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ABSTRACT 

We define and study a three-parameter model with positive real support 

called the exponentiated generalized extended Pareto distribution. We provide a 

comprehensive mathematical treatment and prove that the formulas related to 

the new model are simple and manageable. We study the behaviour of the 

maximum likelihood estimates for the model parameters using Monte Carlo 

simulation. We take advantage of applied studies and offer two applications to 

real data sets that proves empirically the power of adjustment of the new model 

when compared to another twelve lifetime distributions. 
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1 Introduction 

The extended Pareto (EP) distribution, also known as generalized Pareto, is a very popular 

statistical model due to its wide use in practical situations. Its flexibility to model real 

phenomena has become an attraction for applied researchers. This distribution was introduced 

by Pickands [24] in the seventies, who studied the distribution of samples that exceeded a 

certain upper limit [13]. Since then, many works considering the EP model have been 

published. Here, we refer to some recent works: [13], [12], [17], [28] and [22] to mention a 

few. The cumulative distribution function (cdf) of the EP distribution is given by (for x ∈ R) 

𝐺(𝑥; ξ) = {1 − (1 + ξ𝑥)
−

1
ξ , 𝑖𝑓 ξ > 0

1 − 𝑒𝑥𝑝(−𝑥) , 𝑖𝑓 ξ = 0
 (1) 

Its probability density function (pdf) becomes 

g(x; ξ) = {(1 + ξx)
−

1
ξ

−1
, 𝑖𝑓 ξ > 0

exp(−𝑥) , 𝑖𝑓 ξ = 0
   (2) 

where ξ ϵ R is the shape parameter. 

The recent statistical literature offers a broad arsenal of univariate continuous distributions 

that can be (and indeed are) widely used in several data modeling. However, this large number 

of available distributions does not seem to deal with the huge variety of data arising from 

several fields such as medicine, engineering, demography, biology, actuarial, economics, 

finance, reliability, among others [5]. Indeed, statistical and applied researchers have shown 

great interest in building new extended continuous distributions, which are more flexible for 

data modeling [2]. There are several ways to extend well- known distributions. Probably, one 

of the most popular ways is to consider distribution generators. Here, we refer to the following 

papers: [18] for the MarshallOlkin class, [14] for the beta class, [30], [25] and [21] for the 

gamma class and [1] for the Kumaraswamy class of distributions. 

More recently, for any baseline cdf G(x), and x ξ R, [7] defined the exponentiated 

generalized (EG) class with two extra shape parameters. The EG family with baseline cdf G(x) 

and two extra parameters a > 0 and b > 0 has cdf and pdf given by 

F(x) = {1 − [1 − G(x)]𝑎}𝑏 (3) 

and 

f(x) = ab[1 − G(x)]𝑎−1{1 − [1 − 𝐺(𝑥)]𝑎}𝑏−1𝑔(𝑥). (4) 

We have some reasons to believe that the EG model may be more appropriate than some 

generators to extend well-known distributions. Next, we will provide some properties of the 

EG class that, in our opinion, make this one of the first choices among available generators. 

First, it is important to highlight the simplicity of equations (3) and (4). They do not involve 

any sophisticated function and the generated distribution will be simple whenever G(x) is 
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simple. This is not the case of the beta-G class, which, although quite popular, does not have, 

for example, cdf in closed-form. In addition, an- other important aspect is that the EG model 

contains as especial cases the two classes of Lehmann’s alternatives. In fact, for a = 1, (3) 

reduces to F(x) = G(x)𝑏  and, for b = 1, we obtain F(x) = 1 − [1 − G(x)]𝑎 , which 

correspond to the cdf’s of the Lehmann type I and II families [16], respectively. The additional 

shape parameters in equation (4) have the important role of controlling the tails of the 

distribution, while still allowing entropy to be added at the center of the distribution. As we 

shall see later, these parameters have a considerable impact on model asymmetry and kurtosis. 

The above properties and many others have been discussed and explored in recent works 

for the EG class. Here, we refer to the papers and baseline distributions: [4] for the Birnbaum-

Saunders distribution, [8] for the generalized gamma model, [27] for the Dagum distribution, 

[10] for the Gumbel model, [6] for the arcsine distribution, [9] for an extended exponential 

model, [23] for the exponential distribution, [26] for the half-normal model. 

In the context of generators, two important extensions are the beta EP (BEP) and 

Kumaraswamy EP (KwEP) distributions investigated by [17] and [22], respectively. Based on 

a similar motivation, we study another promising extension of the EP distribution using the 

EG generator called the exponentiated generalized extended Pareto (EGEP for short) 

distribution, by inserting equation (1) in equation (3). Setting ξ = 0 in equation (1), we have 

the exponential distribution, which was studied by many authors in recent years, whereas 

setting ξ < 0 leads to a support for X that depends on unknown parameters. For these reasons, 

we consider only the EP model with ξ > 0 and positive support. 

Two points here need to be clear. The first important point to be highlighted is that the 

model we are considering here is not exactly new. It appears as special cases of several 

important distributions. However, no author has studied this particular case in detail, so little 

reporter this model as ”The Exponentiated Generalized Extended Pareto distribution”. Here, 

we follow a specific methodology, namely the one proposed by [7], to give rise to the EGEP 

model. The second important point to be considered is that our study of the EGEP model has 

very clear and forceful motivations: 

1. We study the structural properties of the EGEP model and we verify that all the formulas 

associated to the proposed model are simple and manageable using computational resources. 

2. The EGEP model we are studying has only three parameters and does not have any 

complicated form for the density, cumulative and likelihood functions, among others. This 

represents a gain, since it makes it easier to obtain analytical and numerical results. 

3. The simulated study showed that the EGEP model has attractive properties for the 

maximum likelihood estimators. 

4. Application studies with real data were performed. The EGEP model was compared to 

more than ten major models and proved superior to all of them in terms of fit. This indicates 
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that the EGEP distribution deserves special attention in the literature, due to its great potential 

for adjustment to real data. 

For the reasons listed above, we strongly believe that it is important to study in detail the 

EGEP distribution. 

The paper is organized as follows. In Section 2, we define the EGEP model. In Section 3, 

we study the forms of the pdf and hazard rate function (hrf) by means of their first and second 

derivatives. In Section 4, we determine the quantile function (qf) and investigate its behavior. 

Some properties, such as linear representations for the pdf and cdf, ordinary and incomplete 

moments, moment generating function (mgf), R ényi entropy and order statistics are presented 

in Section 5. Section 6 deals with estimation and inference. Two applications to real data and 

a simulation stud are given in Section 7. In Section 8, we offer some conclusions. 

 

2 The EGEP distribution 

By taking the EP distribution as the baseline in equation (3), we obtain the EGEP model 

with cdf (for x > 0) given by 

F(x) = [1 − (1 + ξx)
−

𝑎
ξ ]𝑏 , (5) 

where a > 0, b > 0 and ξ > 0. The EGEP density reduces to 

f(x) = ab(1 + ξx)
−

(𝑎+ξ)
ξ [1 − (1 + ξx)

−
𝑎
ξ )]𝑏−1.  (6) 

Henceforth, we denote by X a random variable having pdf (6). For a = b = 1, equation (6) 

reduces to the EP density. The EGEP model also includes the Lehmann type I and type II 

transformations of the EP distribution, denoted by EEPI and EEPII, when a = 1 and b = 1, 

respectively. Some plots of the density (6) are displayed in Figure1.They reveal that the pdf 

of X is quite flexible and can take asymmetric forms, among others. In summary, they 

reinforce the importance of the proposed model. 
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(a) ξ= 0.9 and a = 0.5 (b) ξ = 0.3 and b = 5.7 

 

  

(c) a = 7 and b = 0.7 (d) 

Figure 1: Plots of the EGEP density function for some parameter values. 

 

Besides the cdf (5) and pdf (6), other functions can be used to feature the EGEP model as 

the survival function and hrf. These are particularly important to analyze survival data that 

involve the time associated to an event of interest such as the time until failure of a certain 

component, until the death of a patient or a disease relapse. The hrf of X is given by 

h(x) =
𝑎𝑏(1 + ξx)−

(𝑎+ξ)
𝜀 [1 − (1 + ξx)

−
𝑎
ξ ]𝑏−1

1 − [1 − (1 + ξx)−
𝑎
𝜀 ]𝑏

.    (7) 

Some plots of the hrf (7) are displayed in Figure 2. Besides monotone forms, the hrf of X 

can take an inverted bathtub shape. This non-monotone form is particularly important because 

of its great practical applicability. 
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(a) ξ= 1.5, a = 1.6 and b = 0.1 (b) ξ = 0.9, a = 8, and b = 4.1 

Figure 2: Plots of the EGEP hazard function for some parameter values. 

 

3 Shapes 

The different forms of the pdf and hrf of X can be investigated through their first and 

second derivatives. After some algebraic calculations, the first and second derivatives of 

log [f(x)] can be expressed as 

𝑑𝑙𝑜𝑔[𝑓(𝑥)]

𝑑𝑥
= −

𝑎 + ξ

1 + ξ𝑥
+

𝑎(𝑏 − 1)𝑧(𝑥)
−

(𝑎+ξ)
ξ

1 − 𝑧(𝑥)
−

𝑎
ξ

,  

where z(x) = 1 + ξx, and 

𝑑2𝑙𝑜𝑔[𝑓(𝑥)]

𝑑𝑥2
= −

𝜉(𝑎 + ξ)

(𝑎 + 𝜉𝑥)2
−

𝑎(𝑏 − 1)𝑧(𝑥)
−

(𝑎+2ξ)
ξ

1 − 𝑧(𝑥)
−

𝑎
ξ

[(𝑎 + ξ) +
𝑎 𝑧(𝑥)

−
𝑎
ξ

1 − 𝑧(𝑥)
−

𝑎
ξ

].  

It is often difficult to obtain an analytical solution for the critical points of this function. 

Therefore, it is common to obtain numerical solutions with high accuracy through 

optimization routines in most mathematical and statistical platforms. Some plots of the first 

derivative of log[f (x)] for selected parameter values are display in Figure 3. 

Similarly, the first and second derivatives of log[h(x)] can be expressed as 

𝑑𝑙𝑜𝑔[ℎ(𝑥)]

𝑑𝑥
= −

(𝑎 + ξ)

𝑧(𝑥)
+

𝑎(𝑏 − 1)𝑧(𝑥)
−

(𝑎+ξ)
ξ

1 − 𝑧(𝑥)
−

𝑎
ξ

−
𝑎𝑏(1 − 𝑧(𝑥)

−
𝑎
ξ )𝑏−1

1 − (1 − 𝑧(𝑥)
−

𝑎
ξ )𝑏

,  

and 
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𝑑2 log[ℎ(𝑥)]

𝑑𝑥2
= −

ξ(𝑎 + ξ)

𝑧(𝑥)2
+

𝑎(𝑏 − 1)𝑧(𝑥)
−

(𝑎+2ξ)
ξ

1 − 𝑧(𝑥)
−

𝑎
ξ

[(𝑎 + ξ) −
𝑎 𝑧(𝑥)

−
𝑎
ξ

1 − 𝑧(𝑥)
−

𝑎
ξ

] 

−
𝑎𝑏(1 − 𝑧(𝑥)

−
𝑎
ξ )𝑏−2

1 − (1 − 𝑧(𝑥)
−

𝑎
ξ )𝑏

[𝑎(𝑏 − 1)𝑧(𝑥)
−

(𝑎+ξ)
ξ ]

+
𝑎𝑏(1 − 𝑧(𝑥)

−
𝑎
ξ )𝑏𝑧(𝑥)

−
(𝑎+ξ)

ξ

1 − (1 − 𝑧(𝑥)
−

𝑎
ξ )𝑏

] 

 

   

a = 1.81, b = 2.05 and ξ =4.69 (b) a = 8, b = 4.08 and ξ =4.69 (c) a = 3.95, b = 0.85 and ξ =2.34 

Figure 3: Plots of the first derivative of log[f (x)]. 

 

Some plots of the first derivative of log[h(x)] for selected parameter values are displayed 

in Figure 4. 

   

(a) a = 0.8, b = 1.27 and ξ =0.2 (b) a = 5.44, b = 1.27 and ξ =1.02 (c) a = 3.46, b = 8 and ξ = 8 

Figure 4: Plots of the first derivative of log[h(x)]. 

 

4 Quantile function 

The qf of X can be expressed as 

Q(u) = [(1 − 𝑢
1
𝑏)−

ξ
𝑎 − 1]/ξ. 

We use the qf of X to determine the Bowley’s skewness [15] (B) and Moors’ kurtosis[19] 

(M). These measures are given by 

B =
𝑄 (

3
4) + 𝑄 (

1
4) − 2𝑄 (

1
2)

𝑄 (
3
4) − 𝑄 (

1
4)

 and M =
𝑄 (

3
8) − 𝑄 (

1
8) + 𝑄 (

7
8) − 𝑄 (

5
8)

𝑄 (
6
8) − 𝑄 (

2
8)
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In Figures 5, 6, 7 and 8, we present 3D plots of the B and M measures for selected baseline 

parameter values. These plots are obtained using the Wolfram Mathematica software. Based 

on these plots, it is possible to conclude that, for fixed baseline parameters values, changes in 

the additional parameters a and b have a considerable impact on the skewness and kurtosis of 

the EGEP model, thus corroborating for its greater flexibility. So, theses plots reinforce the 

importance of the additional parameters. 

 

   

(a)  ξ = 2 (b)  ξ= 2 (c) ξ = 2 

Figure 5: Plots of the Bowley’s skewness for the EGEP model with ξ = 2. 

 

   

(a)  ξ = 6 (b)  ξ = 6 (c)  ξ = 6 

Figure 6: Plots of the Bowley’s skewness for the EGEP model with ξ = 6. 

 

 

(a)  ξ = 2 (b)  ξ = 2 (c)  ξ = 2 

Figure 7: Plots of the Moors’ kurtosis for the EGEP model with ξ = 2. 

  



Thiago A. N. De Andrade, Luz M. Zea                              789

 

5 Properties 

5.1. Linear representations 

Often it may be difficult or even impossible to obtain explicit analytical solutions for 

certain mathematical quantities using directly equation (6). For this reason, it is very common 

to adopt expansions that allow to obtain simpler expressions for these quantities. In this section, 

we present simple expressions for equations (3) and (4) to facilitate the derivation of some 

structural properties for the EGEP model. Our starting point is the class of exponentiated-G 

(exp-G) distributions, also called Lehmann type I transforms. This class has been vigorously 

studied since the 1950s, and from that time, several exp-G distributions were investigated. 

 

(a)  ξ = 6 (b)  ξ = 6 (c) ξ= 6 

Figure 8: Plots of the Moors’ kurtosis for the EGEP model with ξ = 6. 

 

For an arbitrary baseline cdf G(x), a random variable Yc has the exp-G distribution with 

power parameter c > 0, say Yc exp-G(c), if its cdf and pdf are given by 𝐻𝑐(𝑥) =

𝐺(𝑥)𝑐 𝑎𝑛𝑑 ℎ𝑐(𝑥) = 𝑐𝑔(𝑥)𝐺(𝑥)𝑐−1, respectively. For a comprehensive discussion about the 

exponentiated distributions, see a recent paper by [29]. The density hj+1(x) of the 

exponentiated extended Pareto (exp-EP) with power parameter j + 1 (for j 0) is given by 

ℎ𝑗+1(𝑥) = (𝑗 + 1)(1 + ξ𝑥)
−

1
ξ

−1
[1 − (1 + ξ𝑥)

−
1
ξ ]𝑗.  

Based on some results in [4], we can express the EGEP pdf (6) (forξ > 0) as 

f(x) = ∑ 𝑤𝑗+1

∞

𝑗=0

ℎ𝑗+1(𝑥), (8) 

where 𝑤𝑗+1 = ∑ (−1)𝑗+𝑚+1∞
𝑚=1 ( 𝑏

𝑚
) (𝑚𝑎

𝑗+1
). 

Equation (8) is the main result of this section. It gives the EGEP density as a linear 

combination of Exp-EP densities. So, some mathematical properties of the EGEP distribution 

can be easily obtained from those of the Exp-EP model. 
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5.2. Moments 

The nth moment of X can be determined from (8) as 

E(𝑋𝑛) =
1

ξ𝑛+1 ∑ 𝜌𝑘

∞

𝑘=0

𝐵 (𝑛 + 1,
(𝑘 + 1 − 𝑛ξ)

ξ
), (9) 

where 

𝜌𝑘 = ∑(−1)𝑘(𝑗 + 1)𝜔𝑗+1 (
𝑗

𝑘
)

∞

𝑗=𝑘

,  (10) 

and 𝐵(𝑎, 𝑏) = ∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1 𝑑𝑥
1

0
 is the beta function. Equation (9) holds for 𝑛 < 1/𝜉. 

5.3. Incomplete moments 

The nth incomplete moment of X follows from (8) as 

𝑇𝑛(𝑧) = 𝑧𝑛+1𝑛! ∑ 𝜌𝑘 2𝐹1 (𝑛 + 1,
ξ + 𝑘 + 1

𝜉
; 𝑛 + 2; −𝑧𝜉)

∞

𝑘=0

,  

where 𝜌𝑘  is given in (10), and 2 𝐹1(𝑎, 𝑏, 𝑐; 𝑧)/𝛤(𝑐)  is the regularized hypergeometric 

function. In the Mathematica platform, we can write this function as 

Hypergeometric2F1Regularized[a, b; c; z]. See the Wolfram website for more details about 

this function: http://mathworld.wolfram.com/RegularizedHypergeometricFunction.html. 

5.4. Generating function 

An important characterization of X is given by its mgf, say M(t) = E(𝑒𝑡𝑥) Using the 

linear representation (8), we obtain (for t < 0) 

𝑀(𝑡) =
𝑒

−
𝑡
𝜉

𝜉
∑ 𝜌𝑘𝔼

∞

𝑘=0

[𝜉 + 𝑘 +
1

𝜉
, −

𝑡

𝜉
],  

where 𝜌𝑘 is given in equation (10) and 𝔼[𝛿, 𝑧] = ∫ 𝑡−𝛿𝑒−𝑧𝑡∞

1
𝑑𝑡 is the exponential integral 

function. See Wolfram website: http://mathworld.wolfram.com/En-Function.html. On the 

Mathematica platform, we can write ExpIntegralE[δ, z]. 

5.5. Rényi entropy  

Given a certain random phenomenon under study, it is important to quantify the 

uncertainty associated with the random variable of interest. One of the most popular measures 

used to quantify the variability of X is the Rényi entropy. The Rényi entropy of X with density 

(6), say 𝐼𝑅(𝜌), is given by 



Thiago A. N. De Andrade, Luz M. Zea                              791

 

𝐼𝑅(𝜌) =
1

(1 − 𝜌)
log (∫ 𝑓(𝑥)𝜌

∞

0

dx).  

where ρ > 0 and ρ ≠ 1. 

Next, we consider the generalized binomial expansion 

(1 − z)𝑏 = ∑(−1)𝑘

∞

𝑘=0

(
𝑏

𝑘
) 𝑧𝑘 , (11) 

which holds for any real non-integer b and |z| < 1. Using (11) twice in equation (4), we can 

write 

𝑓(𝑥)𝜌 = (𝑎𝑏)𝜌 ∑ (−1)𝑘+𝑙

∞

𝑘,𝑙=0

(
𝜌(𝑏 − 1)

𝑘
) (

𝑎𝑘 + 𝜌(𝑎 − 1)

𝑙
) 𝑔(𝑥)𝜌𝐺(𝑥)𝑙 (12) 

Substituting (1) and (2) in equation (12), and after some algebra, we have 

𝐼𝑅(𝜌) =
1

(1 − 𝜌)
log [(ab)𝜌 ∑ ∑ (−1)𝑘+𝑙+𝑚

𝑙

𝑚=0

∞

𝑘,𝑙=0

(
𝑙

𝑚
) (

𝜌(𝑏 − 1)

𝑘
) (

𝑎𝑘 + 𝜌(𝑎 − 1)

𝑙
)

× ∫ (1 + 𝜀𝑥)−
[𝜌(𝜀+1)+𝑚]

𝜀

∞

0

𝑑𝑥] 

 

and then 

𝐼𝑅(𝜌)

=
1

(1 − 𝜌)
log [ ∑ ∑

(−1)𝑘+𝑙+𝑚(𝑎𝑏)𝜌

𝑚 + 𝜌 + 𝜖(𝜌 − 1)

𝑙

𝑚=0

∞

𝑘.𝑙=0

(
𝑙

𝑚
) (

𝜌(𝑏 − 1)

𝑘
) (

𝑎𝑘 + 𝜌(𝑎 − 1)

𝑙
)]. 

 

5.6. Order statistics 

The importance of the order statistics and their applications are widely explored in the 

literature. The density function 𝑓𝑖:𝑛(𝑥) of the ith order statistic, say 𝑋𝑖:𝑛, based on a random 

sample 𝑋1,…,𝑋𝑛can be expressed as (for i = 1, . . . , n) 

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
𝐹(𝑥)𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖,  

where f (x) is the pdf (4) and F (x) is the cdf (3). 

It was demonstrated by [4] that the density of the EG order statistics can written as 

𝑓𝑖:𝑛(𝑥) = ∑ 𝑞𝑙

∞

𝑙=0

ℎ𝑙+1(𝑥),     (13) 

where 𝑞𝑙 is given by 
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𝑞𝑙 =
𝑎𝑏

(𝑙 + 1)𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑ ∑(−1)𝑗+𝑘+𝑙

∞

𝑘=0

𝑛−𝑖

𝑗=0

(
𝑛 − 𝑖

𝑗
) (

𝑏(𝑖 + 𝑗) − 1

𝑘
) (

𝑎(𝑘 + 1) − 1

𝑙
),  

and ℎ𝑙+1(𝑥) denotes the exp-G density function with power parameter l + 1 (for l ≥ 0). 

Equation (13) reveals that the density function of the EG order statistic is a linear 

combination of exp-G densities. 

 

6 Estimation and inference 

Several approaches for parameter estimation are available in the literature but the 

maximum likelihood method is the most commonly employed. The maximum likelihood 

estimators (MLEs) enjoy desirable properties and can be used when constructing confidence 

intervals and also in test statistics. Let 𝑥1, … , 𝑥𝑛 be a sample of size n from EGEP distribution. 

The log-likelihood function for the vector of parameters 𝜃 = (𝑎, 𝑏, 𝜉)𝑇 can be expressed as 

l(θ) = nlog(ab) + (
𝑎 + ξ

ξ
) ∑ log(𝑧𝑖)

𝑛

𝑖=1

+ (𝑏 − 1) ∑ log (1 − 𝑧𝑖
−

𝑎
ξ )

𝑛

𝑖=1

  

where 𝑧𝑖 = 1 + ξ𝑥𝑖 

The elements of the score vector are given by 

𝑈𝑎 =
𝜕𝑙(𝜃)

𝜕𝑎
=

𝑛

𝑎
+

1

ξ
∑ log (𝑧𝑖)

𝑛

𝑖=1

+ (𝑏 − 1) ∑
𝑧𝑖

−𝑎/ξlog (𝑧𝑖)

ξ(1 − 𝑧𝑖
−𝑎/ξ)

𝑛

𝑖=1

 

𝑈𝑏 =
𝜕𝑙(𝜃)

𝜕𝑏
=

𝑛

𝑏
+ ∑ log(1 − 𝑧𝑖

−𝑎/ξ)

𝑛

𝑖=1

 

𝑈ξ =
𝜕𝑙(𝜃)

𝜕ξ
=

1

ξ
∑ 𝑙𝑜𝑔

𝑛

𝑖=1

(𝑧𝑖) −
(𝑎 + ξ)

ξ2 ∑ log(𝑧𝑖)

𝑛

𝑖=1

+
(𝑎 + ξ)

ξ
∑

𝑥𝑖

𝑧𝑖

𝑛

𝑖=1

−
𝑎(𝑏 − 1)

ξ2 ∑
𝑧𝑖

−
𝑎
ξ (log(𝑧𝑖) − ξ𝑥𝑖/𝑧𝑖)

1 − 𝑧𝑖
−𝑎/ξ

𝑛

𝑖=1

 

 

For interval estimation and hypothesis tests on the parameters a, b and ξ, we determine the 

3 × 3 observed information matrix given by 𝐽(𝜃) = {−𝑈𝑟,𝑠} , whose elements 𝑈𝑟,𝑠 =

𝜕2𝑙(𝜃)

𝜕𝑟𝜕𝑠
 for 𝑟, 𝑠 𝜖{𝑎, 𝑏, 𝜀} can be obtained from the authors upon request. 
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7 Applied results 

7.1. Simulation study 

In this section we present a simulation study that investigate the behavior of the MLEs of 

a, b and 𝜀 parameters. We simulate 10.000 Monte Carlo Samples. We consider sample sizes 

n = 100, 200, 300, 500 and n = 800. For the generating process we take a = 0.5, b = 0.5 and 𝜀 

= 0.8. 

7.2. Application 

In this section, we fit the EGEP model to a two real data sets. First, we investigate the 

quality of adjustment of the EGEP distributions when compared to other generalizations of 

the EP model. For our initial comparative study, we consider four-parameter models, namely 

the beta extended Pareto model (BEP) proposed by [17] and the kumaraswamy extended 

Pareto model (KwEP) pioneered by [22]. We also fit the three-parameter model that arises by 

inserting the EP baseline distribution in the gamma-G family. So, we consider the gamma 

extended Pareto (GEP) distribution (by [11]). 

The first data set was obtained from [20], and consists of the times between failures for 

repairable items: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94,4.36, 0.40, 

1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97,1.86, 1.17. Table 

2 gives some descriptive statistics for these data. 

In Table 3, we present the MLEs (and the corresponding standard errors in parentheses) 

of the fitted models and also the values of the Akaike information criterion (AIC), Bayesian 

information criterion (BIC) and consistent Akaike information criterion (CAIC) statistics. 

Based on these results, it is noted that the EGEP model has the lowest values of the AIC, BIC 

and CAIC statistics, so it could be chosen as the best model for the time failure data. 

In Table 4, we present formal goodness-of-fit tests to the times between failures. The 

values of the Kolmogorov-Smirnov (K-S), Cram ér-von Mises (W∗) and Anderson-Darling 

(A∗) statistics indicate that the fitted models are competitive models to the time failure data 

data, although the EGEP model has the advantage of less parameters. 
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Table 1: Means, standard error estimates, Biases and RMSEs of �̂�, �̂� 𝑎𝑛𝑑 ξ̂ for the EGEP model. 

n   Parameter Mean Biases StandardError  RMSE 

 a 0.6045 0.1045 0.3994 0.1705 

100 b 0.5262 0.0262 0.1094 0.0127 

 ξ 1.0047 0.2047 0.8952 0.8433 

 a 0.5396 0.0396 0.1951 0.0396 

200 b 0.5111 0.0111 0.0660 0.0045 

 ξ 0.8731 0.0731 0.4057 0.1700 

 a 0.5258 0.0258 0.1502 0.0232 

300 b 0.5073 0.0073 0.0522 0.0028 

 ξ 0.8473 0.0473 0.3126 0.1000 

 a 0.5157 0.0157 0.1113 0.0126 

500 b 0.5048 0.0048 0.0393 0.0016 

 ξ 0.8289 0.0289 0.2305 0.0540 

 a 0.5094 0.0094 0.0856 0.0074 

800 b 0.5028 0.0028 0.0308 0.0010 

 ξ 0.8172 0.0172 0.1761 0.0313 

 

Table 2: Descriptive statistics for the time failure data. 

Statistic  

Mean 1.5430 

Median 1.2350 

Variance 1.2717 

Minimum 0.1100 

Maximum 4.7300 

 

Table 3: MLEs (standard errors in parentheses) and the AIC, BIC and CAIC statistics for the time 

failure data. 

Distribution       ξ̂  σ̂      â     b̂   AIC  BIC   CAIC 
 

GEP 0.010 0.756 1.989 - 85.258 89.461 86.181 

(0.168) (0.448) (0.721) - - 

KwEP 1.119 4.972 1.917 14.432 87.283 92.888 88.883 

 (2.371) (4.817) (0.837) (12.687) -   

EGEP 0.001 - 1.005 2.107 85.232 89.436 86.155 

 (0.235) - (0.482) (0.894) -   

BEP 0.156 1 1.061 1.979 13.850 87.257 92.862 88.857 

 (1.960) (3.852) (0.460) (1.983) -   
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Table 4: Goodness-of-fit statistics for the GEP, BEP, KwEP and EGEP models for the time failure 

data 

Model 
Statistics 

K-S W∗ A∗ 

GEP 0.018 0.018 0.140 

BEP 0.018 0.018 0.140 

KwEP 0.017 0.017 0.128 

EGEP 0.018 0.018 0.133 

 

Next, we consider an uncensored data set corresponding to remission times (in months) of 

a random sample of 128 bladder cancer patients. These data were previously studied by [3]. 

Some descriptive statistics are presented in Table 5. 

 

Table 5: Descriptive statistics for the remission times data. 

Statistic 

Mean 9.366 

Median 6.395 

Variance 110.425 

Minimum 0.080 

Maximum 79..050 

 

For the second comparative study, we consider EGEP, GGP, BGP, KwGP, exponentiated 

Weibull (EW), Kumaraswamy Burr XII (KwBXII), exponentiated exponential (EE), 

Kumaraswamy Weibull (KwW), beta Weibull (BW), gamma Weibull (GW), Kumaraswamy 

Gamma (KwGamma), beta Gamma (BGamma) and gamma Gamma (GGamma) models. 

Table 6 provides the MLEs (and the corresponding standard errors in parentheses) of the 

fitted models and also the values of the following statistics: AIC, BIC and CAIC. Based on 

these measures, we note that the EGEP model has the lowest values of the AIC, BIC and CAIC 

statistics. This suggests that the EGEP model could be chosen as the best model for the 

remission times data. 

The goodness-of-fit measures for the current data are given in Table 7. We use the values 

of the K-S, W∗ and A∗ statistics. In general, the lowest values of these statistics indicate the 

best fitted model to the data. Hence, we can conclude from the figures in Table 7 that the fitted 

EGEP model is better than the other fitted models. 

In summary, we have tree important conclusions from these applications. First, the 

proposed model is quite adequate to fit the current data sets. Second, the EGEP model is 

superior to other extensions of the EP model using other generators. In other words, the EG 

class provides a generalization of the EP model more flexible in terms of adjustment than 
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those obtained with the Kw-G, beta-G and gamma-G generators. Finally, the third important 

conclusion is that even considering models that do not take the EP distribution as the base 

model, our distribution has superior adjustment power. 

 

Table 6: MLEs (standard errors in parentheses) and the AIC, BIC and CAIC statistics for the 

remission times data. 

Distribution     â       ̂     b̂       ξ̂    σ̂         θ̂   AIC  BIC    CAIC 
 

EGEP 0.193 1.647 0.041 - - 826.290 834.846 826.484 

(0.043) (0.292) (0.026) - - 

GGP 4.463 1.569 0.196 - - 826.189 834.745 826.383 

 (1.424) (0.285) (0.088) - -    

BGP 2.521 14.218 5.939 23.876 - 835.569 846.977 835.894 

 (0.511) (0.592) (2.182) (12.403) -    

KwGP 1.578 8.912 2.027 23.535 - 827.941 839.349 828.266 

 (0.211) (4.161) (1.215) (3.106) -    

EW 2.854 0.457 0.654 - - 827.386 835.942 827.579 

 (1.488) (0.273) (0.151) - -    

KwBXII 4.344 12.632 0.556 0.850 3.751 832.015 846.275 832.507 

 (3.904) (10.730) (0.341) (1.344) (2.898)    

EE - - 1.221 0.121 - 830.156 835.860 830.252 

 - - (0.149 (0.014) -    

KwW 8.180 8.805 0.274 2.348 - 829.290 840.698 829.615 

 (2.584) (5.268) (0.064) (1.743) -    

BW 0.685 2.913 2.631 0.800 - 829.398 840.806 829.723 

 (0.149) (1.918) (1.164) (0.499) -    

GW 3.508 - 0.538 0.743 - 827.719 836.275 827.913 

 (0.776) - (0.063) (0.509) -    

KwGamma 25.045 0.618 0.058 7.113 - 830.371 841.779 830.696 

 (0.535) (0.084) (0.008) (0.581) -    

BGamma 0.065 4.236 19.655 0.384 - 830.275 841.683 830.601 

 (0.011) (0.011) (0.755) (0.039) -    

GGamma 1.090  1.078 8.004 - 832.719 841.275 832.912 

 (0.718)  (0.710) (1.107) -    
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8 Conclusions 

In this article we propose and study a new three-parameter distribution with positive 

support called the exponentiated generalized extended Pareto (EGEP) distribution. This model 

extends the generalized Pareto distribution introduced by Pickands [24] in the seventies. Our 

proposal includes as special cases both Lehmann’s type I and II transformations, which not 

only makes the model more flexible but also facilitates the achievement of its mathematical 

properties. We study the main mathematical properties of the new model, such as, linear 

representations for the pdf and cdf, ordinary and in- complete moments, moment generating 

function, R ényi entropy and order statistics. The model parameters are estimated by the 

maximum likelihood method. A simulation study reveals that the estimators have desirable 

properties such as small biases and variances even in moderate sample sizes. We prove 

empirically that the new distribution provides a better fit to a real data set than other 

competitive models. 

Table 7: Goodness-of-fit statistics for the GEP, BEP, KwEP and EGEP models for the air 

conditioning data 

Model 
Statistics 

W∗ K-S A∗ 

EGEP 0.028 0.038 0.188 

GGP 0.030 0.040 0.199 

BGP 0.096 0.068 0.659 

KGP 0.025 0.035 0.168 

EW 0.043 0.043 0.288 

KwBXII 0.041 0.040 0.293 

EE 0.112 0.073 0.673 

KwW 0.043 0.048 0.281 

BW 0.044 0.047 0.289 

GW 0.049 0.047 0.317 

KwGama 0.060 0.049 0.375 

BGama 0.056 0.050 0.358 

GGama 0.120 0.074 0.717 
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