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ABSTRACT 

Forward regression has been criticised heavily and one of the many 

reasons is regarding its speed and its stopping criteria. The main focus 

of this paper is on demonstrating how to make it efficient, using R. Our 

method works for continuous predictor variables only, as the use of the 

partial correlation plays the most important role. 
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1. Introduction 

It is common truth that efficient code is not a matter of computer, operating 

system, or programming language, but a matter of implementation. Despite this 

ordinal common reasoning argument, not many programmers, scientific developers 

and mainly researchers put too much emphasis on this aspect. Researchers looking 

for speed in their calculation tend to use Matlab, Python, C++, etc. In general, the 

aforementioned languages or software are faster than R. What most people are not 

aware of though is that R has many ”powerful” functions whose efficiency is 

comparable to Matlab and Python (see Ozgur et al. (2017) for a comparison). 

Computational efficiency is a main drawback of forward regression as well. 

Neverthe- less it is taught in the undergraduate departments of statistics across the 

globe. This paper deals exactly with this issue, right at the heart of the problem, how 

to make for- ward regression efficient. To this end, we will make use of R’s built-in 

command cor ; a very efficiently written function whose abilities we will take into 

advantage here. 

The paper focuses on the case where both the response and the predictor 

variables are continuous (i.e. not categorical nor survival, etc.). In the next section 

we present the forward selection algorithm using the correlation coefficient. 

Section 3 shows, in R, the key algorithmic point responsible for reducing execution 

time. Examples demonstrate the great computational savings and Section 4 

concludes the paper. 
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2. Forward selection method for linear models 

Despite the title of this Section, the general idea of the forward selection method 

is applicable to all kinds of models, linear or not, regardless of normally distributed 

error or not. Suppose we have a univariate response variable 𝑦 ∈ ℝ𝑛 and a matrix of 

p predictor variables X ∈ ℝ𝑛×𝑝. The algorithm below summarizes the method. 

 

Forward selection method 

 

1. Standardise all predictor variables, (make them have zero mean and unit 

variance) and center the values of the response variable. 

2. Examine all univariate associations between y and xi, for i =1, ⋯ , 𝑝. The j-

th most significant among the significant ones enters the model. 

3. Examine all conditional associations (y, xi) |CS. The most significant among 

the significant ones enters the model. CS stands for conditioning set. 

4. Repeat Step 3, increasing the CS every time by 1 (one variable is added) until 

no significant association exists. 

In the next 2 subsections we will see how to perform Steps 2-4. That is, how to 

assess the significance of the (conditional) associations. 

2.1 Signicance of a univariate association 

In order to assess the univariate associations, Pearson’s correlation coefficient is 

calculated. The significance of the sample correlation r will be assessed via Fisher’s z-

transform (Fisher, 1915) 

𝑧 =
1
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where ρ is the true correlation coefficient. Alternatively, a tn−3 distribution can be 

used. Note that this is different from assessing the significance of the slope 

coefficient of a simple linear regression in which case we would use the following 

test statistic 

𝑇 =
𝑟√𝑛 − 2

√1 − 𝑟2
 

Under H0, T ∼ tn−2. Note that in the simple linear regression 

𝑦𝑖 = �̂� + �̂�𝑧𝑖 + 𝑒𝑖 (1) 
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T 2 coincides with the Wald test statistic for the H0 : β = 0 which is given by 

𝑇2 = 𝑊 =
�̂�2

𝑣𝑎𝑟(�̂�)
 (2) 

and the usual F-test 

𝑇2 = 𝐹 =
𝑆𝑆𝐸0 − 𝑆𝑆𝐸1

𝑆𝑆𝐸1/(𝑛 − 2)
, 

where SSE1 is the sum of squares of the errors of the regression model (1) and SSE0 

is simply(𝑛 − 1)𝜎𝑦
2, where 𝜎𝑦

2 is the variance of y. The proof of straightforward and 

hence omitted. The z or t test based upon Fisher’s z-transformation is asymptotically 

equivalent to the Wald (and hence the T 2 and the F tests) (Anderson, 2003). 

The convenience of the z-transformation lies in the fact that its standard error 

has a known formula and requires no further calculation and this is taken into 

advantage when the computational cost is examined. The use of the correlation 

and partial correlation instead of many linear regression models has also been 

advised by Weisberg (2005) for the purpose of computational savings. 

2.2 Significance of a conditional association 

In the second and latter steps of the forward regression, the significance of the 

conditional correlations is to be examined. The two models are 

𝐻0 ∶  𝑦𝑖 =  �̂�1 + 𝑧𝑖�̂�1             + 𝑒𝑖

𝐻1 ∶  𝑦𝑖 =  �̂�2 + 𝑧𝑖�̂�2 + 𝛾𝑥𝑖 + 𝑒𝑖
 (3) 

Hence, under 𝐻0 𝛾 = 0. The partial F-test, or in general the F-test for comparing two 

models, one nested within the other, is 

𝐹 =
𝑆𝑆𝐸0 − 𝑆𝑆𝐸1

𝑆𝑆𝐸1/(𝑛 − 𝑞 − 1 − 1)
 

The conditional correlation must be used with the cardinality of the conditional set being, 

|𝑧| = 𝑞, i.e there are q variables. When there is only one conditioning variable, |𝑧| = 1 the 

conditional correlation has a closed form which we also take into account in order to decrease 

the computational cost 

𝑟(𝑦, 𝑥|𝑧) =
𝑟(𝑦, 𝑥) − 𝑟(𝑥, 𝑧)𝑟(𝑦, 𝑧)

√1 − 𝑟2(𝑥, 𝑧)√1 − 𝑟2(𝑦, 𝑧)
, 

where r(y; x) denotes the correlation between y & x, and r(y; z), r(x; z) are the correlation 

coefficients between y & z and between x & z respectively. The general method of calculating 

the partial correlation, for |𝑧| = 𝑞 ≥ 1 is given by (Fisher et al., 1924) 

𝑟(𝑦, 𝑥|𝑧) = 𝑟(𝑒1𝑖, 𝑒2𝑖), (4) 

where 𝑒1𝑖 and 𝑒2𝑖 are the residuals of the two regression models 

𝑒1𝑖 = 𝑦𝑖 − �̂�0 + 𝑧𝑖�̂�1 (5) 

𝑒2𝑖 = 𝑥𝑖 − 𝛿0 + 𝑧𝑖𝛿1 (6) 
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The variance of r(y; x|z) is equal to 1 = (n - 3 - q). 

The γ coefficient of the second model (3) is related to the partial correlation (4) via the 

following relationship 

r(y, x|z) =
𝑊

√𝑊2 + 𝑛 − 𝑞 − 1
 

where W is the Wald test statistic (2) for the γ coefficient. 

Note that, both for the partial correlation and the partial F test, two linear regression models 

are fitted. Hence, one can argue that the computational cost is the same. We will see however 

later on that this is not true when using R. Alternatively, the relationship equation can be used 

with one fitted model. 

 

3. Forward selection with linear models in R 

The R code for the forward selection method using the partial correlation can be found in 

the package Rfast (Papadakis et al., 2018). The first two steps of the method are rather 

straightforward. We remind the reader that all predictor variables have been centred and scaled 

to have unit variance and the response variable is only centred. In the first step, the command 

cor(y, x) is used, where y is a vector and x is a matrix. In the second step, the partial correlation, 

with one conditioning variable, is applied. The next (if necessary) steps are the most important 

ones regarding the speed gains. For this reason we take into advantage a very powerful base 

command in R, the .lm.fit, which is 10 times faster than lm.fit. 

In the next two lines of R code, z is the selected variables at step k (conditioning set), x is 

the whole set of variables, including z and y is the response variable. The vector of partial 

correlations (4) between the response and each of the predictor variables conditioning on the 

selected variables is then calculated in the third line. 

 

z <- x[, sela] 

e1 <- .lm.fit(z, y)$residuals 

e2 <- .lm.fit(z, x)$residuals 

yx.z <- cor(e2, e1) 

 

By taking a close look in the above R code segment, you will see that the calculation of 

the partial correlation coefficient via the residuals (5) is what makes the forward regression 

fast. According the algorithm of forward search, one must "scan" all non selected predictor 

variables at each step. So, with 1000 predictor variables, if 10 variables were to be selected, 

one would have to create roughly 10; 000 regression models. Using a for loop in R, this has 

already become slow. 
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We will now bridge the mathematics with the R code. The estimates of the linear regression 

coeffcients are given by 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑌. (7) 

Let us translate the two residual objects of the above R code into mathematics using (7) 

𝑒1 = 𝑌 − (𝑍𝑇𝑍)−1𝑍𝑇𝑌 (vector of residuals) 

𝐸2 = 𝑋 − (𝑍𝑇𝑍)−1𝑍𝑇𝑋 (matrix of residuals). 

Hence,instead of having to "scan" the design matrix of predictor variables at every step, 

all we need to do is two multiplications, one by the left and one by the right. The using the cor 

command, we get the vector of partial correlation coefficients at almost no time.  

When a new candidate variable is tried, it is possible that the crossproduct of the design 

matrix may not be invertible, because the candidate variable is highly correlated with a 

previously selected variable, and thus a check should be made at every step. However, R's 

implementation of the forward regression will work just fine, because the QR decomposition 

implementation behind handles these cases. 

 

3.1 Examples comparing execution time 

We compared our implementation against the more general implementation of forward 

regression available in MXM (Lagani et al., 2017). MXM is a variable selection oriented 

package, offering many different methods for many types of data. The comparison might not 

look fair, mainly because the MXM's command lm.fsreg for linear models is generic, it is 

designed to accept any type of predictor variables, continuous and/or categorical and uses 

command lm for this reason. In addition, the algorithm has not been optimized, using .lm.fit 

and incrementally updating the design matrix. That implementation is based on the algorithm 

of the forward regression. At each step, all the remaining variables are "scanned" and their 

significance is examined. 

We did two single examples, with only 500 predictor variables. In the first case no variable 

is associated with the response variable. In the second case, the response is linearly related 

with three predictor variables. The relevant code to produce the data and the output using the 

package microbenchmark are given below. 

 

x <- matrix(runif(500 * 500, 1, 100), ncol = 500) 

## first case scenario 

y <- rnorm(500) 

mb <- microbenchmark(cor.fsreg(y, x), lm.fsreg(y, x) ) 

## second case scenario 

y <- 3 * x[, 10] + 2 * x[, 100] + 3 * x[, 20] + rnorm(500, 0, 5) 

mb2 <- microbenchmark(cor.fsreg(y, x), lm.fsreg(y, x) ) 
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In the first example, Rfast required 22 miliseconds (0.02 seconds), whereas MXM required 

2,204 miliseconds (2.2 seconds). In the second example Rfast required 64 miliseconds (0.064 

seconds), whereas MXM required 6,590 miliseconds (6.59 seconds). 

We can see that our implementation is 100 times faster than MXM's generic 

implementation when no predictor variable is truly significant. It is 274 times faster when 

there are only three predictor variables truly significant. In the first case, two variables were 

selected, whereas in the second case, the three significant variables were selected. 

In order to get better insights into the time savings we expanded our simulation studies 

with larger sample sizes and higher number of predictor variables using the same case 

scenarios. The sample sizes we tried were n = (500; 1; 000; 5; 000; 10; 000; 20; 000; 50; 000) 

and the number of variables spanned from 100 to 1000, with an increasing step of 100. Figure 

2 presents the speed-up factors of cor.fsreg relative lm.fsreg which indicate how slower the 

latter is relative to the first one. With small sample sizes for example (left column of plots) 

lm.fsreg can be more than 250 times slower than cor.fsreg. This number decreases with larger 

sample sizes (right column of plots), but is above 10 nonetheless. To give an example though, 

if lm.freg required on average 3; 400 seconds, nearly an hour, cor.fsreg required 280 seconds, 

less than 5 minutes. 
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Figure 1: Box plots of execution time for both functions. The left graph refers to the first example, 

whereas the right graph to the second graph. 

  

First case scenario 

  

Second case scenario 

Figure 2: Speed-up factors of cor.fsreg to lm.fsreg. All numbers are greater than 1,indicating the number 

of times lm.fsreg' is slower than cor.fsreg.  
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4. Conclusions 

We have showed how to speed up dramatically the forward regression in the linear models 

case with continuous predictor variables only. A comparison of Rfast's optimised forward 

regression implementation, for the continuous response and continuous predictor variables 

case, with the generic (not fully optimised) forward regression implementation in MXM 

showed dramatic speed-up factors. The relative differences decrease with larger sample sizes, 

yet, they are significant. 

We demonstrated the fact that it is not a matter of computer, the computational power, or 

even of the algorithm many times, but a matter of the implementation. This sentence is very 

common, yet not everybody writes functions and packages without taking this into account. 

The second message here is that in order to have really fast functions, one must take cases and 

optimise each case separately, rather than have a generic function. It becomes clear though, 

that the optimisation of the generic function is the optimal solution. 
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