. 
e Parametric Weibull AFT model using PROC LIFEREG in SAS with parameters transformed to 

PH interpretation. 
f Proposed PH interval-censored failure time model. 
g Proposed PH interval-censored failure time model with standard errors unadjusted for estimation 

of weights. 

 

The simulation results are presented in Table 2. The average parameter estimates 

for 𝛽1 and 𝛽2 over the 2000 simulated data sets using our approach were, respectively, 

0.712 and 0.723 for 𝑛 = 100, 0.698 and 0.699 for 𝑛 = 500, and 0.696 and 0.694 for 

𝑛 = 1000, again comparable to the parameter estimates from the Cox model on the 

exact times for 𝑛 = 500 and 𝑛 = 1000. For 𝑛 = 100, the parameter estimates from the 

proposed approach only slightly overestimate those from the Cox model on the exact 

times. The proposed parameter estimate standard errors were again very similar to the 
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empirical parameter estimate standard errors for 𝛽1 and 𝛽2. Parameter estimates from 

the misspecified parametric Weibull model were severely biased as expected, and 

indicate the departure of the underlying log-logistic distribution from a Weibull 

distribution. See Figure 2 for box plots of the parameter estimates of 𝛽1 and 𝛽2 from 

this set of simulations. All simulations were conducted via SAS IML (2012). 

 

 
Figure 2: Boxplots of the simulation results for Table 2 (misspecified model) for all three sample sizes and 

both marginal parameters (𝛽1 and 𝛽2). The solid diamond represents the mean value, and the horizontal lines 

from the bottom to the top represent the minimum, 25th percentile, median, 75th  percentile, and maximum 

values. 

Exact Cox: PH model on the exact failure times. Proposed : Our proposed PH interval-censored failure time 

model. Parametric: Weibull AFT model with parameter transformed to PH interpretation. 

 

3.1 Comparison with Satten et al.'s approach  

We conducted another simulation trial to assess the performance of our proposed 

approach with Satten et al.'s PH interval-censored failure time model (Satten et al. 

(1998)). For comparison we generated the data for correctly-specified and mis-specified 

models following Satten et al. (1998). For the former model, we generated failure times 
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with an underlying Weibull distribution and one covariate as follows: 

𝑃𝑟(𝑇𝑖 ≥ 𝑡𝑖) = 𝑆(𝑡𝑖; 𝜃, 𝛽) = [exp(−𝑒(𝑡𝑖−𝛥)/𝜎)]exp(𝑥𝑖;𝛽)  

for 𝑖 = 1, …𝑛 . The intercept parameter was specified as ∆= log(100) , the scale 

parameter as 𝜎 = 0.5, and 𝑥𝑖 = −0.5, 0.5 is binary with equal group sizes and then 

𝑥𝑖~𝑈(−1.0, 1.0) . The regression parameter 𝛽 = log(2.0) = 0.693 . For the mis-

specified model, we generated failure times with an underlying log-logistic distribution 

as follows: 

𝑃𝑟(𝑇𝑖 ≥ 𝑡𝑖) = 𝑆(𝑡𝑖; 𝜃, 𝛽) = [1 + 𝑒(𝑡𝑖−𝛥)/𝜎)]exp(𝑥𝑖;𝛽)  

for 𝑖 = 1, …𝑛. The intercept parameter was specified as ∆= log(100) and the scale 

parameter as 𝜎 = 0.25. The covariate 𝑥𝑖 and the regression parameter 𝛽 are the same as 

for the Weibull model. Interval censoring was conducted for each set of simulations in 

the same manner as our first set of simulations. Approximately 24% (17%) of the 

observations were right censored for the simulation with the continuous (binary) 

covariate. 

Following Satten et al. (1998), simulated data sets are of total size 𝑛 = 500 for 

both sets of simulations. Only 500 data sets were generated for each covariate choice 

and simulation because of the lengthy computation time required to fit Satten et al.'s 

model (1998). We used 400 stochastic approximation steps with a block size of 50, and 

75 ‘burn-in’ steps with Satten et al.'s  approach (1998). See Satten et al. (1998) for 

details. Data sets were analyzed with our approach and Satten et al.'s method (1998). 

For comparison, we also analyzed the exact survival times with the Cox PH model 

using PROC PHREG in SAS (v 9.4). Average parameter estimates over the 500 data 

sets, average parameter estimate standard errors, and empirical parameter estimate 

standard errors were calculated for all approaches. The simulation results are presented 

in Tables 3 (correctly specified) and 4 (incorrectly specified). 
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Table 3: Simulation results using 500 data sets with Satten et al.'s (1998) PH interval-censored failure 

time model and the proposed approach. The failure times are generated with an underlying Weibull 

distribution as follows: 𝑃𝑟(𝑇𝑖 ≥ 𝑡𝑖) = 𝑆(𝑡𝑖; 𝜽, 𝜷) = [𝑆0(𝑡𝑖; 𝜽)]exp(𝑥𝑖𝛽), where 

𝑆0(𝑡𝑖; 𝜽) = exp(−𝑒(𝑡𝑖−∆)/𝜎) with 𝑥𝑖 = −0.5, 0.5 (equal group size) or 𝑥𝑖~𝑈(−1.0, 1.0). The intercept 

parameter was specified as ∆= log(100), the scale parameter as 𝜎 = 0.5, and 𝛽 varying. Data sets are of 

total size 𝑛 = 500. 

Covariate 𝛽 Method �̂�1
𝑎 s.e.(�̂�1)

𝑏 ese(�̂�1)
𝑐 

𝑥 = −0.5, 0.5 ln(1.5) = 0.405 Exact Cox PHd 0.415 0.092 0.089 

  Sattene 0.417 0.111 0.103 

  Proposedf 0.416 0.108 0.103 

 ln(2.0) = 0.693 Exact Cox PH 0.699 0.095 0.088 

  Satten 0.700 0.114 0.107 

  Proposed 0.698 0.109 0.107 

 ln(2.5) = 0.916 Exact Cox PH 0.918 0.098 0.094 

  Satten 0.923 0.119 0.114 

  Proposed 0.921 0.110 0.114 

𝑥~𝑈(−1.0,1.0) ln(1.5) = 0.405 Exact Cox PH 0.409 0.092 0.090 

  Satten 0.408 0.098 0.097 

  Proposed 0.407 0.096 0.096 

 ln(2.0) = 0.693 Exact Cox PH 0.694 0.094 0.096 

  Satten 0.701 0.104 0.096 

  Proposed 0.700 0.098 0.096 

 ln(2.5) = 0.916 Exact Cox PH 0.920 0.098 0.096 

  Satten 0.914 0.110 0.105 

  Proposed 0.913 0.100 0.104 

 
a Average parameter estimate over 500 simulated data sets. 
b Average parameter estimate standard error over 500 simulated data sets. 
c Empirical standard error. 
d Cox PH model on the exact failure times. 
e Satten et al.'s (1998) PH interval-censored failure time model. 
f Proposed PH interval-censored failure time model. 
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Table 4: Simulation results using 500 data sets with Satten et al.'s (1998) PH interval-censored failure 

time model and the proposed approach. The log-transformed failure times are generated with an 

underlying log-logistic distribution as follows: 𝑃𝑟(𝑇𝑖 ≥ 𝑡𝑖) = 𝑆(𝑡𝑖; 𝜽, 𝜷) = [𝑆0(𝑡𝑖; 𝜽)]exp(𝑥𝑖𝛽), where 

𝑆0(𝑡𝑖; 𝜽) = (1 + 𝑒(𝑡𝑖−∆)/𝜎)−1 with 𝑥𝑖 = −0.5, 0.5 (equal group size) or 𝑥𝑖~𝑈(−1.0, 1.0). The intercept 

parameter was specified as ∆= log(100), the scale parameter as 𝜎 = 0.25, and 𝛽 varying. Data sets are 

of total size 𝑛 = 500. 

Covariate 𝛽 Method �̂�1
𝑎 s.e.(�̂�1)

𝑏 ese(�̂�1)
𝑐 

𝑥 = −0.5, 0.5 ln(1.5) = 0.405 Exact Cox PHd 0.412 0.092 0.093 

  Sattene 0.418 0.111 0.109 

  Proposedf 0.418 0.109 0.110 

 ln(2.0) = 0.693 Exact Cox PH 0.691 0.095 0.097 

  Satten 0.694 0.118 0.116 

  Proposed 0.696 0.113 0.116 

 ln(2.5) = 0.916 Exact Cox PH 0.929 0.098 0.102 

  Satten 0.936 0.128 0.115 

  Proposed 0.938 0.117 0.115 

𝑥~𝑈(−1.0,1.0) ln(1.5) = 0.405 Exact Cox PH 0.412 0.092 0.093 

  Satten 0.409 0.099 0.097 

  Proposed 0.410 0.097 0.097 

 ln(2.0) = 0.693 Exact Cox PH 0.697 0.095 0.096 

  Satten 0.703 0.109 0.099 

  Proposed 0.705 0.102 0.099 

 ln(2.5) = 0.916 Exact Cox PH 0.918 0.098 0.098 

  Satten 0.919 0.118 0.108 

  Proposed 0.921 0.107 0.108 

 
a Average parameter estimate over 500 simulated data sets. 
b Average parameter estimate standard error over 500 simulated data sets. 
c Empirical standard error. 
d Cox PH model on the exact failure times. 
e Satten et al.'s (1998) PH interval-censored failure time model. 
f Proposed PH interval-censored failure time model. 

 

The parameter estimates using the proposed approach and Satten et al.'s method 

(1998) are nearly identical for both the Weibull and log-logistic models regardless of 

covariate type. The largest difference between the parameter estimates of the two 

methods across the 3000 simulated data sets is 0.0064 (0.0061) for the Weibull (log-

logistic) model simulation. As a consequence of this the empirical standard error 

estimates are essentially the same for the two methods. The parameter estimate standard 

errors for the proposed approach are closer than Satten et al.'s standard errors to the 

empirical standard errors for the majority of simulations. On average a simulation took 

approximately 44 hours using Satten et al.'s method (1998) and less than three hours 

using the proposed method. 
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4. Illustrative examples 

4.1 Breast cancer data 

Here we illustrate our approach with two examples. A retrospective study of 94 

women was conducted on the risk of breast cosmetic deterioration after tumorectomy. 

The interval-censored failure data are presented in Table 5 of Finkelstein and Wolfe 

(1985). The women received either radiation therapy (𝑥 = −0.5, 𝑛 = 46) or radiation 

plus chemotherapy (𝑥 = 0.5, 𝑛 = 48) and visited the clinic every four to six months. 

No woman was seen after 48 months and 38 women never experienced the outcome 

(right censored). Finkelstein analyzed the data with a semiparametric PH model 

(Finkelstein (1986)). We also present analysis using an AFT Weibull model, our 

proposed approach, Sun's nonparametric test for interval-censored survival data (Sun 

(1996)), and Sun, Zhao, and Zhao's generalized log-rank test (2005). The results are 

presented in Table 5. Time to breast cosmetic deterioration was significantly shorter (𝑝-

value < 0.01) in the radiation plus chemotherapy group than the radiation therapy alone 

group according to all analytic approaches. 

 

Table 5: Analyses of cosmetic deterioration (retraction) data for 94 early breast cancer patients 

treated with radiotherapy and chemotherapy versus radiotherapy alone. 

Method Type �̂� s.e.(�̂�) p-value 

Parametrica  0.917 0.283 0.0012 

Proposedb  0.903 0.280 0.0013 

Nonparametric Sunc   0.0068 

 Sun, Zhao, and Zhaod   0.0070 

Semiparametric Finkelsteine   0.0064 

 
a Parametric Weibull AFT model using PROC LIFEREG in SAS with parameters transformed to 

PH interpretation. 
b Proposed PH interval-censored failure time model. 
c Sun's nonparametric test (1996) using PROC ICLIFETEST in SAS. 
d Sun, Zhao, and Zhao's generalized log-rank test (2005) using PROC ICLIFETEST in SAS.  
e Finkelstein's PH model for interval-censored failure time data (1986) using PROC ICLIFETEST 

in SAS. 
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4.2 ICU hyperlactemia data 

Elevated lactate levels are frequently observed in patients undergoing mitral valve 

surgery upon admission to an intensive care unit (ICU). Hyperlactemia is defined as a 

blood lactate level ≥2mmol/l and is linked to poor postoperative prognosis. The  

objective of this analysis is to identify factors associated with lactate clearance (<2.0 

mmol/l.). 

We analyzed data from 907 heart surgery patients with a mean age of 62 (SD = 14) 

years and a median cardiopulmonary bypass (CPB) time of 144 [IQR: (117, 180)] 

minutes. Sixty-six percent of the patients had an American Society of Anesthesiologists 

(ASA) physical status score ≥ 4 (indicating patients with severe systemic disease that 

was a constant threat to life or were not expected to survive without the operation) and 

3.5% had history of dialysis. All patients had lactate measured routinely at the time of 

ICU admission. The timing of repeated lactate measures was at the discretion of the 

managing critical care team. A 2 hour time interval was considered standard practice, 

and more frequent lactate measurements were obtained if clinically indicated. 

Preliminary work found that an initial lactate threshold of ≥ 7 mmol/l was 

associated with significant increased 30-day mortality: 15% vs 1.3%. 

We analyzed the data with our proposed model and a parametric AFT Weibull 

model. The outcome was time to lactate clearance.  Patients with initial lactate level 

below 2 mmol/l were left censored (28.6%). Their observations were treated as the 

usual interval-censored ones, but with the weight for the first subinterval being 

[1.0 − 𝑆𝑖(𝑡𝑖1)]/[1.0 − 𝑆𝑖(𝑢𝑖)], i.e., 𝑆𝑖(𝑙𝑖) = 1.0. Patients without lactate clearance at 

24 hours after ICU arrival were right censored (6.5%). The results are presented in 

Table 6. Our proposed model and the parametric Weibull model suggest that longer 

CPB time and higher initial lactate levels are associated with longer time for lactate 

clearance. History of dialysis is associated with faster clearance, which could be a result 

of more aggressive peri-operative management. However, our model also suggests 

significant associations between older age and ASA physical status ≥4 with longer 

clearance time. In general, the parameter estimates from our proposed model were 

slightly larger in magnitude, resulting in more significant 𝑝-values. 
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Table 6: Analyses of ICU hyperlactemia data for 907 patients undergoing mitral valve surgery. 

The outcome is time to lactate clearance (≤ 2.0 mmol/l). 

 Proposed Modela Parametric Modelb 

Variable �̂�𝑃𝐻 s.e.(�̂�𝑃𝐻) p-value �̂�𝑃𝐻 s.e.(�̂�𝑃𝐻) p-value 

Age (years) −0.008 0.002 0.001 −0.003 0.003 0.253 

History of dialysis (yes vs. no) 0.485 0.195 0.013 0.505 0.195 0.010 

Cardiopulmonary bypass time (minutes) −0.005 0.001 < 0.001 −0.004 0.001 < 0.001 

ASA physical status ≥ 4 (yes vs. no) c −0.187 0.076 0.014 −0.133 0.076 0.081 

Initial lactate in ICU ≥ 7 mmol/l (yes 

vs. no) 

−1.230 0.158 < 0.001 −0.937 0.174 < 0.001 

 
a Proposed PH interval-censored failure time model. 
b Parametric Weibull AFT model using PROC LIFEREG in SAS with parameters transformed to 

PH interpretation. 
c ASA: American Society of Anesthesiology physical status classification. ASA ≥ 4 indicates 

patients with life threatening disease. 

 

5. Discussion 

Interval-censored failure data often arise in longitudinal studies in which subjects 

are assessed only periodically for the response of interest (Sun (2006)). The time when 

the event of interest occurs is not directly observed but is known to take place within 

some time interval. We propose a PH model for analysis of such data that have 

overlapping time intervals. We subdivide each individual's failure interval into non-

overlapping sub-intervals. Within each sub-interval, a pseudo failure observation is 

assigned, and later weighted in the PH model. The weight of the sub-interval is derived 

using a parametric Weibull model to reflect the probability that the individual's failure 

time occurred in that sub-interval. We use a robust estimator for the variance-

covariance matrix of parameter estimates to further protect against misspecification of 

the failure time model. Simulation results demonstrate apparently unbiased parameter 

estimation for the correctly specified Weibull model and minimal bias for a 

misspecified log-logistic model. The proposed approach reduces to the usual Cox PH 

model if there is no overlap in failure intervals between observations. These programs 

are written in SAS IML (2012) and are available from the authors upon request and at 

https://www.researchgate.net/profile/John_Williamson20. 

In the situation when follow-up visits are all scheduled at the same time for each 

patient, resulting in non-overlapping sub-intervals for an individual, subjects who fail in 

the same interval will be tied. Consequently, if there are only a few available intervals, 

the data set might contain a considerable amount of ties. Our approach would not be 

advantageous and these data would be better analyzed using a proportional hazards 

method for grouped survival data (e.g., Fahrmeir and Tutz (1994), Scheike and Kold 
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Jensen (1997)). Also both our proposed method and Satten el al.'s method (1998) 

assume that censoring intervals are independent of the covariates 𝑥 as with the usual 

PH model. It would require re-development of both score functions (𝑆𝛽(𝛽, 𝜃)  and 

𝑈𝜃
0(𝛽, 𝜃)) and the matrices 𝐴 and Ψ to allow for this dependency using the proposed 

approach. 

The parameter estimates using the proposed approach are essentially the same as 

those using Satten et al.'s method (1998) in the simulation results in Tables 3 and 4. 

However, the corresponding parameter estimate standard errors using the proposed 

approach were in general closer to the empirical standard errors. Our approach is also 

computationally simpler as it does not require imputation nor bootstrapping, which is 

especially advantageous for large data sets or model building. Following Satten et al. 

(1998), each of the simulated data sets required fitting 20,000 Cox PH models. 

Additionally, Satten et al.'s method (1998) involves random number generation for 

imputation implying that each subsequent analysis of the same data set will produce 

slightly different results. In contrast the proposed approach produces the same results. 

Assessment of the proportional hazards assumption should be conducted for 

interval-censored proportional hazards regression as for the usual right-censored 

proportional hazards regression model. For a categorical covariate, the simplest and 

most direct method to accomplish this is by plotting the survival functions of subjects 

with the same covariate value on the same graph (Sun (2006)). A nonparametric 

estimate of the survival function for interval-censored survival data can be fit using the 

efficient EMICM algorithm (Wellner and Zhan (1997)) in available software such as 

PROC ICLIFETEST in SAS (Guo et al. (2014)). For a continuous covariate, one can 

group the values into a small number of distinct intervals and apply the above approach 

(Sun (2006)). 
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Appendix 1 

Interval-Censored Weibull Model Score Equations with Respect to 𝜷𝑷𝑯 

Assume a Weibull model in SAS PROC LIFEREG notation (Accelerated Failure 

Time Model) for interval-censored data. Let the lower (𝑙𝑖) and upper (𝑢𝑖) ends of the 

survival interval be log-transformed. Let 𝑧𝑖 = (
1

𝜎
) (𝑢𝑖 − ∆ − 𝑥𝑖

′𝛽𝐴𝐹𝑇) =
𝑢𝑖

𝜎
−

∆

𝜎
+ 𝑥𝑖

′𝛽𝑃𝐻 

and 𝑣𝑖 = (
1

𝜎
) (𝑙𝑖 − ∆ − 𝑥𝑖

′𝛽𝐴𝐹𝑇) =
𝑙𝑖

𝜎
−

∆

𝜎
+ 𝑥𝑖

′𝛽𝑃𝐻 , with 𝑆(𝑧𝑖) = exp{−exp(𝑧𝑖)} , 

𝑓(𝑧𝑖) = (
1

𝜎
) exp(𝑧𝑖) exp{− exp(𝑧𝑖)} and the corresponding survivor and pdf functions 

for 𝑣𝑖 . For clarity, we define censoring status with 3 random variables as follows: 

𝜆1𝑖 = 1  if the 𝑖𝑡ℎ  observation is left censored and 0 otherwise; 𝜆2𝑖 = 1  if the 𝑖𝑡ℎ 

observation is interval censored and 0 otherwise, and 𝜆3𝑖 = 1  if both 𝜆1𝑖 = 0  and 

𝜆2𝑖 = 0 for right censoring. 

 

The log-likelihood function for such data is: 

logL = ∑𝜆1𝑖 log(𝐹(𝑧𝑖)) +

𝑁

𝑖=1

∑𝜆2𝑖

𝑁

𝑖=1

log[𝐹(𝑧𝑖) − 𝐹(𝑣𝑖)] + ∑𝜆3𝑖 log(𝑆(𝑣𝑖))

𝑁

𝑖=1

 

= ∑𝜆1𝑖 log(1 − exp(− exp(𝑧𝑖)))

𝑁

𝑖=1

+ ∑𝜆2𝑖

𝑁

𝑖=1

log[exp(−exp(𝑣𝑖) − exp(− exp(𝑧𝑖))]

+ ∑𝜆3𝑖

𝑁

𝑖=1

log(exp(−exp(𝑣𝑖))) 

= ∑{𝜆1𝑖 log(1 − exp(exp(𝑧𝑖))) + 𝜆2𝑖 log[exp(− exp(𝑣𝑖)) − exp(exp(𝑧𝑖))]

𝑁

𝑖=1

+ 𝜆3𝑖(−exp(𝑣𝑖))} 

= ∑{𝜆1𝑖log(1 − 𝑆(𝑧𝑖) + 𝜆2𝑖 log[𝑆(𝑣𝑖 − 𝑆(𝑧𝑖))] + 𝜆3𝑖(−exp(𝑣𝑖)))}

𝑁

𝑖=1
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The score equations are: 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛽𝑃𝐻
= ∑{𝜆1𝑖

𝜎𝑓(𝑧𝑖)

1 − 𝑆(𝑧𝑖)
(
𝜕𝑧𝑖

𝛽𝑃𝐻
) + 𝜆2𝑖

[𝜎𝑓(𝑧𝑖) (
𝜎𝑧𝑖

𝜕𝛽𝑃𝐻
) − 𝜎𝑓(𝑣𝑖) (

𝜎𝑣𝑖

𝜕𝛽𝑃𝐻
)]

𝑆(𝑣𝑖) − 𝑆(𝑧𝑖)
}

𝑁

𝑖=1

+ 𝜆3𝑖 (−exp(𝑣𝑖) (
𝜎𝑣𝑖

𝜕𝛽𝑃𝐻
)) 

= ∑{

𝑁

𝑖=1

𝜆1𝑖

𝜎𝑓(𝑧𝑖)

1 − 𝑆(𝑧𝑖)
+ 𝜆2𝑖σ

𝑓(𝑧𝑖) − 𝑓(𝑣𝑖)

𝑆(𝑣𝑖) − 𝑆(𝑧𝑖)
− 𝜆3𝑖exp(𝑣𝑖)}(𝑥𝑖) 

𝜕𝑙𝑜𝑔𝐿

𝜕𝛥
= ∑{

𝑁

𝑖=1

𝜆1𝑖

𝜎𝑓(𝑧𝑖)

1 − 𝑆(𝑧𝑖)
(
𝜕𝑧𝑖

𝜕𝜎
) + 𝜆2𝑖

𝜎𝑓(𝑧𝑖) (
𝜕𝑧𝑖

𝜕𝜎
) − 𝜎𝑓(𝑣𝑖) (

𝜕𝑣𝑖

𝜕𝜎
)

𝑆(𝑣𝑖) − 𝑆(𝑧𝑖)

+ 𝜆3𝑖(−exp(𝑣𝑖) (
𝜕𝑣𝑖

𝜕𝜎
))} 

= ∑{𝜆1𝑖

𝜎𝑓(𝑧𝑖)

1 − 𝑆(𝑧𝑖)
+ 𝜆2𝑖𝜎

𝑓(𝑧𝑖) − 𝑓(𝑣𝑖)

𝑆(𝑣𝑖) − 𝑆(𝑧𝑖)
− 𝜆3𝑖 exp(𝑣𝑖)}

𝑁

𝑖=1

(−
1

𝜎
) 

= ∑{−𝜆1𝑖

𝑓(𝑧𝑖)

1 − 𝑆(𝑧𝑖)
− 𝜆2𝑖

𝑓(𝑧𝑖) − 𝑓(𝑣𝑖)

𝑆(𝑣𝑖) − 𝑆(𝑧𝑖)
+ 𝜆3𝑖

exp(𝑣𝑖)

𝜎
}

𝑁

𝑖=1

 

𝜕𝑙𝑜𝑔𝐿

𝜕𝜎
= ∑{𝜆1𝑖

𝜎𝑓(𝑧𝑖)

1 − 𝑆(𝑧𝑖)
(
𝜕𝑧𝑖

𝜕𝜎
)

𝑁

𝑖=1

+ 𝜆2𝑖

𝜎𝑓(𝑧𝑖) (
𝜕𝑧𝑖

𝜕𝜎
) − 𝜎𝑓(𝑧𝑖) (

𝜕𝑧𝑖

𝜕𝜎
)

𝑆(𝑣𝑖) − 𝑆(𝑧𝑖)
+𝜆3𝑖(− exp(𝑣𝑖)) (

𝜕𝑣𝑖

𝜕𝜎
)} 

= ∑{𝜆1𝑖

(𝑢𝑖 − 𝛥 − 𝑥𝑖
′𝛽𝐴𝐹𝑇)𝑓(𝑧𝑖)

𝜎(1 − 𝑆(𝑧𝑖))

𝑁

𝑖=1

− 𝜆2𝑖

(𝑢𝑖 − 𝛥 − 𝑥𝑖
′𝛽𝐴𝐹𝑇)𝑓(𝑧𝑖) − (𝑙𝑖 − 𝛥 − 𝑥𝑖

′𝛽𝐴𝐹𝑇)𝑓(𝑣𝑖)

𝜎(𝑆(𝑣𝑖) − 𝑆(𝑧𝑖))

+ 𝜆3𝑖

(𝑙𝑖 − 𝛥 − 𝑥𝑖
′𝛽𝐴𝐹𝑇)exp(𝑣𝑖)

𝜎2
} 
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Appendix 2 

Derivation of 𝑨𝟏𝟏, 𝑨𝟏𝟐 and 𝑨𝟐𝟏 

Derivations of the upper left and right elements of A(𝛽, 𝜃) , 𝐴11  and 𝐴12 , are as 

follows: 

𝐴11
𝑛 (β, θ) = −

1

𝑛

𝜕𝑆𝛽(β, θ)

𝜕𝛽
 

= −
1

𝑛
∑ ∑[𝑆𝑖𝑞

𝑃𝐻 (
𝜕𝜔𝑖𝑞

𝜕𝛽
)′ + 𝜔𝑖𝑞 (

𝜕𝑆𝑖𝑞
𝑃𝐻

𝜕𝛽
)]

𝑄

𝑞=1

𝑛

𝑖=1

 

= −
1

𝑛
∑ ∑ [𝑆𝑖𝑞

𝑃𝐻 {
𝑆(𝑡𝑖(𝑞−1)) − 𝑆(𝑡𝑖𝑞)

𝑆(𝑙𝑖) − 𝑆(𝑢𝑖)

[
𝜕
𝜕𝛽

(𝑆(𝑡𝑖(𝑞−1)) − 𝑆(𝑡𝑖𝑞))]
′

𝑆(𝑡𝑖(𝑞−1)) − 𝑆(𝑡𝑖𝑞)

𝑄

𝑞=1

𝑛

𝑖=1

− 𝜔𝑖𝑞

[
𝜕
𝜕𝛽

(𝑆(𝑙𝑖) − 𝑆(𝑢𝑖))]
′

𝑆(𝑙𝑖) − 𝑆(𝑢𝑖)
} + 𝜔𝑖𝑞 (

𝜕𝑆𝑖𝑞
𝑃𝐻

𝜕𝛽
)] 

= −
1

𝑛
∑ ∑[𝑆𝑖𝑞

𝑃𝐻(𝜔𝑖𝑞(𝑈𝑖𝛽
𝑞

)′ − 𝜔𝑖𝑞(𝑈𝑖𝛽
𝑜 )′ + 𝜔𝑖𝑞(

𝜕𝑆𝑖𝑞
𝑃𝐻

𝜕𝛽
)]

𝑄

𝑞=1

𝑛

𝑖=1

 

= −{
1

𝑛
∑ ∑ 𝜔𝑖𝑞𝑆𝑖𝑞

𝑃𝐻[(𝑈𝑖𝛽
𝑞
)′ − (𝑈𝑖𝛽

𝑜 )′]

𝑄

𝑞=1

𝑛

𝑖=1

} + 𝐼𝑃𝐻 

(5) 

 

The 𝑝 × 1 vector 𝑆𝑖𝑞
𝑃𝐻 is the individual contribution from the 𝑞𝑡ℎ sub-interval of the 

𝑖𝑡ℎ subject to the partial derivative of the log likelihood with respect to 𝛽 under the PH 

model and its estimate is defined in (4). The (𝑝 × 1) vector 𝑈𝑖𝛽
𝑞

 is the score of the 

parametric interval-censored Weibull survival model with respect to 𝛽  of the sub-

interval sample with lower and upper values 𝑡𝑖(𝑞−1)  and  𝑡𝑖𝑞  for the 𝑞𝑡ℎ  interval of 

subject 𝑖. The (𝑝 × 1) vector 𝑈𝑖𝛽
0  denotes the score of the parametric interval-censored 

survival model of the original sample with lower and upper values 𝑙𝑖 and 𝑢𝑖 for subject 

𝑖. The (𝑝 × 𝑝) matrix I𝑃𝐻 denotes the information matrix from the weighted Cox PH 

model. The first term of equation (5) reflects the amount of variance inflation due to 

estimation of the weights. Without the weighting, 𝐴11(𝛽, 𝜃) = I𝑃𝐻  is analogous to 

𝐴22(𝛽, 𝜃) = I𝐴𝐹𝑇. Similarly, 

  



856                         AN INTERVAL-CENSORED PROPORTIONAL HAZARDS MODEL

 

𝐴12
𝑛 (𝛽, 𝜃) = −

1

𝑛
∑ ∑ 𝜔𝑖𝑞𝑆𝑖𝑞

𝑃𝐻

𝑄

𝑞=1

𝑛

𝑖=1

(𝑈𝑖𝛽
𝑞

− 𝑈𝑖𝛽
𝑜 )′ 

where the 2 ×1 vector 𝑼𝑖𝜃
𝑜  is the score of the Weibull interval-censored survival model 

with respect to 𝜽 fit on the original data with lower and upper values 𝑙𝑖  and 𝑢𝑖  for 

subject 𝑖. 

The lower left element of 𝑨(𝜷, 𝜽), 𝑨𝟐𝟏, consists of the derivatives of the interval-

censored Weibull score equations for 𝜽 with respect to 𝜷𝑷𝑯. Derivation of 𝑨𝟐𝟏 is as 

follows: 

𝐴21
𝑛 (𝛽, 𝜃) = −

1

𝑛

𝜕𝑈𝜃
𝑜(𝛽, 𝜃)

𝜕𝛽
 

= −
1

𝑛
∑[

𝜕𝑈𝑖𝛥
𝑜 (𝛽, 𝜃)

𝜕𝛽𝑃𝐻

𝜕𝑈𝑖𝜎
𝑜 (𝛽, 𝜃)

𝜕𝛽𝑃𝐻

]

𝑛

𝑖=1

 

(6) 

where 

𝜕𝑈𝑖𝛥
𝑜 (𝛽, 𝜃)

𝜕𝛽𝑃𝐻
= −𝑥𝑖{𝜆1𝑖 [

𝑓(𝑧𝑖)(1 − 𝑒𝑧𝑖)

1 − 𝑆(𝑧𝑖)
−

𝜎𝑓(𝑧𝑖)
2

(1 − 𝑆(𝑧𝑖))
2
]

− 𝜆2𝑖[
𝑓(𝑣𝑖)(1 − 𝑒𝑣𝑖) − 𝑓(𝑧𝑖)(1 − 𝑒𝑧𝑖)

𝑆(𝑣𝑖) − 𝑆(𝑧𝑖)
+ 𝜎 [

𝑓(𝑣𝑖) − 𝑓(𝑧𝑖)

𝑆(𝑣𝑖) − 𝑆(𝑧𝑖)
]2]

− 𝜆3𝑖

𝑓(𝑣𝑖)

𝑆(𝑣𝑖)
} 

and 

𝜕𝑈𝑖𝜎
𝑜 (𝛽, 𝜃)

𝜕𝛽𝑃𝐻
= −𝑥𝑖{𝜆1𝑖 [

𝑓(𝑧𝑖)(1 + 𝑧𝑖(1 − 𝑒𝑧𝑖))

1 − 𝑆(𝑧𝑖)
−

𝑧𝑖𝜎𝑓(𝑧𝑖)
2

(1 − 𝑆(𝑧𝑖))
2
]

− 𝜆2𝑖 [
𝑓(𝑣𝑖)(1 + 𝑣𝑖(1 − 𝑒𝑣𝑖)) − 𝑓(𝑧𝑖)(1 + 𝑧𝑖(1 − 𝑒𝑧𝑖))

𝑆(𝑣𝑖) − 𝑆(𝑧𝑖)

+ 𝜎
(𝑓(𝑣𝑖) − 𝑓(𝑧𝑖))(𝑣𝑖𝑓(𝑣𝑖) − 𝑧𝑖𝑓(𝑧𝑖))

(𝑆(𝑣𝑖) − 𝑆(𝑧𝑖))
2

] − 𝜆3𝑖[
𝑓(𝑣𝑖)

𝑆(𝑣𝑖)
(1 + 𝑣𝑖)]} 

To estimate 𝐴(𝛽, 𝜃) , once can replace 𝛽  and 𝜃  with �̂�  and 𝜃  after the parameter 

estimation converges. 
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