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ABSTRACT 

A new log location-scale regression model with applications to voltage and 

Stanford heart transplant data sets is presented and studied. The martingale and 

modified deviance residuals to detect outliers and evaluate the model 

assumptions are defined. The new model can be very useful in analysing and 

modeling real data and provides more better fits than other regression models 

such as the log odd log-logistic generalized half-normal, the log beta 

generalized half-normal, the log generalized half-normal, the log-Topp-Leone 

odd log- logistic-Weibull and the log-Weibull models. Characterizations based 

on truncated moments as well as in terms of the reverse hazard function are 

presented. The maximum likelihood method is discussed to estimate the model 

parameters by means of a graphical Monte Carlo simulation study. The 

flexibility of the new model illustrated by means of four real data sets. 
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1 Introduction 

Let 𝑌1, … , 𝑌𝑛, …  be a sequence of independent and identically distributed random 

variables (iid rv’s) with common cumulative distribution function (cdf ), 𝐹(𝑦). One of the 

most interesting statistics is the sample maximum 𝑀𝑛 = max{𝑌1, … , 𝑌𝑛}. One may be 

interested in the behavior of 𝑀𝑛 as the sample size n increases to infinity. 

𝑃𝑟{𝑀𝑛 ≤ 𝑦} = 𝑃𝑟{𝑌1 ≤ 𝑦,… , 𝑌𝑛 ≤ 𝑦, } 

= 𝑃𝑟{𝑌1 ≤ 𝑦}…𝑃𝑟{𝑌𝑛 ≤ 𝑦, } 

= 𝐹(𝑦)𝑚. 

Assume there are sequences of constants {𝑎𝑛 > 0} and {𝑏𝑛} such that 

𝑃𝑟{[(𝑀𝑛 − 𝑏𝑛)/𝑎𝑛] ≤ 𝑦} → 𝐺(𝑦)as𝑛 → ∞. 

Now, if 𝐺(𝑦) is a non-degenerate distribution function, then it will belong to one of the 

three following fundamental types of classic extreme value family: Gumbel model which is 

Type I; Type II ( Fréchet model); Type III (Weibull model).The extreme value theory 

concentrates on the behavior of the block maxima or minima. The extreme value theory was 

introduced first by Fréchet (1927) and Fisher and Tippett (1928), then followed by Von 

Mises (1936) and completed by Gnedenko (1943),Von Mises (1964) and Kotz and Johnson 

(1992), among others. 

The so called Fréchet (’Fr’ for short) distribution is one of the important distributions in 

extreme value theory and it has applications ranging from accelerated life testing through 

earthquakes, rainfall, floods, horse racing, queues in supermarkets, wind speeds and sea 

waves. For more details about the Fréchet distribution and its applications, see Kotz and 

Nadarajah (2000). Furthermore, applications of this model in various fields are given in 

Harlow (2002). 

As of late, some new important extensions of the Fr distribution were considered.The 

exponentiated Fréchet (EFr) by Nadarajah and Kotz (2003), Beta Fréchet (Beta-Fr) by 

Nadarajah and Gupta (2004), Marshall-Olkin Fréchet (MOFr) by Krishna et.al. 

(2013),exponentiated exponential Fréchet (EEFr) by Mansoor et al. (2016)and Weibull 

Fréchet (W-Fr) by Afify et al. (2016). 

The probability density function (pdf) and the cdf of the Fr distribution are given by (for 

𝑥 ≥ 0). 

𝑔(𝑥) = 𝑔(𝑥; 𝑎, 𝑏) = 𝑏𝑎𝑏𝑥−(𝑏+1)𝑒𝑥𝑝[− (
𝑎

𝑥
)
𝑏

] (1) 

And 

𝐺(𝑥) = 𝐺(𝑥, 𝑎, 𝑏) = 𝑒𝑥𝑝[− (
𝑎

𝑥
)
𝑏

], (2) 
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respectively, where 𝑎 > 0 is a scale parameter and 𝑏 > 0 is a shape parameter. Gleaton 

and Lynch (2006) defined the cdf of the so called odd log-logistic-G (OLL-G) family by 

𝐹(𝑥) = 𝐹(𝑥; 𝜃, 𝜉) =
𝐺(𝑥,𝜉)𝜃

𝐺(𝑥,𝜉)𝜃+𝐺(𝑥,𝜉)𝜃
. (3) 

The OLL-G density function becomes 

𝑓(𝑥) = 𝑓(𝑥; 𝜃, 𝜉) =
𝜃𝑔(𝑥, 𝜉)[𝐺(𝑥, 𝜉)�̅�(𝑥, 𝜉)]

𝜃−1

[𝐺(𝑥, 𝜉)𝜃 + �̅�(𝑥, 𝜉)𝜃]2
, (4) 

where 𝜃 > 0 is the shape parameter and 𝜉 = 𝜉𝑘 = (𝜉1, 𝜉2…) is a parameter vector. A rv 

𝑋 with pdf (4) is denoted by 𝑋~𝑂𝐿𝐿 − 𝐺(𝜃, 𝜉).The cdf and pdf of Odd log-logistic Fréchet 

(OLLFr) distribution are obtained by replacing 𝐺(𝑥, 𝜉) and 𝑔(𝑥, 𝜉) with cdf and pdf of 

Fréchet distribution in Equations (3) and (4). Then, the cdf and the pdf of OLLFr distribution 

are given, respectively, by 

𝐹(𝑥; 𝜃, 𝑎, 𝑏) =
𝑒𝑥𝑝[−𝜃(

𝑎
𝑥
)𝑏]

𝑒𝑥𝑝[−𝜃 (
𝑎
𝑥
)
𝑏
] + {1 − 𝑒𝑥𝑝[− (

𝑎
𝑥
)
𝑏
]}𝜃
 , 𝑥 ≥ 0, (5) 

and 

𝑓(𝑥; 𝜃, 𝑎, 𝑏) = 𝜃𝑏𝑎𝑏𝑥−(𝑏+1) 

exp [− (
𝑎

𝑥
)
𝑏

] (exp [− (
𝑎

𝑥
)
𝑏

] {1 − exp [− (
𝑎

𝑥
)
𝑏

]})

𝜃−1

 

× (exp[−𝜃 (
𝑎

𝑥
)
𝑏

] + {1 − exp[− (
𝑎

𝑥
)
𝑏

]}

𝜃

)

−2

 , 𝑥 ≥ 0, 

(6) 

The justification for the practicalness of this model is based on introducing a new 

flexible extension of Fr distribution with only three parameter. We are motivated to 

introduce the OLLFr distribution because it contains a number aforementioned known 

lifetime models as sub models like the OLL inverse exponential (OLLIE) model when 𝑏 =

1 and the OLL inverse Rayleigh model (OLLIR) when 𝑏 = 2. It exhibits decreasing as well 

as upside-down rates as illustrated in Section 2. It is shown that the OLLFr distribution can 

be expressed as a double linear mixture of Fr densities. It can be viewed as a suitable model 

for fitting the  right-skewed and symmetric data sets. The OLLFr distribution outperforms 

several of the well-known distributions with respect to four real data applications as 

illustrated in Section 7. The new log-location regression model based on the OLLFr 

distribution provides better fits than log OLL generalized half-normal, log beta generalized 

half-normal, log generalized  half-normal, log Topp-Leone odd log-logistic-Weibull and 

log-Weibull models for voltage and Stanford heart transplant data sets. Based on the residual 

analysis (martingale and modified deviance residuals) for the new log-location regression 

model, we conclude that none of the observed values appear as possible outliers as well as 

based on the index plot of the modified deviance residual and the Q-Q plot for modified 
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deviance residual we note that OLLFr model is more appropriate for voltage and Stanford 

heart transplant data sets than all the existing regression models. 

The rest of the paper is organized as follows. In Section 2, we present a graphical 

presentation for the OLLFr model. In Section 3, we introduce some of its mathematical 

properties. Section 4 deals with some useful Characterizations based on truncated moments 

as well as in terms of the reverse hazard function. In Section 5, the maximum likelihood 

method is used to estimate the model parameters by means of a Monte Carlo simulation 

study. A new Log-location regression model as well as residual analysis are presented and 

displayed in Section 6. Four applications to real data sets prove empirically the importance 

of the new model in Section 7. Finally, some concluding remarks are given in Section 8. 

 

2 Graphical representation 

In this section, we investigate the possible hrf and pdf shapes of OLLFr distribution. 

Figure 1 displays the pdf and hrf shapes of OLLFr distribution. Figure 1(a) reveals that the 

OLLFr distribution is good candidate to model both symmetric and left-skewed data sets. 

Based on the Figure 1(b), OLLFr has the following hrf shapes: increasing and upside-down. 

In Figure 2, we investigate the shapes of hrf of OLLFr distribution based on parameter 

values 0 < 𝜃 < 2 and 0 < 𝑎 < 2 for fixed 𝑏 = 0.5. Figure 2 also shows the regions for 

shape of hrf where it is increasing or upside-down. 

(a) (b) 

  

Figure 1: The pdf(a) and hrf(b) plots of OLLFr distribution 
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Figure 2: The hrf regions of OLLFr distribution 

 

3 Mathematical properties 

3.1 Mixture representation 

We provide a useful linear representation for the OLLFr density function. First, we use a 

power series for G(𝑥, 𝑎, 𝑏)𝜃(𝜃 > 0𝑟𝑒𝑎𝑙) given by 

{exp[−(
𝑎

𝑥
)𝑏]}𝜃 =∑𝑎𝑘

∞

𝑘=0

{exp[−(
𝑎

𝑥
)𝑏]}𝑘 , (7) 

where 

𝑎𝑘 =∑(−1)𝑘+𝑗
∞

𝑗=𝑘

(
𝜃

𝑗
) (
𝑗

𝑘
).  

For any real 𝜃 > 0, we consider the generalized binomial expansion 

{1 − exp[−𝜃(
𝑎

𝑥
)𝑏]}𝜃 =∑(−1)𝑘

∞

𝑘=0

(
𝜃

𝑘
) {exp[−(

𝑎

𝑥
)𝑏]}𝑘. (8) 

Inserting (7) and (8) in equation (5), we obtain 

𝐹(𝑥) =
∑ 𝑎𝑘
∞
𝑘=0 {exp[−(

𝑎
𝑥)
𝑏]}𝑘

∑ 𝑏𝑘
∞
𝑘=0 {exp[−(

𝑎
𝑥)
𝑏]}𝑘

,  

where 

𝑏𝑘 = 𝑎𝑘 + (−1)
𝑘 (
𝜃

𝑘
).  

the ratio of the two power series can be expressed as 

𝐹(𝑥) = ∑ 𝑐𝑘

∞

𝑘=0

{𝑒𝑥𝑝[−(
𝑎

𝑥
)𝑏]}𝑘 =∑𝑐𝑘

∞

𝑘=0

𝛱𝑘(𝑥; 𝑎, 𝑏), (9) 
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where 𝛱𝑘(𝑥; 𝑎, 𝑏) = 𝐺(𝑥, 𝑎, 𝑏)𝑘  is the Fr cdf with scale parameter 𝑎𝑘
1

𝑏  and shape 

parameter b and the cofficients 𝑐𝑘′s  (for𝑘 ≥ 0)  are determined from the recurrence 

equation 

𝑐𝑘 =
1

𝑏0
(𝑎𝑘 +

1

𝑏0
∑𝑏𝑟

𝑘

𝑟=1

𝑐𝑘−𝑟).  

Upon differentiating (9), the pdf of X can be expressed as 

𝑓(𝑥) = ∑𝑐𝑘+1

∞

𝑘=0

𝜋𝑘+1(𝑥; 𝑎, 𝑏), (10) 

where 𝜋𝑘+1(𝑥; 𝑎, 𝑏) is the Fr density with scale parameter 𝑎(𝑘 + 1)
1

𝑏 and shape parameter 

b. Thus, the OLLFr density can be expressed as a double linear mixture of Fr densities. 

Consequently, several of its structural properties can be obtained from Equation (10) and 

those properties of the Fr distribution. 

3.2 Moments and cumulants 

The 𝑛𝑡ℎ ordinary moment of 𝑋 is given by 

𝜇𝑛
′ = 𝐸(𝑋𝑟) = ∑𝑐𝑘+1

∞

𝑘=0

∫ 𝑥𝑛
∞

−∞

𝜋𝑘+1(𝑥; 𝑎, 𝑏)𝑑𝑥,  

and for any 𝑛 < 𝑏, 

𝜇𝑛
′ =∑𝑐𝑘+1

∞

𝑘=0

𝑎𝑛(𝑘 + 1)
𝑛
𝑏Γ (1 −

𝑛

𝑏
). (11) 

Setting 𝑟 = 1 in (11), we have the mean of X. The last integration can be computed 

numerically for most parent distributions. The skewness and kurtosis measures can be 

calculated from the ordinary moments using well-known relationships. The 𝑛𝑡ℎ central 

moment of X, say 𝑀𝑟, is 

𝑀𝑛 = 𝐸(𝑋 − 𝜇)𝑛 = ∑ (−1)ℎ
𝑛

ℎℎ=0

(
𝑟

ℎ
) 𝜇1

′ℎ𝜇𝑛−ℎ
′ .  

The cumulants (𝐾𝑛) of X follow recursively from 𝐾𝑛 = 𝜇𝑛
′ − ∑ (𝑛−1

𝑟−1
)𝑛−1

𝑟=0 𝐾𝑟𝜇𝑛−𝑟
′ ,where 

𝐾1 = 𝜇1
′ , 𝐾2 = 𝜇2

′ − 𝜇1
′2, 𝐾3 = 𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 𝜇1
′3 and so on. 
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3.3 Moment generating function 

Here, we provide two formulae for the moment generating function (mgf) 𝑀𝑋(𝑡) =

𝐸(𝑒𝑡𝑋) of X. Clearly, the first one can be derived as 

𝑀𝑋(𝑡) = ∑𝑐𝑘+1

∞

𝑘=0

𝑀𝑘+1(𝑡) = ∑ 𝑐𝑘+1

∞

𝑘,𝑛=0

𝑡𝑛𝑎𝑛

𝑛! (〖𝑘 + 1)〗
𝑛
𝑏

𝛤 (1 −
𝑛

𝑏
) ,∀𝑛< 𝑏.  

As for the second formula for 𝑀𝑋(𝑡),setting 𝑦 = 𝑥−1 in (1), we can write this mgf as 

𝑀(𝑡; 𝑎, 𝑏) = 𝑏𝑎𝑏∫ 𝑒𝑥𝑝
∞

0

(
𝑡

𝑦
)𝑦(𝑏−1)exp[−(𝑎𝑦)𝑏].  

By expanding the first exponential term and calculating the integral, we have 

𝑀(𝑡; 𝑎, 𝑏) = 𝑏𝑎𝑏∫ ∑
𝑡𝑚

𝑚!

∞

𝑚=0

𝑒𝑥𝑝
∞

0

(
𝑡

𝑦
) 𝑦𝑏−𝑚−1 exp[−(𝑎𝑦)𝑏] = ∑

𝑎𝑚𝑡𝑚

𝑚!

∞

𝑚=0

𝛤(
𝑏 −𝑚

𝑏
), 

where the gamma function is well-defined for any non-integer 𝑏. Consider the Wright 

generalized hypergeometric function defined by 

𝑝𝚿𝑞 [
(𝛼1, 𝐴1),… , (𝛼𝑝, 𝐴𝑃)

(𝛽1,𝐵1),… , (𝛽𝑞, 𝐵𝑞)
; 𝑥] = ∑

∏ 𝛤(𝛼𝑗 +𝐴𝑗𝑛)
𝑝
𝑗=1

∏ 𝛤(𝛽𝑗 +𝐵𝑗𝑛)
𝑞
𝑗=1

∞

𝑛=0

𝑥𝑛

𝑛!
.  

Then, we have 

𝑀(𝑡; 𝑎, 𝑏) = 1𝚿0 [(1,−
1

𝑏
)

−
;𝑎𝑡]. (12) 

Combining expressions (10) and (12), we obtain the mgf of X as 

𝑀(𝑡) = ∑𝑐𝑘+11𝚿0

∞

𝑘=0

[(1,−
1

𝑏
)

−
; 𝑎𝑡(𝑘 + 1)

1
𝑏].  

3.4 Incomplete moment 

The main applications of the first incomplete moment refer to the mean deviations and 

the Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, 

demography, insurance and medicine. The 𝑠𝑡ℎ incomplete moment, say 𝐼𝑠(𝑡), of 𝑋 can be 

expressed from (10), for 𝑛 < 𝑏, as 

𝐼𝑛(𝑡) = ∑𝑐𝑘+1

∞

𝑘=0

∫ 𝑥𝑛
𝑡

−∞

𝜋𝑘+1(𝑥)𝑑𝑥 

=∑𝑐𝑘+1

∞

𝑘=0

𝑎𝑛(𝑘 + 1)
𝑛
𝑏𝛾(1−

𝑛

𝑏
, (𝑘 + 1)(

𝑎

𝑡
)
𝑏

) ,∀𝑛< 𝑏, 

 

where 

𝛾(𝜏, 𝑡) = ∫ 𝑧𝜏−1𝑒−𝑧𝑑𝑧
𝑡

−∞
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denotes the complementary incomplete gamma function. The mean deviations about the 

mean 

𝛿1 = 𝐸(|𝑋 − 𝜇1
′ |) = 2𝜇1

′𝐹(𝜇1
′ ) − 2𝐼1(𝜇1

′ )  

and about the median 

𝛿2 = 𝐸(|𝑋 −𝑀|) = 𝜇1
′ − 2𝐼1(𝑀),  

where 𝜇1
′ = 𝐸(𝑋), 𝑀 = Median(𝑋) = 𝑄(0.5) is the median, F(𝜇1

′ ) is easily calculated 

from (5) and 𝐼1(𝑡) is the first incomplete moment given by the last Equation with 𝑠 = 1. 

The general formula for 𝐼1(𝑡) is 

𝐼1(𝑡) = ∑𝑐𝑘+1𝑎(𝑘 + 1)
1
𝑏

∞

𝑘=0

𝛾(1 −
1

𝑏
, (𝑘 + 1)(

𝑎

𝑡
)𝑏). 

3.5 Residual life function and life expectation at age t 

The 𝑛𝑡ℎ moment of the residual life is given by 

𝑚𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)𝑛|𝑋 > 𝑡|]∀𝑛 = 1,2, …  

The 𝑛𝑡ℎ moment of the residual life of 𝑋 can be expresed as 

𝑚𝑛(𝑡) =
1

1 − 𝐹(𝑡)
∫ (𝑥 − 𝑡)𝑛
∞

𝑡

𝑑𝐹(𝑥),  

therefore 

𝑚𝑛(𝑡) =∑
𝑐𝑘+1
 𝑎𝑛(𝑘 + 1)

𝑛
𝑏

1 − 𝐹(𝑡)

∞

𝑘=0

𝛾(1 −
𝑛

𝑏
, (𝑘 + 1)(

𝑎

𝑡
)
𝑏

), ∀𝑛 < 𝑏,  

where 

𝑐𝑘+1
 = 𝑐𝑘+1 +∑(

𝑛

𝑟
)

𝑛

𝑟=0

(−𝑡)𝑛−𝑟.  

The mean residual life (MRL) function or the life expectation at age t is defined by 𝑚1(𝑡) =

𝐸[(𝑋 − 𝑡)|𝑋 > 𝑡], which represents the expected additional life length for a unit which is 

alive at age 𝑡. The MRL of X can be obtained by setting 𝑛 = 1 in the last equation. 

3.6 Reversed residual life function and mean inactivity time 

The 𝑛𝑡ℎ moment of the reversed residual life can be expressed as 

𝑀𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)𝑛|𝑋 ≤ 𝑡|], ∀𝑡 > 0𝑎𝑛𝑑𝑛 = 1,2, …  

We obtain 

𝑀𝑛(𝑡) =
1

𝐹(𝑡)
∫ (𝑡 − 𝑥)𝑛
𝑡

0

𝑑𝐹(𝑥).  

Then, the 𝑛𝑡ℎ moment of the reversed residual life of X becomes 
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𝑀𝑛(𝑡) =∑
𝑐𝑘+1
𝑎𝑛(𝑘 + 1)

𝑛
𝑏

𝐹(𝑡)

∞

𝑘=0

𝛾(1 −
𝑛

𝑏
, (𝑘 + 1)(

𝑎

𝑡
)
𝑏

), ∀𝑛 < 𝑏,  

where 

𝑐𝑘+1
 = 𝑐𝑘+1∑(−1)𝑟

𝑛

𝑟=0

(
𝑛

𝑟
) 𝑡𝑛−𝑟. 

The mean inactivity time or the mean reversed residual life function, is given by 𝑀1(𝑡) =

𝐸[(𝑡 − 𝑋)|𝑋 ≤ 𝑡] and represents the waiting time elapsed since the failure of an item on 

condition that this failure had occurred in (0, 𝑡). The mean inactivity time of the OLLFr 

model can be obtained easily via setting 𝑛 = 1 in the above equation; the 𝑛𝑡ℎ moment of 

the residual life and 𝑛𝑡ℎ moment of the reversed residual life uniquely determines 𝐹(𝑥). 

 

4 Characterizations 

This section takes up various characterizations of OLLFr distribution.These 

characterizations are presented in two directions: (i) based on a simple relationship between 

two truncated moments and (𝑖𝑖) in terms of the reverse hazard function. It should be 

pointed out that due to the nature of the OLLFr distribution our characterizations may be the 

only possible ones for this distribution. We present our characterizations (𝑖) and (𝑖𝑖) in 

two subsections. 

4.1 Characterizations based on truncated moments 

We employ a theorem due to Glänzel (1987), see Theorem 1 of Appendix A .The result, 

however, holds also when the interval 𝐻 is not closed since the condition of Theorem 1 is 

on the interior of H. We like to mention that this kind of characterization based on a 

truncated moment is stable in the sense of weak convergence (see, Glänzel 1990). 

 

Proposition 4.1. Let X : Ω → (0,∞)  be a continuous random variable and let 𝑞1(𝑥) =

exp [(𝜃 + 1) (
𝑎

𝑥
)
𝑏

] [exp [−𝜃 (
𝑎

𝑥
)
𝑏

] + {1 − exp[− (
𝑎

𝑥
)
𝑏

]}𝜃]  and 𝑞2(𝑥) = 𝑞1(𝑥){1 −

exp[− (
𝑎

𝑥
)
𝑏

]} for 𝑥 > 0. The random variable X belongs to the family (6) if and only if the 

function 𝜂 defined in Theorem1 has the form 

𝜂(𝑥) =
𝜃

𝜃 + 1
{1 − exp[− (

𝑎

𝑥
)
𝑏

]}, 𝑥 > 0.  

Proof. Let 𝑋 be a random variable with pdf (6), then 

(1 − 𝐹(𝑥))𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥] = {1 − exp[− (
𝑎

𝑥
)
𝑏

]}𝜃,  
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and 

(1 − 𝐹(𝑥))𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥] =
𝜃

𝜃 + 1
{1 − exp[− (

𝑎

𝑥
)
𝑏

]}𝜃+1.  

Further, 

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) = −
𝑞1(𝑥)

𝜃 + 1
{1 − 𝑒𝑥𝑝 [− (

𝑎

𝑥
)
𝑏

]} < 0𝑓𝑜𝑟𝑥 > 0.  

 

Conversely, if 𝜂 is given as above, then 

𝑠′(𝑥) =
𝜂′𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
=
𝜃𝑏𝑎𝑏𝑥−(𝑏+1)exp[− (

𝑎
𝑥
)
𝑏
]

1 − exp[−(
𝑎
𝑥
)
𝑏
]

, 𝑥 > 0,  

 

and hence 

𝑠(𝑥) = 𝑙𝑜𝑔{1 − exp[− (
𝑎

𝑥
)
𝑏

]}−𝜃, 𝑥 > 0. 

Now, according to Theorem 1, 𝑋 has density (6) 

Corollary 4.1. Let X : Ω → (0, ∞) be a continuous random variable and let q1 be as in 

Proposition 4.1. Then, X has pdf (6) if and only if there exist functions𝑞2 and 𝜂 defined 

in Theorem 1 satisfying the differential equation 

𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞(𝑥)
=
𝜃𝑏𝑎𝑏𝑥−(𝑏+1)exp[−(

𝑎
𝑥)

𝑏]

1 − exp[−(
𝑎
𝑥)

𝑏]
, 𝑥 > 0. 

The general solution of the differential equation in Corollary 4.1 is 

𝜂(𝑥) = {1 − 𝑒𝑥𝑝[−(
𝑎

𝑥
)𝑏]}−1[−∫𝜃𝑏𝑎𝑏𝑥−(𝑏+1) 𝑒𝑥𝑝 [− (

𝑎

𝑥
)
𝑏

] (𝑞1(𝑥))
−1
𝑞2(𝑥)𝑑𝑥 + 𝐷], 

where 𝐷 is a constant. Note that a set of functions satisfying the above differential equation 

is given in Proposition 4.1 with 𝐷 = 0. Clearly, there exist other triplet of functions 

(𝑞1, 𝑞2, 𝜂) satisfying the conditions of Theorem 1. 

4.1 Characterization in terms of the reverse hazard function 

The reverse hazard function, 𝑟𝐹, of a twice differentiable distribution function,𝐹, is 

defined as 

𝑟𝐹(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
, 𝑥 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑜𝑓𝐹. 

In this subsection we present characterization of OLLFr distribution in terms of the reverse 

hazard function. 
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Proposition 4.2.Let X : Ω → (0, ∞) be a continuous random variable. Then, 𝑋 has pdf 

(6) if and only if its reverse hazard function 𝑟𝐹(𝑥) satisfies the differential equation 

𝑟𝐹
′(𝑥) + (𝑏 + 1)𝑥−1𝑟𝐹(𝑥) = 𝜃𝑏𝑎

𝑏𝑥−(𝑏+1) 

×
𝑑

𝑑𝑥

{
 
 

 
 

{1 − exp[− (
𝑎
𝑥)

𝑏

]}
𝜃−1

exp[−𝜃 (
𝑎
𝑥)

𝑏

] + {1 − exp[− (
𝑎
𝑥)

𝑏

]}
𝜃

}
 
 

 
 

, 𝑥 > 0. 
 

Proof: If 𝑋 has pdf (6), then clearly the differential equation holds. Now, if the differential 

equation holds, then 

𝑑

𝑑𝑥
{𝑥(𝑏+1)𝑟𝐹(𝑥)} = 𝜃𝑏𝑎

𝑏
𝑑

𝑑𝑥
{

{1 − exp[− (
𝑎
𝑥)

𝑏

]}𝜃−1

exp[−𝜃 (
𝑎
𝑥)

𝑏

] + {1 − exp[− (
𝑎
𝑥)

𝑏

]}𝜃
},  

from which we arrive at the reverse hazard function of (6). 

Remark 4.1. For 𝜃 = 1, we have the following simple differential equation 

𝑟𝐹
′(𝑥) + (𝑏 + 1)𝑥−1𝑟𝐹(𝑥) = 0.  

 

5 Estimation and Simulation 

5.1 Maximum likelihood estimation 

If 𝑋  follows the OLLFr distribution with parameter vector 𝚽 = (𝜃, 𝑎, 𝑏)𝑇 , the 

log-likelihood for 𝚽 from a single observation x of 𝑋 is given by 

ℓ(𝚽) = 𝑙𝑜𝑔(𝜃) + 𝑙𝑜𝑔(𝑏) + 𝑏𝑙𝑜𝑔(𝑎) − (𝑏 + 1) 𝑙𝑜𝑔(𝑥) + 𝑙𝑜𝑔𝜔 

+(θ − 1) log[w(1 − w)] − 2 log[𝜔𝜃 + (1 − 𝜔)𝜃], 

where 𝜔 = 𝑒𝑥𝑝[−(
𝑎

𝑥
)𝑏] . The components of the unit score vector U = 𝑈(𝚽) = (𝜕𝜃/

𝜕ℓ, 𝜕𝑎/𝜕ℓ, 𝜕𝑏/𝜕ℓ)𝑇 = (𝑈(𝜃), 𝑈(𝑎)𝑈(𝑏))𝑇 are given by 

𝑈(θ) =
1

𝜃
+ log[𝜔(1 − 𝜔)] − 2

𝜔𝜃 log(𝜔) + (1 − 𝜔)𝜃 log(1 − 𝜔)

𝜔𝜃(1 − 𝜔)𝜃
, 

𝑈(𝑎) =
𝑏

𝑎
+
𝑚

𝜔
+ (𝜃 − 1)

𝑚 − 2𝑚𝜔

𝜔(1 − 𝜔)
− 2

𝜃𝑚𝜔𝜃−1 − 𝜃𝑚(1 − 𝜔)𝜃−1

𝜔𝜃 + (1 − 𝜔)𝜃
 

and 

𝑈(𝑏) =
1

𝑏
+ log(𝑎) − log(𝑥) +

𝑞

𝜔
+ (𝜃 − 1)

𝑞 − 2𝑞𝜔

𝜔(1 − 𝜔)
− 2

𝜃𝑞𝜔𝜃−1 − 𝜃𝑞(1 − 𝜔)𝜃−1

𝜔𝜃 + (1 − 𝜔)𝜃
 

where 

𝑚 = −𝑏𝑎𝑏−1𝑥−𝑏exp[−(
𝑎

𝑥
)
𝑏

]𝑎𝑛𝑑𝑞 = −(
𝑎

𝑥
)
𝑏

exp [−(
𝑎

𝑥
)
𝑏

] log (
𝑎

𝑥
) . 

For a random sample 𝑥 = (𝑥1, … , 𝑥𝑛)
𝑇of size n from 𝑋, the total log-likelihood is 
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ℓ𝑛(𝚽) =∑ ℓ
(𝑖)

𝑛

𝑖=0

(𝚽), 

where ℓ
(𝑖)(𝚽)is the log-likelihood for the 𝑖𝑡ℎ observation. The total score function is 

𝑈𝑛 =∑𝑈(𝑖)
𝑛

𝑖=0

, 

where 𝑈(𝑖)  has the form given before. Maximization of ℓ(𝚽)  (orℓ𝑛(𝚽))can be easily 

performed using well-established routines such as the nlm or optimize in the R statistical 

package. Setting these equations to zero,U(𝚽) = 0,and solving them simultaneously gives the 

MLEΦ̂𝑜𝑓𝚽. 

These equations cannot be solved analytically and statistical software can be used to evaluate 

them numerically using iterative techniques such as the Newton-Raphson algorithm. 

5.1 Simulation Study 

Here, the performance of the maximum likelihood method is investigated for estimating    

the OLLFr parameters by means of Monte Carlo simulation study with 10,000 replications.  

The coverage probabilities (CPs), mean square error (MSES) and the bias of the parameter 

estimates,estimated average lengths (ALs) are calculated by means of R software. We 

generate  𝑁 = 10,000 samples of sizes 𝑁 = 50,55,… ,1000 from the OLLFr distribution 

with 𝛼 = 2,𝑎 = 2,𝑏 = 2. Let �̂�, �̂�, �̂� be the MLEs of the new model parameters and 

(𝑠�̂�, 𝑠�̂�,𝑠�̂�) be the standard errors of the MLEs. The equations for the above measures are 

given by, 

𝐵𝑖𝑎𝑠�̂�(𝑛) =
1

𝑁
∑ (𝜖�̂� − 𝜖)

𝑁

𝑖=1
, 

𝑀𝑆𝐸�̂�(𝑛) =
1

𝑁
∑ (𝜖�̂� − 𝜖)

2
𝑁

𝑖=1
, 

𝐶𝑃𝜖(𝑛) =
1

𝑁
∑ 𝐼

𝑁

𝑖=1
(𝜖�̂� − 1.95996𝑠𝜖�̂� , 𝜖�̂� + 1.95996𝑠𝜖�̂�), 

𝐴𝐿𝜖(𝑛) =
3.919928

𝑁
∑ 𝜖�̂�

𝑁

𝑖=1
. 

 

where 𝜖 = 𝛼, 𝑎, 𝑏. Figure 3 displays the numerical results for these measures. Based on 

Figure 3, we conclude: 

✓ The estimated biases decrease when the sample size n increases, 

✓ The estimated MSEs decay toward zero as n increases, 

✓ The CPs are near 0.95 and approach the nominal value when the sample size 

increases, 
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✓ The ALs decrease for all parameters when the sample size increases.   

These results reveal the consistency property of the MLEs. 

 

 

Figure 3: Estimated CPs, biases, MSEs and ALs for the selected parameter values. 

 

6 The log odd log-logistic Fréchet regression model 

Consider the OLLFr distribution with four parameters given in (6) and let 𝑋 be a 

random variable with OLLFr distribution (6) and 𝑌 = 𝑙𝑜𝑔(𝑋). The density function of 

𝑌(for𝑦 ∈ ℜ)obtained by replacing 𝑏 = 1/𝜎 and 𝑎 = 𝑒𝑥𝑝(𝜇) can be expressed as 

𝑓(𝑦) =
𝜃

𝜎
exp {− (

𝑦 − 𝜇

𝜎
)} exp {− exp {−(

𝑦 − 𝜇

𝜎
}}} 

× ([exp {−exp {−(
𝑦 − 𝜇

𝜎
)}}] (1

− [exp {− exp {− (
𝑦 − 𝜇

𝜎
)}}]))

𝜃−1

 

× {[exp{−exp{−(
𝑦 − 𝜇

𝜎
)}}]𝜃

+ (1 − [exp {−exp {−(
𝑦 − 𝜇

𝜎
)}}])𝜃}−2, 

(13) 

where 𝜇 ∈ ℜ is the location parameter, 𝜎 > 0 is the scale parameter and 𝛼 > 0 is the shape 

parameter. We refer to equation (13) as the Log-OLLFr (LOLLFr) distribution,say 

𝑌~LOLLFr(𝛼, 𝜇, 𝜎). The survival function corresponding to (13) is given by 
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i i 

𝑠(𝑦) =
(1 − [𝑒𝑥𝑝{−𝑒𝑥𝑝{− (

𝑦 − 𝜇
𝜎 )}}])𝜃

[exp{−exp{−(
𝑦 − 𝜇
𝜎 )}}]𝜃 + (1 − [exp {− exp {−(

𝑦 − 𝜇
𝜎 )}}])𝜃

 (14) 

and the hrf is simply ℎ(𝑦) = 𝑓(𝑦)/𝑆(𝑦). The standardized random variable 𝑍 = (𝑌 −

𝜇)/𝜎 has density function 

𝑓(𝑧) = 𝜃exp{−𝑧}exp{−exp{−z}}([exp{−exp{−z}}](1

− [exp{−exp{−𝑧}}]))𝜃−1.× {[exp{−exp{−z}}]𝜃

+ (1 − [exp{−exp{−𝑧}}])𝜃}−2. 

(15) 

Based on the LOLLFr density, we propose a linear location-scale regression model linking 

the response variable 𝑦𝑖 and the explanatory variable vector 𝑣𝑖
𝑇 = (𝑣𝑖1, … , 𝑣𝑖𝑝) given by 

𝑦𝑖 = 𝑉𝑖
𝑇𝛽 + 𝜎𝑧𝑖 , 𝑖 = 1, … , 𝑛, (16) 

where the random error 𝑧𝑖 has density function (15), 𝛽 = (𝛽1, … , 𝛽𝑝)
𝑇, and 𝜎 > 0, 𝛼 > 0 

and 𝛽 > 0 are unknown parameters. The parameter 𝜇𝑖 = 𝑣𝑖
𝑇𝛽 is the location of 𝑦𝑖. The 

location parameter vector 𝜇 = (𝜇1, … , 𝜇𝑛)
𝑇  is represented by a linear model 𝜇 = 𝑉𝛽 , 

where V = (𝑣1, … , 𝑣𝑛)
𝑇 is a known model matrix. 

Consider a sample (𝑦1, 𝑣1), … , (𝑦𝑛, 𝑣𝑛)  of 𝑛  independent observations,where each 

random response is defined by 𝑦𝑖 = 𝑚𝑖𝑛{𝑙𝑜𝑔(𝑥𝑖) , 𝑙𝑜𝑔(𝑐𝑖)}. We assume non-informative 

censoring such that the observed lifetimes and censoring times are independent. Let 𝐹 and  

𝐶 be the sets of individuals for which 𝑦𝑖 is the log-lifetime or log-censoring, respectively. 

The log-likelihood function for the vector of parameters Θ = (𝛼, 𝛽, 𝜎, 𝛽𝑇)𝑇 from model (16) 

has the form 𝑙(Θ) = ∑ 𝑙𝑖𝑖∈𝐹 (Θ) + ∑ 𝑙𝑖
(𝑐)

𝑖∈𝐶 (Θ) ,where 𝑙𝑖(𝑇) = 𝑙𝑜𝑔[𝑓(𝑦𝑖)] , 𝑙𝑖
(𝑐)(Θ) =

𝑙𝑜𝑔[𝑆(𝑦𝑖)],𝑓(𝑦𝑖) is the density (13)and 𝑆(𝑦𝑖) is the survival function (14) of 𝑌𝑖. The total 

log-likelihood function for Θ is given by 

ℓ(Θ) = 𝑟𝑙𝑜𝑔 (
𝜃

𝜎
) −∑𝑧𝑖

𝑖∈𝐹

−∑exp(𝑧𝑖)

𝑖∈𝐹

 

+(θ − 1)∑log([exp{− exp{−𝑧𝑖}}](1 − [exp{−exp{−𝑧𝑖
𝑖∈𝐹

}}])) 

−2∑𝑙𝑜𝑔

𝑖∈𝐹

{[exp{− exp{−𝑧𝑖}}]
𝜃 + (1 − [exp{−exp{−𝑧𝑖}}])

𝜃}. 

+θ∑log(1 − [exp{−exp{−𝑧𝑖}}])

𝑖∈𝐹

𝑖∈𝐶

 

−∑log{[exp{− exp{−𝑧𝑖}}]
𝜃

𝑖∈𝐶

+ (1 − [exp{−exp{−𝑧𝑖}}])
𝜃}, 

(17) 

where 𝑧𝑖 = (𝑦𝑖 − 𝜇𝑖)/σ, and 𝑟 is the number of uncensored observations (failures). The 

MLE Θ̂  of the vector of unknown parameters can be evaluated by maximizing the 
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log-likelihood (17). The R software is used to estimate Θ̂. 

6.1 Residual analysis 

Residual analysis has critical role in checking the adequacy of the fitted model. In order 

to analyse departures from error assumption, two types of residuals are considered: 

martingale and modified deviance residuals. 

6.1.1Martingale residual 

The martingale residuals is defined in counting process and takes values between 

+1and −∞ (see for details, Fleming and Harrington(1994)). The martingale residuals for 

LOLLFr model is 

𝑟𝑀𝑖

=

{
 
 

 
 1 + log (

(1 − [exp{−exp{−𝑧𝑖}}])
𝜃

[exp{− exp{−𝑧𝑖}}]
𝜃 + (1 − [exp{−exp{−𝑧𝑖}}])

𝜃
) , 𝑖𝑓𝑖 ∈ 𝐹,

log (
(1 − [exp{−exp{−𝑧𝑖}}])

𝜃

[exp{− exp{−𝑧𝑖}}]𝜃 + (1 − [exp{−exp{−𝑧𝑖}}])𝜃
) , 𝑖𝑓𝑖 ∈ 𝐶,

 
(18) 

where 𝑢𝑖 = 2𝛷[𝑒𝑥𝑝(𝑧𝑖√2/2)]𝑎𝑛𝑑𝑧𝑖 = (𝑦
𝑖
− 𝜇

𝑖
)/𝜎. 

6.1.2 Modifted deviance residual 

The main drawback of martingale residual is that when the fitted model is correct, it is 

not symmetrically distributed about zero. To overcome this problem, modified deviance 

residual  was proposed by Therneau et al. (1990). Th modified deviance residual for 

LOLLFr model is 

𝑟𝐷𝑖 = {
𝑠𝑖𝑔𝑛(𝑟𝑀𝑖){−2[𝑟𝑀𝑖 + log(1 − 𝑟𝑀𝑖)]}

1/2, 𝑖𝑓𝑖 ∈ 𝐹

𝑠𝑖𝑔𝑛(𝑟𝑀𝑖){−2𝑟𝑀𝑖}
1/2,𝑖𝑓𝑖 ∈ 𝐶,

 (19) 

where �̂�𝑀𝑖 is the martingale residual. 

7 Applications 

In this section, four real data sets are used to compare OLL-Fr model with well-known 

extensions of Fréchet distribution given in Table 1.The first two data sets are used to 

demonstrate the univariate data fitting performance of OLL-Fr distribution. The third and 

fourth data sets are used to investigate the usefulness of proposed distribution in survival 

analysis. The optim function is used to estimate the unknown model parameters. The MLEs, 

estimated −A, standard errors of MLEs and Akaike Information Criteria (AIC) are reported 

in Table 2 and 4. The lower the values of these criteria show the better fitted model on data 

sets. The histograms with fitted pdfs are provided for visual comparison of the fitted 

distribution functions. Moreover, fitted pdfs, hrfs, survival function and P-P plots of best 

fitted models are displayed in Figure 4(b) and 5(b). 
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Table 1: The competitive distributions for OLLFr model. 

Distribution Abbreviation References 

Weibull Fr échet Distribution W-Fr Afify et al. (2016) 

Beta Fr échet Distribution Beta-Fr Nadarajah and Gupta (2004) 

Kumaraswamy Fr échet Distribution Kum-Fr Mead and Abd-Eltawab (2014) 

Fr échet Fr - 

7.1 First Application 

The first data set were used by Birnbaum and Saunders (1969) and correspond to the 

fatigue time of 101 6061-T6 aluminum coupons cut parallel to the direction of rolling and 

oscillated at 18 cycles per second (cps). The data set is 70, 90, 96, 97, 99, 100, 103, 104, 104, 

105, 107, 108,108, 108, 109, 109, 112, 112 ,113, 114, 114, 114, 116, 119, 120, 120, 120, 121, 

121, 123, 124, 124,124, 124, 124 ,128, 128, 129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 

132, 132, 132, 133, 134,134, 134, 134, 134, 136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 

142, 142, 142 ,142, 142,142, 144, 144, 145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 

157 ,157, 157, 158, 159, 162,163, 163, 164, 166, 166, 168, 170, 174, 196, 212. 

Table 2 shows the estimated parameters and their standard errors,−ℓ and AIC values. 

Based on the figures in Table 2, it is clear that OLL-Fr model provides the best fit for this 

data set. Figure 4(a) displays the estimated pdfs of the fitted models. Figure 4(b) displays the 

fitted pdf, hrf, survival function and P-P plot of OLL-Fr distribution. Figure 4 proves that 

OLL-Fr distribution provides the superior fit to symmetric data sets. 
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Table 2: MLEs and their SEs (reported in second line) of the fitted models and goodness-of-fit statistics 

for first data set 

Models 𝛼 𝜃 𝑎 𝑏 −ℓ 𝐴𝐼𝐶 

OLL-Fr  169.503 0.041 0.045 455.774 917.549 

  14.098 0.003 0.001   

W-Fr 1.786 1.632 134.521 2.463 457.770 923.540 

 3.705 0.513 44.409 0.911   

Kum-Fr 32.650 61.596 35.915 1.516 456.254 920.509 

 180.018 86.715 130.911 0.479   

Beta-Fr 10.275 58.651 273.301 0.895 457.564 923.127 

 12.303 41.159 130.136 0.333   

Fr   120.784 5.056 475.186 954.371 

   2.526 0.325   

In addition, Likelihood Ratio (LR) test is used to compare the OLL-Fr distribution with 

its sub-models. For example, the test of 𝐻0: 𝜃 = 1 against 𝐻1: 𝜃 ≠ 1 is equivalent to 

comparing the OLL-Fr and Fr distributions with each other. The LR test statistic can be 

written as follows, 

𝐿𝑅 = 2[ℓ(�̂�, �̂�, �̂�) − ℓ(1, 𝑎∗̂, 𝑏∗̂)],  

where 𝑎∗̂ and 𝑏∗̂ are the ML estimators of 𝑎 and 𝑏, respectively, obtained under 𝐻0. 

Under the regularity conditions and if 𝐻0 is assumed to be true, the LR test statistic 

converges in distribution to a chi square with 𝑟 degrees of freedom, where 𝑟 equals the 

difference between the number of parameters estimated under 𝐻0  and the number of 

parameters estimated in general, (for𝐻0: 𝜃 = 1,wehave𝑟 = 1). Table 3 shows the LR 

statistics and the corresponding p-values for the first data set. 

Table 3: The LR test results for first data set. 

 Hypotheses LR p-value 

OLL-Fr versus Fr 𝐻0: 𝜃 = 1 38.824 < 0.001 

As seen in Table 3, the p-values are smaller than 0.05, so the null hypotheses are rejected. 

Hence, OLL-Fr model fits the first data set better than its sub-model according to the LR test 

results. 
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(a) (b) 

 

Figure 4: (a) Fitted densities of fitted models and (b) fitted functions of OLL-Fr model for first set. 

 

7. Second Application 

The second data set is due to Bjerkedal (1960) and refers to the survival times (in days) 

of 72 guinea pigs infected with different amout of virulent tubercle bacilli. The data are: 0.1, 

0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 

1.08,1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 

1.46, 1.53,1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 

2.16, 2.22, 2.3,2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 

4.32, 4.58, 5.55. 

Table 4 shows the estimated parameters and their standard errors, −ℓ and AIC values. 

Based on the figures in Table 4, OLL-Fr model provides the best fit for second data set. 

Figure 5(a) displays the estimated pdfs of the fitted models. Figure 5(b) displays the fitted 

pdf, hrf, survival function and P-P plot of OLL-Fr distribution. Figure 5 proves that OLL-Fr 

distribution provides the superior fit to left-skewed data sets. 
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Table 4: MLEs and their SEs (reported in second line) of the fitted models and goodness-of-fit statistics 

for second data set 

Models 𝛼 𝜃 𝑎 𝑏 −ℓ 𝐴𝐼𝐶 

OLL-Fr  15.678 0.105 0.137 94.444 194.889 

  12.188 0.216 0.106   

W-Fr 1.869 3.069 1.119 0.403 95.020 198.040 

 3.705 0.513 44.409 0.911   

Kum-Fr 3.021 6.084 0.943 0.710 101.085 210.171 

 1.857 2.122 0.804 0.085   

Beta-Fr 20.748 79.803 15.937 0.194 98.449 204.898 

 17.246 46.119 14.213 0.060   

Fr   1.058 1.173 118.166 240.332 

   0.113 0.084   

 

Table 5 shows the LR statistics and the corresponding p-values for the second data set. From Table 5, we 

conclude that the OLL-Fr model fits the second data set better than the its sub-model. 

Table 5:  The LR test results for second data set. 

 Hypotheses LR p-value 

OLL-Fr versus Fr 𝐻0: 𝜃 = 1 47.444 < 0.001 

 

(a) (b) 

 

Figure 5: (a) Fitted densities of fitted models and (b) fitted functions of OLL-Fr model for first set. 

7.3 Third Application 

Lawless (2003) reported an experiment in which specimens of solid epoxy 

electrical-insulation were studied in an accelerated voltage life test. The sample size is 𝑛 =
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60, the percentage of censored observations is 10% and there are three levels of voltage: 

52.5, 55.0 and 57.5. The variables involved in the study are:𝑥𝑖-failure times for epoxy 

insulation specimens(in min);𝑐𝑖-censoring indicator(0=censoring,1=lifetime observed);𝑣𝑖1- 

voltage (kV). 

These data set was used by Pescim et al. (2013) and Pescim et al. (2017) for illustrating 

the log-Beta-GHN (LBGHN) and log-odd log-logistic GHN (LOLLGHN) regression models. 

Pescim et al. (2013) compared the LBGHN regression model with log-GHN (LGHN) and  

log-Weibull models. In this section we compare the LOLLFr regression model with models 

reported in Pescim et al. (2013) and Pescim et al. (2017). The regression model fitted to the 

voltage data set are given by 

𝑦
𝑖
= 𝛽0 + 𝛽1𝑥𝑖1 + 𝜎𝑧𝑖 (20) 

respectively, where the random variable yi follows the LOLLFr distribution given in (13). 

The results are presented in Table 6. The MLEs of the model parameters and their SEs and 

the  values of the AIC and BIC statistics are listed in Table 6. 

 

Table 6: MLEs of the parameters to the voltage data for LOLLFr, LOLL-GHN LBGHN, LGHN and  

Log-Weibull regression models, the corresponding SEs (in parentheses), p-values in  and the AIC and 

BIC statistics. 

Model α θ σ β0 β1 AIC BIC 

LOLLFr  1.871 1.436 16.068 -0.184 164.3978 172.7751 

  (1.529) (1.072) (3.311) (0.061)   

    [<0.001] [<0.001]   

LOLLGHN 34.255  22.028 19.279 -0.522 166.400 174.800 

 (6.869)  (4.423) (2.461) (0.140)   

    [<0.001] [<0.001]   

LBGHN 102.140 1.564 5.306 10.632 -0.201 167.100 177.500 

 (3.989) (0.672) (0.666) (3.304) (0.056)   

    [0.002] [0.001]   

LGHN   0.778 23.637 -0.301 178.800 185.100 

   (0.089) (2.928) (0.053)   

    [<0.001] [<0.001]   

Log-Weibull   0.845 22.032 -0.275 173.400 179.700 

   (0.090) (3.046) (0.055)   

    [<0.001] [<0.001]   

Based on the figures in Table 6, we conclude that the fitted LOLLFr regression model 

has the lower AIC and BIC values. Figure 6 provides the plots of the empirical and 

estimated survival function for the LOLLFr regression model. We can conclude with these 

plot that LOLLFr regression model provides a good fit to these data. 
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Figure 6: Estimated survival function of OLLFr regression model and empirical survival for the 

voltage data considering the voltage levels: 𝑥𝑖1 = 52.5; 55.0𝑎𝑛𝑑57.5. 

 

Residual Analysis of LOLLFr model for voltage data set 

Figure 7 displays the index plot of the modified deviance residuals and its Q-Q plot 

against to 𝑁(0,1) quantiles. Based on the Figure 7, we conclude that none of observed 

values appears as a possible outliers. Thus, it is clear that the fitted model is appropriate for 

these data set. 

(a) (b) 

  

Figure 7:(a) Index plot of the modified deviance residual and (b) Q-Q plot for modified deviance 

residual. 

7.4 Fourth Application 

Recently, Brito et al. (2017) introduced the Log-Topp-Leone odd log-logistic-Weibull  

(Log- TLOLL-W) regression model. Brito et al. (2017) used the Stanford heart transplant 

data set to prove the usefulness of Log-TLOLL-W regression model. Here, we use the same 

data set to demonstrate the flexibility of LOLLFr regression model against to 

Log-TLOLL-W regression model. These data set is available in p3state.msm package of R 
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software. The sample size is 𝑛 = 103, the percentage of censored observations is 27%. The 

aim of this study is to relate the survival times (t) of patients with the following explanatory 

variables: 𝑥1-year of acceptance to the program;𝑥2-age of patient (in years);𝑥3- previous 

surgery status (1 = 𝑦𝑒𝑠, 0 = 𝑛𝑜);𝑥4-transplant indicator (1 = yes, 0 = no); 𝑐1- censoring 

indicator (0 =censoring, 1 =lifetime observed). 

The regression model fitted to the voltage data set is given by 

𝑦
𝑖
= 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖4 + σ𝑧𝑖 (21) 

respectively, where the random variable 𝑦𝑖 follows the LOLLFr distribution given in (13). 

The results for above regression models are presented in Table 7. The MLEs of the 

model parameters and their SEs, p values and −ℓ, AIC and BIC statistics are listed in Table 

7. Based on the figures in Table 7, LOLLFr model has the lowest values of the −ℓ, AIC and 

BIC statistics. Therefore, it is clear that LOLLFr regression model outperforms among 

others for these data set. According to results of LOLLFr regression model, 𝛽0, 𝛽1 and 𝛽2 

are statistically significant at 5% level. 

 

Table 7: MLEs of the parameters to Stanford Heart Transplant Data for Log-Weibull, Log- TLOLL-W 

and LOLLFr regression models with corresponding SEs, p-values and −ℓ, AIC and BIC statistics. 

Models 

 Log-Weibull Log-TLOLL-W LOLLFr 

Parameters Estimate S.E. P-value Estimate S.E. P-value Estimate S.E. P-value 

α - - - 2.34 3.546 - - - - 

θ - - - 24.029 3.015 - 2.078 0.79061 - 

σ 1.478 0.133 - 9.68 12.526 - 2.886 0.954557 - 

𝛽0 1.639 6.835 0.811 -0.645 8.459 0.939 1.252 0.5616 0.02579 

𝛽1 0.104 0.096 0.279 0.074 0.097 0.448 0.181 0.09682 0.96156 

𝛽2 -0.092 0.02 <0.001 -0.053 0.02 0.009 -0.047 0.0183 0.01021 

𝛽3 1.126 0.658 0.087 1.676 0.597 0.005 -0.151 0.50161 0.7633 

𝛽4 2.544 0.378 <0.001 2.394 0.384 <0.001 0.551 0.26825 0.03997 

−ℓ 171.2405 164.684 160.9328 

AIC 354.481 345.368 335.9656 

BIC 370.2894 366.4458 354.3088 

Residual Analysis of LOLLFr model for Stanford heart transplant data set 

Figure 8 displays the index plot of the modified deviance residuals and its Q-Q plot 

against to 𝑁(0,1) quantiles for Stanford heart transplant data set. Based on Figure 8, we 
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conclude that none of observed values appears as possible outliers. Therefore, the fitted 

model is appropriate for these data set. 

(a) (b) 

  

Figure 8:(a) Index plot of the modified deviance residual and (b) Q-Q plot for modified deviance 

residual. 

8. Concluding remarks 

A new log-location regression model with applications to voltage and Stanford heart 

transplant data sets is presented and studied. The martingale and modified deviance residuals 

to detect outliers and evaluate the model assumptions are defined. The new model can be 

very useful in analysing real data and provides more realistic fits than other regression 

models like   the log odd log-logistic generalized half-normal, the log beta generalized 

half-normal, the log generalized half-normal, the log-Topp-Leone odd log-logistic-Weibull 

and the log-Weibull moels. Characterizations based on truncated moments as well as in 

terms of the reverse hazard function are presented. Based on the index plot of the modified 

deviance residual and the   Q-Q plot for modified deviance residual we note that OLLFr 

model is more appropriate for voltage and Stanford heart transplant data sets than all the 

existing regression models.The maximum likelihood method is discussed to estimate the 

model parameters by means of a graphical Monte Carlo simulation study.The flexibility of 

the new model illustrated by  means of the four real data sets. 
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Appendix A 

Theorem 1. 

Let (Ω, ℱ, P) be a given probability space and let 𝐻 = [𝑎, 𝑏] be an interval for some 

𝑑 < 𝑏 (𝑎 = −∞, 𝑏 = ∞ might as well be allowed) . Let : Ω → H be a continuous random 

variable with the distribution function 𝐹 and let 𝑞1 and 𝑞2 be two real functions defined 

on 𝐻 such that 

𝐸 = [𝑞2(𝑋)|𝑋 ≥ 𝑥] = 𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥]𝜂(𝑥), 𝑥 ∈ 𝐻,  

is defined with some real function 𝜂. Assume that 𝑞1, 𝑞2 ∈ 𝐶
1(𝐻), 𝜂 ∈ 𝐶2(𝐻) and 𝐹 is 

twice continuously differentiable and strictly monotone function on the set 𝐻. Finally, 

assume that the equation 𝜂𝑞1 = 𝑞2 has no real solution in the interior of 𝐻. Then F is 

uniquely determined by the functions 𝑞1, 𝑞2 and 𝜂 , particularly 

𝐹(𝑥) = ∫ 𝐶
𝑥

𝑎

|
𝜂′(𝑢)

𝜂(𝑢)𝑞
1
(𝑢) − 𝑞

2
(𝑢)

| 𝑒𝑥𝑝(−𝑠(𝑢))𝑑𝑢,  

where the function 𝑠 is a solution of the differential equation 𝑠′ =
𝜂′𝑞1

𝜂𝑞1−𝑞2
𝑎𝑛𝑑𝐶 is the 

normalization constant, such that ∫ 𝑑𝐹 = 1
𝐻

. 

We like to mention that this kind of characterization based on the ratio of truncated 

moments is stable in the sense of weak convergence (see, Glänzel [2]), in particular, let us 

assume that there is a sequence {𝑋𝑛} of random variables with distribution functions {𝐹𝑛} 

such that the functions 𝑞1𝑛 , 𝑞2𝑛 and 𝜂𝑛(𝑛 ∈ ℕ) satisfy the conditions of Theorem 1 and 

let 𝑞1𝑛 → 𝑞1  , 𝑞2𝑛 → 𝑞2  for some continuously differentiable real functions 𝑞1  and 

𝑞2 .Let, finally, 𝑋 be a random variable with distribution 𝐹 . Under the condition that 

𝑞1𝑛(𝑋) and 𝑞2𝑛(𝑋) are uniformly integrable and the family {𝐹𝑛} is relatively compact, 

the sequence 𝑋𝑛  converges   to 𝑋 in distribution if and only if 𝜂𝑛  converges to  , 

where 

𝜂(𝑥) =
𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥]

𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥]
.  

This stability theorem makes sure that the convergence of distribution functions is 

reflected by corresponding convergence of the functions 𝑞1 , 𝑞2 and𝜂, respectively. It 
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guarantees, for instance, the ’convergence’ of characterization of the Wald distribution to 

that of the  Lévy-Smirnov distribution if 𝛼 → ∞. 

A further consequence of the stability property of Theorem 1 is the application of this 

theorem to special tasks in statistical practice such as the estimation of the parameters of 

discrete distributions. For such purpose, the functions 𝑞1, 𝑞2 and, specially, 𝜂 should be 

as simple as possible. Since the function triplet is not uniquely determined it is often 

possible to choose ξ𝜂 as a linear function. Therefore, it is worth analyzing some special 

cases which helps to find new characterizations reflecting the relationship between 

individual continuous univariate distributions and appropriate in other areas of statistics 
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