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ABSTRACT 

In this paper, we introduce a new family of univariate distributions with two 

extra positive parameters generated from inverse Weibull random variable 

called the inverse Weibull generated (IW-G) family. The new family provides 

a lot of new models as well as contains two new families as special cases. We 

explore four special models for the new family. Some mathematical properties 

of the new family including quantile function, ordinary and incomplete 

moments, probability weighted moments, Rѐnyi entropy and order statistics are 

derived. The estimation of the model parameters is performed via maximum 

likelihood method. Applications show that the new family of distributions can 

provide a better fit than several existing lifetime models. 
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1. Introduction 

The inverse Weibull (IW) distribution is an important probability distribution which can 

be used to analyze the life time data with some monotone failure rates. It is suitable model 

to describe degradation phenomena of mechanical components as mentioned by Keller and 

Kamath (1982). According to Nelson (1982), the IW distribution provides a good fit to 

several data sets such as the times to breakdown of an insulating fluid subject to the action 

of a constant tension. Many works have been made about the IW distribution; for example, 

Calabria and Pulcini (1990, 1994) dealt with parameter estimation of the distribution. Some 

useful measures for the inverse Weibull distribution have been discussed by Jiang et al. 

(2001). Mahmoud et al. (2003) derived order statistics from inverse Weibull distribution. 

Based on lower record values, Sultan (2008) derived the Bayesian estimators and obtained 

the estimators of the reliability and hazard functions for the unknown parameters of the 

inverse Weibull distribution. Based on Type-II censored data, Kundu and Howlader (2010) 

studied the Bayes estimates of the unknown parameters of IW distribution under a squared 

error loss function. Hassan and Al-Thobety (2012) provided optimum simple failure step 

stress partially accelerated life tests for the model parameters and acceleration factor for 

inverse Weibull model. Hassan et al. (2015) discussed the constant–stress partially 

accelerated life test for inverse Weibull model based on multiple censored data.  

The random variable 𝑋 has an inverse Weibull distribution if its cumulative distribution 

function (cdf) takes the form 

𝐹(𝑡) = 𝑒−𝜃
𝛽𝑡−𝛽   ;   𝑡, 𝜃, 𝛽 > 0, (1) 

where, 𝜃  and 𝛽  are the scale and  shape parameters respectively.  The corresponding 

probability density function (pdf) is  given by 

𝑓(𝑡) = 𝛽𝜃𝛽 𝑡−𝛽−1 𝑒−𝜃
𝛽𝑡−𝛽   ;   𝑡, 𝜃, 𝛽 > 0        (2) 

In recent years, some endeavors have been made to define new generators of continuous 

distributions from classic ones to provide great flexibility in modelling data in several 

applied areas.  Several generated families have been suggested by several authors; see for 

examples,  beta-G by Eugene et al. (2002), gamma-G by Zografos and Balakrishanan (2009), 

Kumaraswamy-G by Cordeiro and de Castro (2011), generalized beta-G by Alexander et al. 

(2012), exponentiated generalized (exp-G) by Cordeiro et al. (2013), transformed-

transformer (T-X) by Alzaatreh et al. (2013), Weibull-G by Bourguignon et al. (2014), 

Kumaraswamy Weibull-G by Hassan and Elgarhy (2016 a), exponentiated Weibull-G by 

Hassan and Elgarhy (2016 b),  additive Weibull-G by  Hassan and  Hemeda (2016),  Type 

II half logistic  by Hassan et al. (2017 a), generalized additive Weibull-G by Hassan et al. 

(2017 b), and power Lindley-G by Hassan and Nassr (2018) among others. 

Alzaatreh et al. (2013), defined the T-X family of distributions as follows 

𝐹(𝑥) = ∫  𝑟(𝑡)

𝑊[𝐺(𝑥)]

0

  𝑑𝑡             (3) 
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where, 𝑟(𝑡) is the pdf  of a random variables 𝑇 and 𝑊[𝐺(𝑥)] be a function of the cdf of any 

random variables 𝑋.  
In this article, we provide a new family of distributions using inverse Weibull as a 

generator with the hope that it will attract a wider application in some areas. This paper can 

be organized as follows. In Section 2, we provide a formation of the IW-G family. Four 

special models of IW-G family are defined in Section 3. Some useful expansions for the pdf 

and cdf of IW-G family are derived in Section 4. In the same section, explicit expressions 

for the moments, probability weighted moments, order statistics and quantile function are 

obtained. Estimation of the model parameters using maximum likelihood method is 

performed in Section 5. Section 6 provides two applications to two real data sets are 

presented to illustrate the potentially of the new family.  Section 7 ends with some 

concluding remarks.  

 

2. Inverse Weibull-G Family  

In this section, we display the formation of the IW-G family of probability distributions. 

The cdf, reliability function, hazard rate function and cumulative hazard rate are derived. 

Based on T-X generator, the distribution function of IW-G family is derived by 

replacing the generator, 𝑟(𝑡), in (3) by inverse Weibull generator defined in (1), with 

𝑊[𝐺(𝑥)] = 𝐺(𝑥; 𝜉) �̅�(𝑥; 𝜉)⁄  as the following 

𝐹(𝑥) = ∫  𝛽𝜃𝛽 𝑡−𝛽−1 𝑒−𝜃
𝛽𝑡−𝛽

𝐺(𝑥;𝜉)

�̅�(𝑥;𝜉)

0

  𝑑𝑡 = 𝑒
−𝜃𝛽[

𝐺(𝑥;𝜉)

�̅�(𝑥;𝜉)
]
−𝛽

 

 

(4) 

 

where, �̅�(𝑥; 𝜉) = 1 − 𝐺(𝑥; 𝜉). The associated pdf of the IW-G family can be written as 

follows 

𝑓(𝑥) =
𝛽𝜃𝛽𝑔(𝑥; 𝜉)[𝐺(𝑥; 𝜉)]−𝛽−1 

[�̅�(𝑥; 𝜉)]−𝛽+1
𝑒
−𝜃𝛽[

𝐺(𝑥;𝜉)

�̅�(𝑥;𝜉)
]
−𝛽

; 𝑥, 𝜃, 𝛽 > 0      
 

(5) 

 

A random variable 𝑋 having IW-G density function (5) is denoted by 𝑋~IW-G.  

For 𝛽 = 1 IW-G reduces to new generated family called the inverse exponential-G 

family, for  𝛽 = 2  the IW-G reduces to another generated family named the inverse 

Rayleigh-G family. Also, for 𝜃 = 1 , the IW-G reduces to the odd Frѐchet-G family 

presented by Haq and Elgarhy (2018).  

Furthermore, the reliability function; �̅�(𝑥), hazard rate function; ℎ(𝑥) and cumulative 

hazard rate function 𝐻(𝑥) are, respectively, given by  

�̅�(𝑥) = 1 − 𝑒
−𝜃𝛽[

𝐺(𝑥;𝜉)

�̅�(𝑥;𝜉)
]
−𝛽

, 
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ℎ(𝑥) =
𝛽𝜃𝛽𝑔(𝑥;𝜉)[𝐺(𝑥;𝜉)]−𝛽−1 

[�̅�(𝑥;𝜉)]−𝛽+1
𝑒
−𝜃𝛽[

𝐺(𝑥;𝜉)

�̅�(𝑥;𝜉)
]
−𝛽

[1 − 𝑒
−𝜃𝛽[

𝐺(𝑥;𝜉)

�̅�(𝑥;𝜉)
]
−𝛽

]

−1

, 

𝐻(𝑥) = − ln[�̅�(𝑥)] = − ln {1 − exp (−𝜃𝛽 [
𝐺(𝑥;𝜉)

�̅�(𝑥;𝜉)
]
−𝛽

)}. 

 
 

3. Special Models  

A number of new distributions can be deduced as special models from the IW-G family 

of distributions. Here, four special models, namely; the inverse Weibull Weibull (IWW);  

the inverse Weibull Pareto (IWP);  the inverse Weibull uniform (IWU) and the inverse 

Weibull Burr XII (IWXII)  are introduced. 
 

3.1. Inverse Weibull Weibull Model 
 

Suppose, the Weibull cdf and pdf with parameters 𝛼 > 0, 𝜆 > 0  are 𝐺(𝑥) = 1 −

𝑒−(𝜆𝑥)
𝛼
; 𝑥 > 0 and 𝑔(𝑥) = 𝛼𝜆𝛼𝑥𝛼−1𝑒−(𝜆𝑥)

𝛼
. The cdf of a random variable 𝑋 has the IWW 

distribution, say 𝑋~𝐼𝑊𝑊(𝜃, 𝛽, 𝛼, 𝜆) is given by 

𝑓𝐼𝑊𝑊(𝑥) = 𝛼𝛽𝜃
𝛽𝜆𝛼𝑥𝛼−1𝑒(𝜆𝑥)

𝛼
(𝑒(𝜆𝑥)

𝛼

− 1)
−𝛽−1

exp [−𝜃𝛽(𝑒(𝜆𝑥)
𝛼
− 1)

−𝛽
] ; 𝑥, 𝜃, 𝛽, 𝛼, 𝜆 > 0     

 

(6) 
 

The corresponding distribution function is given by 

𝐹𝐼𝑊𝑊(𝑥) = exp [−𝜃
𝛽(𝑒(𝜆𝑥)

𝛼
− 1)

−𝛽
].  

The density function (6) reduces to inverse Weibull exponential distribution for 𝛼 = 1.  

Also, for 𝛼 = 2, the density function (6) reduces to inverse Weibul Rayleigh distribution. 

The reliability function and the hazard rate function ( hrf) are obtained as follows 

�̅�𝐼𝑊𝑊(𝑥) = 1 − exp [−𝜃
𝛽(𝑒(𝜆𝑥)

𝛼
− 1)

−𝛽
].  

and, 

ℎ𝐼𝑊𝑊(𝑥) = 𝛼𝛽𝜃𝛽𝜆𝛼𝑥𝛼−1𝑒(𝜆𝑥)
𝛼
(𝑒(𝜆𝑥)

𝛼
− 1)

−𝛽−1
𝑒
[−𝜃𝛽(𝑒(𝜆𝑥)

𝛼
−1)

−𝛽
]
[1 −

𝑒
(−𝜃𝛽(𝑒(𝜆𝑥)

𝛼
−1)

−𝛽
)
]

−1

. 

 

 
 

3.2. Inverse Weibull Pareto Model 
 

The second model is the inverse Weibull Pareto whose cdf is derived by substituting the 

following cdf 𝐺(𝑥) = 1 − (
𝑥

𝜆
)
−𝛼

; 𝑥 > 𝜆 in (4) as follows  
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𝐹𝐼𝑊𝑃(𝑥) = exp [−𝜃𝛽 ((
𝑥

𝜆
)
𝛼

− 1)
−𝛽

] ;  𝜆, 𝛼, 𝜃, 𝛽 > 0, 𝜆 < 𝑥 < ∞.  

The probability density function of a random variable 𝑋 having the IWP distribution, 

say 𝑋~𝐼𝑊𝑃(𝜃, 𝛽, 𝛼, 𝜆) is given by  

𝑓𝐼𝑊𝑃(𝑥) = 𝛼𝛽𝜃
𝛽𝜆−𝛼𝑥𝛼−1 ((

𝑥

𝜆
)
𝛼

− 1)
−𝛽−1

exp [−𝜃𝛽 ((
𝑥

𝜆
)
𝛼

− 1)
−𝛽

].  

Furthermore, the reliability function and hrf are as follows 

�̅�𝐼𝑊𝑃(𝑥) = 1 − exp [−𝜃𝛽 ((
𝑥

𝜆
)
𝛼

− 1)
−𝛽

],  

and,   

ℎ𝐼𝑊𝑃(𝑥) = 𝛼𝛽𝜃
𝛽𝜆−𝛼𝑥𝛼−1 ((

𝑥

𝜆
)
𝛼

− 1)
−𝛽−1

𝑒
−𝜃𝛽((

𝑥

𝜆
)
𝛼
−1)

−𝛽

[1 −

𝑒
−𝜃𝛽((

𝑥

𝜆
)
𝛼
−1)

−𝛽

]

−1

 . 

 

 
 

3.3. Inverse Weibull Uniform Model 
 

Considering the baseline distribution is uniform on the interval (0, 𝛼), 𝛼 > 0, the cdf of 

inverse Weibull uniform distribution is as follows 

𝐹𝐼𝑊𝑈(𝑥) = exp [−𝜃
𝛽 (

𝑥

𝛼−𝑥
)
−𝛽

] ;  𝛼, 𝜃, 𝛽 > 0, 0 < 𝑥 < 𝛼.  

The probability density function of a random variable 𝑋 having the IWU distribution, 

say 𝑋~𝐼𝑊𝑈(𝜃, 𝛽, 𝛼) is given by 

𝑓𝐼𝑊𝑈(𝑥) = 𝛼𝛽𝜃𝛽𝑥−(𝛽+1)(𝛼 − 𝑥)𝛽−1 exp [−𝜃𝛽 (
𝑥

𝛼−𝑥
)
−𝛽

].  

Furthermore, the reliability and hazard rate functions are as follows 

�̅�𝐼𝑊𝑈(𝑥) = 1 − exp [−𝜃
𝛽 (

𝑥

𝛼−𝑥
)
−𝛽

],  

and,   

ℎ𝐼𝑊𝑈(𝑥) = 𝛼𝛽𝜃𝛽𝑥−(𝛽+1)(𝛼 − 𝑥)𝛽−1𝑒−𝜃
𝛽(

𝑥

𝛼−𝑥
)
−𝛽

[1 − 𝑒−𝜃
𝛽(

𝑥

𝛼−𝑥
)
−𝛽

]

−1

.  

 

3.4. Inverse Weibull Burr XII Model 
 

Zimmer et al. (1998) introduced the three-parameter Burr XII (BXII) distribution with 

the following pdf and cdf  
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𝑔(𝑥) = 𝐶𝛼𝜆−𝐶𝑥𝐶−1 [1 + (
𝑥

𝜆
)
𝐶

]
−𝛼−1

; 𝑥 > 0, 𝐶, 𝛼, 𝜆 > 0, 

𝐺(𝑥) = 1 − [1 + (
𝑥

𝜆
)
𝐶

]
−𝛼

. 

 

Hence, the pdf of a random variable 𝑋 has the inverse Weibull Burr XII distribution, 

say 𝑋~𝐼𝑊𝐵𝑋𝐼𝐼(𝜃, 𝛽, 𝛼, 𝜆, 𝐶) is obtained from cdf  (4) as follows 

𝐹𝐼𝑊𝐵𝑋𝐼𝐼(𝑥) = exp [−𝜃𝛽 {(1 + (
𝑥

𝜆
)
𝐶

)
𝛼

− 1}
−𝛽

] ; 𝑥 > 0, 𝛼, 𝜃, 𝛽, 𝜆, 𝐶 > 0.  

The pdf of  the IWBXII is given by 

𝑓𝐼𝑊𝐵𝑋𝐼𝐼(𝑥) = 𝛼𝛽𝐶𝜃𝛽𝜆−𝐶𝑥𝐶−1 (1 + (
𝑥

𝜆
)
𝐶

)
𝛼−1

{(1 + (
𝑥

𝜆
)
𝐶

)
𝛼

−

1}
−𝛽−1

𝑒
−𝜃𝛽{(1+(

𝑥

𝜆
)
𝐶
)
𝛼

−1}

−𝛽

. 

 

The reliability and hazard rate functions are  

�̅�𝐼𝑊𝐵𝑋𝐼𝐼(𝑥) = 1 − exp [−𝜃
𝛽 {(1 + (

𝑥

𝜆
)
𝐶

)
𝛼

− 1}
−𝛽

], 

ℎ𝐼𝑊𝐵𝑋𝐼𝐼(𝑥) = 𝛼𝛽𝐶𝜃𝛽𝜆−𝐶𝑥𝐶−1 (1 + (
𝑥

𝜆
)
𝐶

)
𝛼−1

{(1 + (
𝑥

𝜆
)
𝐶

)
𝛼

−

1}
−𝛽−1

𝑒
−𝜃𝛽{(1+(

𝑥

𝜆
)
𝐶
)
𝛼

−1}

−𝛽

[1 − 𝑒
−𝜃𝛽{(1+(

𝑥

𝜆
)
𝐶
)
𝛼

−1}

−𝛽

]

−1

. 

 

In Figure 1, we display some plots of the pdf of the IWW,  IWP, IWU and IWBXII for 

selected parameter values. Figure1 reveals that the IWW,  IWP, IWU and IWBXII densities 

generate various shapes such as symmetrical, left-skewed, reversed-J, unimodal and U 

shaped.  
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Figure 1: Density plots of the IWW, IWP, IWU and IWBXII models 

 

Plots of the hrf of the IWW,  IWP, IWU and IWBXII models are described in Figure 2 

for some selected parameter values. From Figure 2, we observe that these models can 

produce hazard rate shapes such as constant, increasing, decreasing, and upside-down 

bathtub. This fact implies that the IW-G family can be very useful for fitting data sets with 

various shapes. 
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Figure 2: Hazard  rate function plots of the IWW,  IWP, IWU and IWBXII  models 

 

4. Mathematical Properties 

In this section, we provide some main mathematical properties of the IW-G family. 
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4.1. Useful Expansions 

Some mathematical properties of the IW-G family can be confirmed through an 

algebraic expansion which is more efficient than computing those directly by numerical 

integration of its density function. Here two important expansions are deduced for the IW-

G pdf and cdf using mixture forms of exponentiated-G (Exp-G) distribution. 

Since, the power series for the exponential function in pdf (5) can be written as follows: 

𝑒
−𝜃𝛽(

𝐺(𝑥;𝜉)

�̅�(𝑥;𝜉)
)
−𝛽

=∑
(−1)𝑖 𝜃𝑖𝛽

𝑖!
(
𝐺(𝑥; 𝜉)

�̅�(𝑥; 𝜉)
)

−𝛽𝑖∞

𝑖=0

          (7) 

Inserting expansion (7) in pdf (5), then we have  

𝑓(𝑥) = 𝛽∑
(−1)𝑖 𝜃𝛽(𝑖+1)𝑔(𝑥; 𝜉)(𝐺(𝑥; 𝜉))

−(𝛽𝑖+𝛽+1)
 

𝑖!  (�̅�(𝑥; 𝜉))
−(𝛽𝑖+𝛽+1)

                

∞

𝑖=0

 (8) 

It is well-known that, if 𝛽 > 0 is real non integer and |𝑧| < 1, the generalized binomial 

theorem is written as follows 

(1 − 𝑧)𝛽−1 =∑(−1)𝑗 (
𝛽 − 1
𝑗

) 𝑧𝑗
∞

𝑗=0

        (9) 

Then, by applying the binomial theorem (9) in (8), the IW-G pdf, where   is real non 

integer becomes 

𝑓(𝑥) = ∑ (
𝛽𝑖 + 𝛽 − 1

𝑗
)
(−1)𝑖+𝑗𝛽 𝜃𝛽(𝑖+1) 

𝑖! 

∞
𝑖,𝑗=0 𝑔(𝑥; 𝜉)(𝐺(𝑥; 𝜉))

𝑗−𝛽(𝑖+1)−1
.  

Hence,  IW-G density function can be expressed as an infinite mixture of Exp-G density 

functions as follows 

𝑓(𝑥) = ∑ 𝜂𝑖,𝑗  𝑊𝑘(𝑥; 𝜉)

∞

𝑖,𝑗=0

;      𝑥 > 0,                                                           

 

𝜂𝑖,𝑗 = (
𝛽𝑖 + 𝛽 − 1

𝑗
)
(−1)𝑖+𝑗𝛽 𝜃𝛽(𝑖+1) 

𝑖!   𝑘
 , 𝑘 = 𝑗 − 𝛽(𝑖 + 1)

}
 
 

 
 

   (10) 

where, 𝑊𝑘(𝑥; 𝜉) = 𝑘𝑔(𝑥; 𝜉)(𝐺(𝑥; 𝜉))
𝑘−1

 denotes the ‘exp-G’ pdf with power parameter  𝑘.  

Additionally, using the exponential expansion for [𝐹(𝑥)]𝑠, where 𝑠is a positive integer, 

becomes 

[𝐹(𝑥)]𝑠 = ∑
(−1)𝑚 𝑠𝑚 𝜃𝛽𝑚 

𝑚! 

∞

𝑚=0

(
𝐺(𝑥; 𝜉)

�̅�(𝑥; 𝜉)
)

−𝛽𝑚

     (11) 

Using the binomial expansion (9) in (11) where   is a real non integer, leads to : 

[𝐹(𝑥)]𝑠 = ∑   𝜓𝑚,𝑙  (𝐺(𝑥; 𝜉))
𝑙−𝛽𝑚 

∞

𝑚,𝑙=0

       (12) 
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where, 𝜓𝑚,𝑙 =
(−1)𝑚+𝑙 𝑠𝑚 𝜃𝛽𝑚 

𝑚! 
(
𝛽𝑚 + 1

𝑙
) . 

 
 

4.2. Quantile Function 

In this subsection, the quantile function of a random variable 𝑋  has the IW-G 

distribution is derived. More specifically, the quantile function for the IWP model is 

obtained. Further, the skewness and kurtosis based on quantile function for IWP model are 

discussed. 

The quantile function of IW-G family, say 𝑥 = 𝑄(𝑥) = 𝐹−1(𝑢) can be obtained by 

inverting (4) as follows 

𝑥 = 𝑄(𝑥) = 𝐹−1(𝑢) = 𝐺−1 {(−𝜃−𝛽 ln(𝑢))
−1 𝛽⁄

[1 + (−𝜃−𝛽 ln(𝑢))
−1 𝛽⁄

]}.  

Solving this equation for 𝑄(𝑥) gives the quantile function.  

Example 1: Consider the IWP distribution discussed in subsection (3.2). The quantile 

function of IWP is obtained as follows 

𝑥 = 𝑄(𝑥) = 𝜆[1 + 𝜃(− ln(𝑢))−1 𝛽⁄ ]
1 𝛼⁄

.  

Kenney and Keeping (1962) proposed skewness based on quartiles called the Bowley 

skewness which is defined as follows 

𝐵 =
𝑄(

3

4
)−2𝑄(

1

2
)+𝑄(

1

4
)

𝑄(
3

4
)−𝑄(

1

4
)

. 

Further, the Moors kurtosis (see Moors (1988)) based on octiles is defined as follows 

𝑀 =
𝑄(

7

8
)−𝑄(

5

8
)+𝑄(

3

8
)−𝑄(

1

8
)

𝑄(
6

8
)−𝑄(

2

8
)

. 

where, 𝑄(. ) denotes the quantile function. Figure 3 gives plots of the skewness and kurtosis 

for some choices of the parameter 𝛽 as function of 𝛼. These plots indicate that the skewness 

and kurtosis decrease when 𝛽 increases for fixed 𝛼. 

  
Figure 3: Plots of skewness and kurtosis for IWP distribution based on quantile. 
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4.3. Moments 

Most of the necessary characteristics and features of a distribution can be studied 

through its moments. Here, the moments of a random variable 𝑋 has the IW-G are derived. 

More specifically, the 𝑟𝑡ℎ moment for the IWU model is obtained. 

The 𝑟𝑡ℎ moment of 𝑋 about the origin is derived from (10) as follows  

𝜇�́� = ∑  𝜂𝑖,𝑗  ∫ 𝑥𝑟
∞

−∞

𝑊𝑘(𝑥; 𝜉)  𝑑𝑥

∞

𝑖,𝑗=0

  ,       𝑟 = 1, 2, …  (13) 

Furthermore, the moment generating function of  𝑋 is 

𝑀𝑋(𝑡) = ∑  
𝑡𝑟

𝑟!
 𝜇�́�

∞
𝑟=0 = ∑  ∑  

𝑡𝑟

𝑟!
 𝜂𝑖,𝑗 ∫ 𝑥𝑟

∞

−∞
𝑊𝑘(𝑥; 𝜉)  𝑑𝑥

∞
𝑖,𝑗=0

∞
𝑟=0  .  

Example 2: Consider the IWU distribution discussed in subsection (3.3).  The 𝑟𝑡ℎ moment 

of IWU can be obtained from (13) with pdf and cdf as defined in subsection (3.3) as follows 

𝜇�́� = ∑  𝜂𝑖,𝑗  
𝑗−𝛽(𝑖+1)

𝑟+(𝑗−𝛽(𝑖+1))
𝛼𝑟∞

𝑖,𝑗=0 .  

In particular, the mean and variance of the IWU distribution are obtained, respectively, 

as follows: 

𝐸(𝑋) = ∑  𝜂𝑖,𝑗  
𝑗−𝛽(𝑖+1)

(𝑗−𝛽(𝑖+1))+1
𝛼∞

𝑖,𝑗=0 , 

𝑉𝑎𝑟(𝑋) = ∑  𝜂𝑖,𝑗  
𝑗−𝛽(𝑖+1)

(𝑗−𝛽(𝑖+1))+2
𝛼2∞

𝑖,𝑗=0 − [∑  𝜂𝑖,𝑗  
𝑗−𝛽(𝑖+1)

(𝑗−𝛽(𝑖+1))+1
𝛼∞

𝑖,𝑗=0 ]
2

. 

 

 

4.4. The probability Weighted Moments 
 

The probability-weighted moments (PWMs) method of estimation has been proposed 

by Greenwood et al. (1979) for distribution expressible in inverse form. For a random 

variable 𝑋 the PWMs, denoted by 𝜏𝑟,𝑠 , can be calculated through the following relation 

𝜏𝑟,𝑠 = 𝐸[𝑋
𝑟𝐹(𝑥)𝑠] = ∫ 𝑥𝑟  𝑓(𝑥) [𝐹(𝑥)]𝑠

∞

−∞

  𝑑𝑥         (14) 

The PWMs of IW-G family is obtained by inserting (10) and (12) into (14) as follows 

𝜏𝑟,𝑠 = ∑ ∑   𝜁𝑖,𝑗,𝑘,𝑚,𝑙
∞
𝑚,𝑙=0

∞
𝑖,𝑗=0 ∫ 𝑥𝑟  𝑔(𝑥; 𝜉) [𝐺(𝑥; 𝜉)]𝑙−𝛽𝑚+𝑘−1

∞

−∞
  𝑑𝑥,  

where, 𝜁𝑖,𝑗,𝑘,𝑚,𝑙 = 𝜓𝑚,𝑙 𝜂𝑖,𝑗 𝑘 and 𝑘 = 𝑗 − 𝛽(𝑖 + 1). 

Example 3: Consider the IWP distribution discussed in subsection (3.2).  The PWMs of 

IWP distribution can be obtained as follows 

𝜏𝑟,𝑠 = ∑ 𝜁𝑖,𝑗,𝑘,𝑚,𝑙 ∫ 𝑥𝑟  
𝛼

𝜆
(
𝑥

𝜆
)
−𝛼−1

 [1 − (
𝑥

𝜆
)
−𝛼

]
𝑙−𝛽𝑚+𝑘−1

∞

𝜆
  𝑑𝑥∞

𝑖,𝑗,𝑚,𝑙=0  , 

𝜏𝑟,𝑠 = ∑ 𝜁𝑖,𝑗,𝑘,𝑚,𝑙 𝜆
𝑟𝐵 (1 −

𝑟

𝛼
, 𝑙 − 𝛽𝑚 + 𝑘)∞

𝑖,𝑗,𝑚,𝑙=0 . 

 

where, 𝐵(. , . ) stands for beta function and 𝑘 = 𝑗 − 𝛽(𝑖 + 1). 
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4.5. The Mean Deviation 

In statistics, the mean deviation about the mean and mean deviation about the median 

measure the amount of scattering in a population. For random variable 𝑋 with pdf 𝑓(𝑥), cdf 

𝐹(𝑥), the mean deviation about the mean and mean deviation about the median, are defined 

by  

𝛿1(𝑋) = 2𝜇𝐹(𝜇) − 2𝑇(𝜇) and 𝛿2(𝑋) = 𝜇 − 2𝑇(𝑀)  

where, 𝜇 = 𝐸(𝑋) , 𝑀 = Median (𝑋) , and 𝑇(𝑞) = ∫ 𝑥 𝑓(𝑥)
𝑞

−∞
  𝑑𝑥  which is the first 

incomplete moment. Another application of the first incomplete moment refers to the 

Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, 

demography, insurance and medicine. 

Example 4: Consider the IWU distribution discussed in subsection (3.2).  The first 

incomplete moment of IWU distribution can be obtained as follows 

𝑇(𝑞) = ∑ 𝜂𝑖,𝑗 ∫ 𝑥 𝑘 (
1

𝛼
) (

𝑥

𝛼
)
𝑘−1𝑞

0
 𝑑𝑥∞

𝑖,𝑗=0 = ∑ 𝜂𝑖,𝑗
𝑘𝑞

𝑘+1

∞
𝑖,𝑗=0   ,  

where, 𝜂𝑖,𝑗 = (
𝛽𝑖 + 𝛽 − 1

𝑗
)
(−1)𝑖+𝑗𝛽𝜃𝛽(𝑖+1)

𝑖!  𝑘
  and  𝑘 = 𝑗 − 𝛽(𝑖 + 1).  

 

4.6. Order Statistics 
 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛  be independent and identically distributed (i.i.d) random 

variables with their corresponding continuous distribution function 𝐹(𝑥) . Let 𝑋1:𝑛 <

 𝑋2:𝑛 < … < 𝑋𝑛:𝑛 the corresponding ordered random sample from a population of size 𝑛. 

According to David (1981), the pdf of the 𝑟𝑡ℎ order statistic, is defined by  

𝑓𝑟:𝑛(𝑥) =
1

𝐵(𝑟, 𝑛 − 𝑟 + 1)
∑  (−1)𝑟 (

𝑛 − 𝑟
𝑣

) 𝑓(𝑥)𝐹(𝑥)𝑣+𝑟−1
𝑛−𝑟

𝑣=0

  (15) 

The pdf of the 𝑟𝑡ℎ order statistic for IW-G family is derived by substituting (10) and 

(12) in (15), replacing 𝑠 with 𝑣 + 𝑟 − 1,  

𝑓𝑟:𝑛(𝑥) =
1

𝐵(𝑟,𝑛−𝑟+1)
∑ ∑ (−1)𝑟 (

𝑛 − 𝑟
𝑣

) 𝜂𝑖,𝑗𝜓𝑚,𝑙 𝑔(𝑥; 𝜉)[𝐺(𝑥; 𝜉)]
𝑙−𝛽𝑚+𝑗−𝛽(𝑖+1)−1∞

𝑖,𝑗,𝑚,𝑙=0
𝑛−𝑟
𝑣=0   

 

𝑓𝑟:𝑛(𝑥) = ∑ ∑  𝑁𝑣,𝑖,𝑗,𝑚,𝑙 𝑊𝑘1
∗ (𝑥; 𝜉)∞

𝑖,𝑗,𝑚,𝑙=0
𝑛−𝑟
𝑣=0  ,                                                             

 

𝑁𝑣,𝑖,𝑗,𝑚,𝑙 =
𝑘𝜃𝛽𝑚(𝑣+𝑟−1)𝑚(−1)𝑟+𝑚+𝑙

𝐵(𝑟,𝑛−𝑟+1)𝑘1 𝑚!
(
𝑛 − 𝑟
𝑣

) (
𝛽𝑚 + 1

𝑙
) 𝜂𝑖,𝑗 , 𝑘1 = 𝑙 − 𝛽𝑚 + 𝑗 − 𝛽(𝑖 + 1)

}  (16) 

where, 𝑊𝑘1
∗ (𝑥; 𝜉) denotes the ‘exp-G’ pdf with power parameter 𝑘1. In particular, the pdf 

of the smallest order statistics 𝑋1:𝑛 is obtained from (16), by substituting 𝑟 = 1, as follows 

𝑓1:𝑛(𝑥) = ∑ ∑  𝑀𝑣,𝑖,𝑗,𝑚,𝑙 𝑊𝑘1
∗ (𝑥; 𝜉)

∞

𝑖,𝑗,𝑚,𝑙=0

𝑛−1

𝑣=0

 ,  

where, 𝑀𝑣,𝑖,𝑗,𝑚,𝑙 =
𝑛𝑘(−1)𝑚+𝑙+1 𝜃𝛽𝑚 𝑣𝑚

𝑘1 𝑚!
(
𝑛 − 1
𝑣

) (
𝛽𝑚 + 1

𝑙
) 𝜂𝑖,𝑗. 
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Also, the pdf of the largest order statistics :n nX
 is obtained by substituting 𝑟 = 𝑛 in (16),  

𝑓𝑛:𝑛(𝑥) = ∑  𝐿𝑖,𝑗,𝑚,𝑙 𝑊𝑘1
∗ (𝑥; 𝜉)

∞

𝑖,𝑗,𝑚,𝑙=0

 ,  

where, 𝐿𝑖,𝑗,𝑚,𝑙 =
𝑛𝑘𝜃𝛽𝑚(−1)𝑛+𝑚+𝑙  (𝑣+𝑛−1)𝑚

𝑘1 𝑚!
(
𝛽𝑚 + 1

𝑙
) 𝜂𝑖,𝑗. 

 

4.7. Rѐnyi Entropy  

Entropy is a measure of variation or uncertainty of a random variable 𝑋 (Rѐnyi, 1961). 

The Rѐnyi entropy of a random variable is defined by 

𝐼𝛿(𝑋) =
1

1−𝛿
log ∫ 𝑓(𝑥)𝛿

∞

−∞
   𝑑𝑥 ,   𝛿 > 0 and  𝛿 ≠ 1   (17) 

By applying the binomial theory (9) and exponential expansion, then the pdf 𝑓(𝑥)𝛿 can 

be expressed as follows  

𝑓(𝑥)𝛿

= ∑
(−1)𝑖+𝑗  𝛿𝑖 𝜃𝛽(𝛿+𝑖)

𝑖!
(
𝛿(𝛽 + 𝛽𝑖 − 1) + 1

𝑗
) (𝑔(𝑥; 𝜉))

𝛿
(𝐺(𝑥; 𝜉))

𝑗−𝛿(𝛽+𝛽𝑖+1)
∞

𝑖,𝑗=0

 
(18) 

Inserting (18)  in (17), then the Rѐnyi entropy of the family is as follows 

𝐼𝛿(𝑋) =
1

1−𝛿
log∑

(−1)𝑖+𝑗 𝛿𝑖 𝜃𝛽(𝛿+𝑖)

𝑖!
(
𝛿(𝛽 + 𝛽𝑖 − 1) + 1

𝑗
)∞

𝑖,𝑗=0 ℑ(𝛿, 𝑖, 𝑗) ,  

where, ℑ(𝛿, 𝑖, 𝑗) = ∫ (𝑔(𝑥; 𝜉))
𝛿
(𝐺(𝑥; 𝜉))

𝑗−𝛿(𝛽+𝛽𝑖+1)∞

−∞
 𝑑𝑥. 

 

Example 5:Consider again, the IWP distribution discussed in subsection (3.2). The Rѐnyi 

entropy of IWP distribution can be derived as follows 

𝐼𝛿(𝑋) =
1

1−𝛿
log [∑

(−1)𝑖+𝑗 𝛿𝑖 𝜃𝛽(𝛿+𝑖)

𝑖!
(
𝛿(𝛽 + 𝛽𝑖 − 1)

𝑗
) (

𝛼

𝜆
)
𝛿−1

𝐵 (
𝛿(𝛼+1)−1

𝛼
, 𝑗 −∞

𝑖,𝑗=0

𝛿(𝛽 + 𝛽𝑖 − 1) + 1)] . 
 

 

5. Estimation of Parameters 

This section concerns with the maximum likelihood estimates (MLEs) of the unknown 

parameters for the new family based on complete samples. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a simple 

random sample from pdf (5) with set of parameters Θ ≡ (𝛽, 𝜃, 𝜉) . The log-likelihood 

function, denoted by ln 𝐿, based on the observed random sample of size 𝑛 from density (5) 

is given by: 

ln 𝐿 = 𝑛 ln 𝛽 + 𝑛𝛽 ln 𝜃 + ∑ ln𝑔(𝑥𝑖, 𝜉)
𝑛
𝑖=1 − 2∑ ln �̅�(𝑥𝑖, 𝜉)

𝑛
𝑖=1 −

(𝛽 + 1)∑ ln[𝑍(𝑥𝑖, 𝜉)]
𝑛
𝑖=1 − 𝜃𝛽 ∑ [𝑍(𝑥𝑖 , 𝜉)]

−𝛽𝑛
𝑖=1  , 

 

where, 𝑍(𝑥𝑖, 𝜉) =
𝐺(𝑥𝑖,𝜉)

�̅�(𝑥𝑖,𝜉)
 . 
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The elements of the score function 𝑈(Θ) = (𝑈𝜃, 𝑈𝛽 , 𝑈𝜉)  are given by 𝑈𝜃 =
𝑛𝛽

𝜃
−

𝛽𝜃𝛽−1∑ [𝑍(𝑥𝑖, 𝜉)]
−𝛽𝑛

𝑖=1  , 

𝑈𝛽 =
𝑛

𝛽
+ 𝑛 ln 𝜃 − ∑ ln[𝑍(𝑥𝑖, 𝜉)]

𝑛
𝑖=1 + 𝜃𝛽 ∑ [𝑍(𝑥𝑖, 𝜉)]

−𝛽𝑛
𝑖=1 ln[𝑍(𝑥𝑖, 𝜉)] −

𝜃𝛽 ln 𝜃 ∑ [𝑍(𝑥𝑖, 𝜉)]
−𝛽𝑛

𝑖=1 , 
 

and  

𝑈𝜉 =∑
𝜕𝑔(𝑥𝑖 , 𝜉) 𝜕𝜉𝑘⁄

𝑔(𝑥𝑖 , 𝜉)

𝑛

𝑖=1

− 2∑
𝜕�̅�(𝑥𝑖, 𝜉) 𝜕𝜉𝑘⁄

�̅�(𝑥𝑖, 𝜉)

𝑛

𝑖=1

− (𝛽 + 1)∑
𝜕𝑍(𝑥𝑖, 𝜉) 𝜕𝜉𝑘⁄

𝑍(𝑥𝑖, 𝜉)

𝑛

𝑖=1

 

+𝛽𝜃𝛽 ∑ [𝑍(𝑥𝑖, 𝜉)]
−𝛽−1 𝜕𝑍(𝑥𝑖,𝜉)

𝜕𝜉𝑘

𝑛
𝑖=1  . 

 

Setting 𝑈𝜃, 𝑈𝛽 and 𝑈𝜉 equal to zero and solving the equations simultaneously the MLE, 

say Θ̂ ≡ (�̂�, 𝜃, 𝜉)
𝑇
 of Θ ≡ (𝛽, 𝜃, 𝜉)𝑇 are obtained. Further the resulting equations cannot be 

solved analytically, so some software's can be used to solve them numerically. 

For interval estimation of the model parameters, we obtain the 3 ×  3  observed 

information matrix 𝐼 = 𝐼(Θ) (for 𝑟, 𝑠 = 𝛽, 𝜃, 𝜉), whose elements are listed in Appendix.  

Under standard regularity conditions, the multivariate normal 𝑁3 (0, 𝐼
−1(Θ̂)) distribution 

is used to construct approximate confidence intervals for the parameters. The approximate 

100(1 − 𝛾)% two sided confidence intervals for 𝜃, 𝛽, 𝜉 are respectively, given by: 

�̂� ± 𝑍𝛾 2⁄ √𝑉𝑎𝑟(�̂�) , �̂� ± 𝑍𝛾 2⁄ √𝑉𝑎𝑟(�̂�) and 𝜉 ± 𝑍𝛾 2⁄ √𝑉𝑎𝑟(𝜉) . 

Here, 𝑍𝛾 2⁄  is the upper 𝛾 2⁄
𝑡ℎ

 percentile of the standard normal distribution and 

𝑉𝑎𝑟(. )᾿s denote the diagonal elements of 𝐼−1(Θ̂) corresponding to the model parameters. 

 

6. Applications To Real Data 

The flexibility of IWW as especial model from IW-G family is examined using two real 

data sets. The superiority of IWW is clarified as compared with some main four models; 

additive Weibull (AW; Almalki and Yuan (2013)), new modified Weibull (NMW; 

Doostmoradi et al. (2014)), Weibull Weibull (WW; Bourguignon et al. (2014)) and Weibull 

(W).  

For both data sets, the unknown parameters of each distribution are estimated by the 

maximum-likelihood method. The model selection is carried out using Kolmogorov-

Smirnov (K-S) statistic and corresponding P-value, -2 log-likelihood function (−2 ln 𝐿), 

Akaike information criterion (AIC), the correct Akaike information criterion (CAIC), 

Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC).  

However, the better distribution corresponds to the smaller values of AIC, CAIC, BIC, 

HQIC, K-S  criteria and largest values of P-value. Furthermore, we plot the histogram for 

each data set and the estimated pdf of the four models. Moreover, plots of empirical cdf of 

the data sets and estimated cdf of four models are displayed. 
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Example 6.1: The first data set is provided in Murthy et al. (2004) about time between 

failures for repairable item. The data are listed as the following:  

1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 

2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17.  

In Table (1), we list the values of AIC, CAIC, BIC, HQIC, K-S and  the P-value statistics. 

We observe that the IWW model has the smallest AIC, CAIC, BIC, HQIC, K-S values, and 

has the largest P-value as compared with those values of the other models. So, the IWW 

model seems to be a very competitive model to this data. More information is provided by 

a visual comparison of the histogram and estimated cumulative of the data with the fitted 

models as shown in Figure 4. It is clear from Figure 4 that the IWW distribution provides a 

better fit than the other competitive models. 

 

Table (1): Model Selection Criteria for the First Data Set 

Model -2lnL AIC BIC CAIC HQIC K-S P-value 

IWW 79.21 87.21 92.815 88.81 89.003 0.070 0.998 

NMW 242.501 250.051 255.656 251.651 251.845 0.942 0.000 

AW 159.642 167.642 173.246 169.242 169.435 0.283 0.017 

WW 80.276 88.276 93.88 89.876 90.069 0.086 0.978 

W 92.751 96.751 99.554 97.196 97.648 0.134 0.655 

 

 

 
 

Figure 4: Estimated densities and estimated distributions of models for the first data set 
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Example 6.2: The second data set represents 34 observations of the vinyl chloride data 

obtained from clean up gradient ground –water monitoring wells in mg/L. The data are 

obtained from Bhaumik et al. (2009) and recorded as follows 

5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 

2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4,0.2. 

Results in Table 2, indicate that the IWW model is more suitable than the other 

competitive models for this data set based on the selected criteria. Further, it is clear from 

Figure 5 that the IWW distribution provides a better fit and therefore be one of the best 

models for this data set. 

 

Table (2): Model Selection Criteria for the Second Data Set  

Model -2lnL AIC BIC CAIC HQIC K-S P-value 

IWW 108.470 116.47 122.576 117.850 118.552 0.087 0.959 

NMW 314.807 322.807 328.912 324.186 324.889 1 0.000 

AW 221.798 229.798 235.904 231.178 231.881 0.982 0.018 

WW 111.160 119.160 125.265 120.539 121.242 0.094 0.922 

W 117.253 121.253 124.306 121.640 122.294 0.113 0.775 

 

 

  

  

Figure 5: Estimated densities and estimated distributions of models for the second data set. 
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6. Concluding Remarks 

In this paper, we introduce a new family of univariate distribution based on the inverse 

Weibull distribution as a new generator.  Many new sub-models are obtained and four 

special models are provided. The IW-G density function can be expressed as a mixture of 

exponentiated-G distribution functions. Mathematical properties of the IW-G family are 

derived. We give explicit closed form expressions for the moments, probability weighted, 

entropy and distribution of order statistics.  The maximum likelihood method of estimation 

is employed to derive the model parameters and the observed Fisher information matrix is 

obtained. We fit IWW distribution as special sub-model to two real data sets in order to 

explain the flexibility of this new family. We hope this new generation may attract wider 

applications in many areas.  
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