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Abstract 

A new four parameter extreme value distribution is defined and studied. 

Various structural properties of the proposed distribution including ordinary and 

incomplete moments, generating functions, residual and reversed residual life 

functions, order statistics are investigated. Some useful characterizations based 

on two truncated moments as well as based on the reverse hazard function and 

on certain functions of the random variable are presented. The maximum 

likelihood method is used to estimate the model parameters. Further, we propose 

a new extended regression model based on the logarithm of the new distribution. 

The new distribution is applied to model three real data sets to prove empirically 

its flexibility. 
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1 Introduction 

The theory of extreme value distribution is very popular in statistics and is devoted to 

study of stochastical series of independent and identically distributed random variables. We 

study the behavior of extreme values, even though these values have a very low chance to 

occur, but can turn out to have a very high impact to the observed system. Finance and 

insurance are the best fields of research to observe the importance of extreme events. The 

study of extreme value theory started in the last century as an equivalent theory to the central 

limit theory, which is dedicated to the study of the asymptotic distribution of the average of a 

sequence of random variables. The central limit theorem states that the sum and the mean of 

the random variables from an arbitrary distribution are normally distributed under the 

condition that the sample size is sufficiently large. However, in some practical studies we are 

looking for the limiting distribution of maximum or minimum values rather than the average. 

Assume that 𝑋1, 𝑋2, … , 𝑋𝑛 is a sequence of 𝑖𝑖𝑑 (independent and identically distributed) 

random variables with common cumulative distribution function (cdf) 𝐹(𝑥). One of the 

most interesting statistics is the sample maximum 

𝑀𝑛 = max{𝑋1, 𝑋2, … , 𝑋𝑛}. 

One is interested in the behavior of 𝑀𝑛  as the sample size n increases to 

infinity.Suppose there are sequences of constants {𝑎𝑛 > 0} and {𝑏𝑛} such that 

𝑃𝑟 {
(𝑀𝑛 − 𝑏𝑛)

𝑎𝑛
≤ 𝑥} → 𝐺(𝑥)𝑎𝑠 𝑛 → ∞. 

If 𝐺(𝑥) is a non-degenerate distribution function, then it will belong to one of the three 

following fundamental types of classic extreme value distribution: 

1- Type I (Gumbel distribution) ;  

2- 2-Type II ( Fréchet distribution) ;  

3- 3-Type III (Weibull distribution). 

The extreme value theory was formally introduced by Fréchet (1927) to study the 

asymptotic distribution of the largest value. Once Fisher and Tippett (1928) proved that the 

limiting distribution of the extreme values can only be one of the three types (Gumbel, 

Fréchet and Weibull), the theory of extreme values gained much more popularity. In recent 

years, several extensions of the generalized extreme value distribution have been proposed in 

the literature. For details see Nadarajah and Eljabri (2014) and references therein. Among the 

three limiting distributions of the extrema, the Fréchet distribution has applications ranging 

from accelerated life testing through earthquakes, floods, horse racing, rainfall, queues in 

supermarkets, wind speeds and sea waves. For more details about the Fréchet distribution 

and its applications, see Kotz and Nadarajah (2000). Moreover, applications of this 
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distribution in various fields are given in Harlow (2002).Recently, some extensions of the 

Fréchet distribution were considered e.g., the exponentiated Fréchet by Nadarajah and Kotz 

(2003), beta Fréchet by Nadarajah and Gupta (2004), Nadarajah and Kotz (2008) and 

Zaharim et al.(2009), beta Fréchet by Barreto-Souza et al. (2011) and Mubarak (2013), 

transmuted Fréchet by Mahmoud and Mandouh (2013), Marshall-Olkin Fréchet by Krishna 

et al. (2013), gamma extended Fréchet by da Silva et al.(2013), transmuted exponentiated 

Fréchet by Elbatal et al. (2014), transmuted   Marshall-Olkin Fréchet by Afify et al. (2015), 

transmuted exponentiated generalized Fréchet by Yousof et al.(2015), beta exponential 

Fréchet by Mead et al.(2016), Kumaraswamy Marshall-Olkin Fréchet by Afify et al.(2016a), 

Weibull Fréchet by Afify et al.(2016b),Kumaraswamy transmuted Marshall-Olkin Fréchet 

by Yousof et al. (2016), among others. 

The aim of this paper is to propose a generalization of the Fréchet distribution using the 

Topp-Leone generalizer which was introduced by Rezaei et al. (2017). This study follows up 

on Aryal et al. (2017), where a comprehensive description of the mathematical properties 

and some applications of the Topp-Leone Generated Weibull distribution were provided.The 

probability density function (pdf) and cdf of the Topp-Leone Generated family of 

distribution (for 𝜃 > 0) are given by 

𝑓(𝑥; 𝛼, 𝜃, 𝜉) = 

2𝛼𝜃𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)𝜃𝛼−1[1 − 𝐺(𝑥; 𝜉)𝜃][2 − 𝐺(𝑥; 𝜉)𝜃]
𝛼−1
, 𝑥 ∈ ℝ 

(1) 

and 

𝐹(𝑥; 𝛼, 𝜃, 𝜉) = {𝐺(𝑥; 𝜉)𝜃[2 − 𝐺(𝑥; 𝜉)𝜃]}𝛼, 𝑥 ∈ ℝ (2) 

respectively. For 𝜃 = 1, we obtain the Topp-Leone family. The properties of Topp and 

Leone’s distribution have been studied by many authors. We mention: moments by 

Nadarajah and Kotz (2003) ; reliability measures and stochastic orderings by Ghitany et 

al. (2005) ; distributions of sums, products and ratios by Zhou et al. (2006) ; behavior of 

kurtosis by Kotz and Seier (2007) ; record values by Zghoul (2011) ; moments of order 

statistics by Genc (2012) ; stress-strength modeling by Genc (2013) and Bayesian estimation 

under trimmed samples by Sindhu et al. (2013), among others. The pdf and cdf of the 

Fréchet (Fr) distribution are given by 

𝑔(𝑥; 𝑎, 𝑏) = 𝑏𝑎𝑏𝑥−(𝑏+1)𝑒𝑥𝑝 [−(
𝑎

𝑥
)𝑏], 𝑥 > 0 (3) 

and 

𝐺(𝑥, 𝑎, 𝑏) = 𝑒𝑥𝑝 [−(
𝑎

𝑥
)𝑏], 𝑥 > 0 (4) 

respectively, where 𝑎 > 0  is a scale parameter and 𝑏 > 0  is a shape parameter. By 

inserting (3) and (4) into (1), we can write the pdf of the Topp-Leone Generated Fréchet 

(TLGFr) distribution as 
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𝑓𝑇𝐿𝐺𝐹𝑟(𝑥) = 

2𝛼𝜃𝑏𝑎𝑏

𝑥𝑏+1
exp [−𝜃𝛼 (

𝑎

𝑥
)
𝑏

] {1 − exp [−𝜃 (
𝑎

𝑥
)
𝑏

]}{2 − exp [−𝜃 (
𝑎

𝑥
)
𝑏

]}𝛼−1 
(5) 

The corresponding cdf is given by 

𝐹𝑇𝐿𝐺𝐹𝑟(𝑥){(exp [−𝜃 (
𝑎

𝑥
)
𝑏

])(2 − exp [−𝜃 (
𝑎

𝑥
)
𝑏

])}𝛼. (6) 

For 𝜃 = 1, TLGFr reduces to Topp Leone Fréchet (TLFr)distribution. Figure 1 displays 

some plots of the TLGFr density and its cdf for selected values of the parameters 𝛼,𝜃,𝑎 and 

𝑏. We see from the graphs that the TLGFr distribution is more flexible compare to the 

classical Fréchet distribution and TLFr distribution. 

  

Figure 1: Probability density function(left) and Cumulative distribution function(right)of the TLGFr 

distribution. 

The expression for hazard rate function (hrf, ℎ(𝑥) = 𝑓(𝑥)/[1 − 𝐹(𝑥)])  and the 

reversed hazard rate function (rhrf, 𝑟(𝑥) = 𝑓(𝑥)/𝐹(𝑥))  of TLGFr distribution can be 

easily obtained using (5) and (6). Figure 2 displays some plots of the hrf and rhrf of the 

TLGFr distribution for selected values of the parameters 𝛼,𝜃,𝑎 and 𝑏.. 

  

Figure 2: Hazard rate function (left) and the reversed hazard rate function (right) of the TLGFr 

distribution. 
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Most of the mathematical and statistical properties of the TLGFr distribution can not be 

expressed in simplified form so it is more convenient to express them in terms of Fréchet 

distribution. In order to do so we express the pdf and cdf of TLGFr distribution as a mixture 

of Fréchet distribution as below. The cdf in (6) can be expressed as 

𝐹(𝑥) = {(exp [−𝜃 (
𝑎

𝑥
)
𝑏

]) (2 − exp [−𝜃 (
𝑎

𝑥
)
𝑏

])}

𝛼

 

= exp {−𝜃𝛼 (
𝑎

𝑥
)
𝑏

} 2𝛼 [1 −
1

2
exp {−𝜃 (

𝑎

𝑥
)
𝑏

}]

𝛼

 

= 2𝛼 exp {−𝜃𝛼 (
𝑎

𝑥
)
𝑏

}∑(−1)𝑘
∞

𝑘=0

(
𝛼

𝑘
) (
1

2
exp {−𝜃 (

𝑎

𝑥
)
𝑏

})

𝑘

 

=∑Υ𝑘

∞

𝑘=0

Π(𝛼+𝑘)𝜃(𝑥), 

(7) 

where 

𝛶𝑘 = (−1)
𝑘2𝛼−𝑘 (

𝛼

𝑘
)  

and 

𝛱(𝛼+𝑘)𝜃(𝑥) = 𝐺(𝑥; 𝑎, 𝑏)
(𝛼+𝑘)𝜃 = 𝑒𝑥𝑝 {−[(𝛼 + 𝑘)𝜃](

𝑎

𝑥
)𝑏}  

is the cdf of the Fréchet distribution with scale parameter 𝑎[(𝛼 + 𝑘)𝜃]
1

𝑏  and shape 

parameter 𝑏. The corresponding TLGFr density function is obtained by differentiating (7) 

and is given by 

𝑓(𝑥) = ∑𝛶𝑘

∞

𝑘=0

𝜋(𝛼+𝑘)𝜃(𝑥), (8) 

where 

𝜋[(𝛼+𝑘)𝜃](𝑥) = [(𝛼 + 𝑘)𝜃] 𝑏𝑎
𝑏𝑥−(𝑏+1)exp [−(

𝑎

𝑥
)𝑏]

⏟              
𝑔(𝑥;𝑎,𝑏)

{exp [−(
𝑎

𝑥
)𝑏]}[(𝛼+𝑘)𝜃]−1

⏟              
𝐺(𝑥;𝑎,𝑏)[(𝛼+𝑘)𝜃]−1

 
 

is the Fréchet density with scale parameter 𝑎[(𝛼 + 𝑘)𝜃]
1

𝑏 and shape parameter 𝑏. Thus,the 

TLGFr density can be expressed as a double linear mixture of Fréchet densities. The rest of 

the paper is outlined as follows. In Section 2, we derive some of its mathematical properties 

including moments, generating function, residual life and reversed residual life functions and 

order statistics. Some characterizations results are provided in Section 3. Maximum 

likelihood estimation of the model parameters is addressed in Section 4. In Section 5, 

simulation results to assess the performance of the proposed estimation procedure are 
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discussed. In Section 6, the log Topp-Leone Fréchet regression model is presented. In Section 

7, we provide the applications to real data sets to illustrate the importance of the new family. 

Finally, we offer some concluding remarks in Section 8. 

2 Mathematical properties 

In this section we study the statistical properties of the TLGFr distribution, specifically 

quantile function, moments, incomplete moment, residual life and order statistics will be 

discussed. 

2.1 Quantile function 

The quantile function of a distribution is the real solution of 𝐹(𝑥𝑞) = 𝑞 𝑓𝑜𝑟 0 ≤ 𝑞 ≤ 1. 

The quantile function for a probability distribution has many uses in both the theory and 

application. It may be used to generate values of a random variable from an arbitrary 

distribution with the aid of a uniform random number generator. On inverting (6), the TLGFr 

quantile function is given by 

𝑥𝑞 = 𝑎[−
1

𝜃
ln {1 − √1 − 𝑞

1
𝛼}]−

1
𝑏 .  

2.2 Moments and cumulants 

Let 𝑋 be a TLGFr random variable. The 𝑟th order ordinary moment of 𝑋 is given by 

𝜇𝑟
′ = E(𝑋𝑟) = ∫ 𝑥𝑟

∞

0

𝑓(𝑥)𝑑𝑥 

= ∫ 𝑥𝑟
∞

0

2𝛼𝜃𝑏𝑎𝑏

𝑥𝑏+1
 

exp {−𝜃𝛼 (
𝑎

𝑥
)
𝑏

} {1 − exp [−𝜃 (
𝑎

𝑥
)
𝑏

]} {2 − exp [−𝜃 (
𝑎

𝑥
)
𝑏

]}

𝛼−1

𝑑𝑥 

= 2𝛼𝜃𝑏𝑎𝑏∫ 𝑥𝑟−𝑏−1
∞

0

exp {−𝜃𝛼 (
𝑎

𝑥
)
𝑏

} 

{1 − exp [−𝜃 (
𝑎

𝑥
)
𝑏

]} {2 − exp [−𝜃 (
𝑎

𝑥
)
𝑏

]}

𝛼−1

𝑑𝑥 

(9) 

One can calculate this integral numerically but it will be more convenient to use the 

mixture representation of the TLGFr and derive the 𝑟th order ordinary moment of 𝑋. In 

this case the 𝑟th moments are given by 

𝜇𝑟
′ =∑Υ𝑘

∞

𝑘=0

∫ 𝑥𝑟
∞

0

𝜋(𝛼+𝑘)𝜃(𝑥)𝑑𝑥.  
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For any 𝑟 < 𝑏, the moments of TLGFr distribution is given by 

𝜇𝑟
′ = 𝑎𝑟∑𝛶𝑘

∞

𝑘=0

[(𝛼 + 𝑘)𝜃]
𝑟
𝑏Γ(1 −

𝑟

𝑏
), (10) 

where Γ(𝑎) = ∫ 𝑡𝑎−1
∞

0
𝑒𝑥𝑝 (−𝑡)𝑑𝑡  is the gamma function. Table 1 lists the first four 

moments of 𝑋 for two sets of parameters obtained from equations (9) and (10).In the 

expression (10) the number of terms (n) to be included in the sum varies from first 5 to first 

100. It can be observed that the numerical values of the moments are equal if we take more 

terms in expression (10). 

Table 1: First four moments of TLGFr (𝛼,𝜃,𝑎,𝑏) with b = 5 

      

  α = 2.5, θ = 0.5,  𝑎 = 0.5 α = 2.5, θ = 2.5, 𝑎 = 2.5 

n Moments Expression(9) Expression(10) Expression(9) Expression(10) 

5 𝜇1
′  0.485263 0.487291 3.347659 3.361651 

10 𝜇1
′  0.485263 0.485267 3.347659 3.347686 

50 𝜇1
′  0.485263 0.485263 3.347659 3.347659 

100 𝜇1
′  0.485263 0.485263 3.347659 3.347659 

5 𝜇2
′  0.2418885 0.2435912 11.5118 11.59283 

10 𝜇2
′  0.2418885 0.2418921 11.5118 11.51197 

50 𝜇2
′  0.2418885 0.2418885 11.5118 11.5118 

100 𝜇2
′  0.2418885 0.2418885 11.5118 11.5118 

5 𝜇3
′  0.1244182 0.126083 40.84848 41.39507 

10 𝜇3
′  0.1244182 0.1244221 40.84848 40.84977 

50 𝜇3
′  0.1244182 0.1244182 40.84848 40.84848 

100 𝜇3
′  0.1244182 0.1244182 40.84848 40.84848 

5 𝜇4
′  0.06645564 0.06871811 150.5178 155.6421 

10 𝜇4
′  0.06645564 0.06646157 150.5178 150.5312 

50 𝜇4
′  0.06645564 0.06645564 150.5178 150.5178 

100 𝜇4
′  0.06645564 0.06645564 150.5178 150.5178 

 

Henceforth,𝑌[(𝛼+𝑘)𝜃]denotes the Fréchet distribution with scale parameter a[(𝛼 + 𝑘)𝜃]
1

𝑏 

and shape parameter 𝑏.Setting 𝑟 = 1 in (10), we have the mean of 𝑋. The central moments, 

cumulants, skewness and kurtosis measures can be calculated from the ordinary moments of 

order 𝑟 for 𝑟 < 𝑏. 
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2.3 Moment generating function 

Here, we provide two formulae for the moment generating function (mgf) 𝑀𝑋(𝑡) =

𝐸(𝑒𝑡𝑋)of 𝑋. Clearly, the first one can be derived from equation (10), for 𝑟 < 𝑏, as 

𝑀𝑋(𝑡) = ∑Υ𝑘

∞

𝑘=0

𝑀[(𝛼+𝑘)𝜃](𝑡) = ∑Υ𝑘

∞

𝑘=0

∑
𝑡𝑟

𝑟!

∞

𝑟=0

𝜇𝑟
′ = ∑

Υ𝑘
𝑎−𝑟

∞

𝑘,𝑟=0

𝑡𝑟

𝑟!
[(𝛼 + 𝑘)𝜃]

𝑟
𝑏Γ(1 −

𝑟

𝑏
). 

 

As for the second formula for 𝑀𝑋(𝑡), setting 𝑦 = 𝑥−1 in (3), we can write this mgf as 

𝑀(𝑡; 𝑎, 𝑏) = 𝑏𝑎𝑏∫ exp
∞

0

(
𝑡

𝑦
)𝑦(𝑏−1)exp {−(𝑎𝑦)𝑏}𝑑𝑦.  

By expanding the first exponential and calculating the integral, we have 

𝑀(𝑡; 𝑎, 𝑏) = 𝑏𝑎𝑏∫ ∑
𝑡𝑚

𝑚!

∞

𝑚=0

𝑒𝑥𝑝
∞

0

(
𝑡

𝑦
) 𝑦𝑏−𝑚−1 exp{−(𝑎𝑦)𝑏} 𝑑𝑦

= ∑
𝑎𝑚𝑡𝑚

𝑚!

∞

𝑚=0

Γ (
𝑏 − 𝑚

𝑏
), 

 

where the gamma function is well-defined for any non-integer b. 

2.4 Incomplete moments and mean deviations 

The main applications of the first incomplete moment refer to the mean deviations and 

the Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, 

demography, insurance and medicine. The 𝑠th incomplete moment, say 𝜑𝑠(𝑡), of 𝑋 can 

be expressed from (8), for 𝑟 < 𝑏, as 

𝜑𝑠(𝑡) = ∑Υ𝑘

∞

𝑘=0

∫ 𝑥𝑠
𝑡

−∞

𝜋(𝛼+𝑘)𝜃(𝑥)𝑑𝑥 

=∑
Υ𝑘
𝑎−𝑠

∞

𝑘=0

[(𝛼 + 𝑘)𝜃]
𝑠
𝑏Γ(1 −

𝑠

𝑏
, [(α + k)θ] (

𝑎

𝑡
)
𝑏

), 

 

where Γ(. , . ) represent the incomplete gamma function. 

The mean deviations about the mean [𝛿1 = 𝐸(|𝑋 − 𝜇1
′ |)] and about the median [𝛿2 =

𝐸(|𝑋 −𝑀|)]of𝑋are given by 𝛿1 = 2𝜇1
′𝐹(𝜇1

′ ) − 2𝜑1(𝜇1
′ )and𝛿2 = 𝜇1

′ − 2𝜑1(𝑀),respectively, 

where 𝜇1
′ = 𝐸(𝑋), 𝑀 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) = 𝑄(0.5) is the median, F(𝜇1

′ ) is easily calculated 
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from (6) and 𝜑1(𝑡) is the first incomplete moment given by the last equation with 𝑠 = 1. A 

general equation for 𝜑1(𝑡) can be derived from the last equation as 

𝜑1(𝑡) = ∑𝛶𝑘

∞

𝑘=0

𝑎[(𝛼 + 𝑘)𝜃]
1
𝑏Γ (1 −

1

𝑏
, [(𝛼 + 𝑘)𝜃] (

𝑎

𝑡
)
𝑏

).  

2.5 Residual and reversed residual life functions 

The 𝑛th  moment of the residual life, say 𝑚𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)
𝑛|𝑋 > 𝑡], 𝑛 = 1,2, …, 

uniquely determines 𝐹(𝑥). Let 𝑅(𝑡) be the reliability function of a random variable then 

the 𝑛th moment of the residual life of 𝑇 is given by 𝑚𝑛(𝑡) =
1

𝑅(𝑡)
∫ (𝑥 − 𝑡)𝑛
∞

𝑡
𝑑𝐹(𝑥). 

Therefore the 𝑛th moment of the residual life of TLGFr distribution is given by  

𝑚𝑛(𝑡) =
1

𝑅(𝑡)
∑

Υ𝑘


𝑎−𝑟

∞

𝑘=0

[(𝛼 + 𝑘)𝜃]
𝑟
𝑏Γ (1 −

𝑟

𝑏
, [(𝛼 + 𝑘)𝜃] (

𝑎

𝑡
)
𝑏

),  

where Υ𝑘
 = Υ𝑘 ∑ (𝑛

𝑟
)𝑛

𝑟=0 (−𝑡)𝑛−𝑟 .Another interesting function is the mean residual life 

(MRL) function or the life expectation at age 𝑡  defined by 𝑚1(𝑡) = 𝐸[(𝑋 − 𝑡)|𝑋 >

𝑡],which represents the expected additional life length for a unit which is alive at age 𝑡.The 

MRL of X can be obtained by setting 𝑛 = 1 in the last quation.The 𝑛th moment of the 

reversed residual life, say 𝑀𝑛(𝑡) = 𝐸[(𝑡 − 𝑋)
𝑛|𝑋 ≤ 𝑡] for 𝑡 > 0 and 𝑛 = 1,2, …uniquely 

determines 𝐹(𝑥).We obtain 𝑀𝑛(𝑡) =
1

𝐹(𝑡)
∫ (𝑡 − 𝑥)𝑛
𝑡

0
𝑑𝐹(𝑥). Then, the 𝑛th moment of the 

reversed residual life of 𝑋 becomes. 

𝑀𝑛(𝑡) =
1

𝐹(𝑡)
∑

Υ𝑘


𝑎−𝑟

∞

𝑘=0

[(𝛼 + 𝑘)𝜃]
𝑟
𝑏Γ(1 −

𝑟

𝑏
, [(𝛼 + 𝑘)𝜃] (

𝑎

𝑡
)
𝑏

),  

where Υ𝑘
 = Υ𝑘 ∑ (−1)𝑟𝑛

𝑟=0 (𝑛
𝑟
)𝑡𝑛−𝑟.The mean inactivity time (MIT) or mean waiting time 

(MWT) also called the mean reversed residual life function is given by 𝑀1(𝑡) = 𝐸[(𝑡 −

𝑋)|𝑋 ≤ 𝑡], and it represents the waiting time elapsed since the failure of an item on condition 

that this failure had occurred in (0, 𝑡). The MIT of the TLGFr distribution can be obtained 

easily by setting 𝑛 = 1 in the above equation. 

2.6 Order statistics 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from the TLGFr distribution and let 𝑋(1), … , 𝑋(𝑛) 

be the corresponding order statistics. The pdf of ith order statistic, say 𝑋𝑖:𝑛, can be written as 

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑(−1)𝑗
𝑛−𝑖

𝑗=0

(
𝑛 − 𝑖

𝑗
) 𝐹𝑗+𝑖−1(𝑥), (11) 
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where B(.,.) is the beta function defined by 𝐵(𝑎, 𝑏) = ∫ 𝑡𝑎−1
1

0
(1 − 𝑡)𝑏−1𝑑𝑡.Substituting (5) 

and (6) in equation (11) the pdf of 𝑋𝑖:𝑛 can be expressed as  

𝑓𝑖:𝑛(𝑥) =∑ ∑ 𝑏𝑗,𝑟,𝑘

∞

𝑟,𝑘=0

𝑛−𝑖

𝑗=0

𝜋𝑟+𝑘(𝑥),  

where  

𝑏𝑗,𝑟,𝑘 =
𝑟(−1)𝑗𝑏𝑟𝑓𝑗+𝑖−1,𝑘

𝐵(𝑖, 𝑛 − 𝑖 + 1)(𝑟 + 𝑘)
  

and 𝑓𝑗+𝑖−1,𝑘 can be obtained recursively from  

𝑓𝑗+𝑖−1,𝑘 =
1

(𝑘𝑏0)
∑[𝑚(𝑗 + 𝑖) − 𝑘]

𝑘

𝑚=0

𝑏𝑚𝑓𝑗+𝑖−1,𝑘−𝑚, for 𝑘 ≥ 1,  

where 𝑓𝑗+𝑖−1,0 = 𝑏0
𝑗+𝑖−1

. Then, the density function of the TLGFr order statistics is a 

mixture of exp-W densities. Based on the last equation, we note that the properties of 𝑋𝑖:𝑛 

follow from those properties of 𝑌𝑟+𝑘. For example, the moments of 𝑋𝑖:𝑛 can be expressed as 

(for 𝑞 < 𝑏) 

E(𝑋𝑖:𝑛
𝑞 ) =∑ ∑ 𝑏𝑗,𝑟,𝑘

∞

𝑟,𝑘=0

𝑛−𝑖

𝑗=0

𝐸(𝑌𝑟+𝑘
𝑞 ) =∑ ∑

𝑏𝑗,𝑟,𝑘

𝑎−𝑞

∞

𝑟,𝑘=0

𝑛−𝑖

𝑗=0

[𝑟 + 𝑘]
1
𝑏Γ (1 −

𝑞

𝑏
). (12) 

3 Characterizations 

In designing a stochastic model for a particular modeling problem, an investigator will be 

vitally interested to know if their model fits the requirements of a specific underlying 

probability distribution. To this end, the investigator will rely on the characterizations of the 

selected distribution. Thus, the problem of characterizing a distribution is an important 

problem in various fields and has recently attracted the attention of many researchers. 

Consequently, various characterization results have been reported in the literature. These 

characterizations have been established in different directions. This section deals with various 

characterizations of TLGFr distribution. These characterizations are based on: (𝑖) a simple 

relationship between two truncated moments; (𝑖𝑖) the reverse (or reversed) hazard function; 

(𝑖𝑖𝑖)  certain functions of the random variable. It should be mentioned that for 

characterization (𝑖) the cdf may not have a closed form. We present our characterizations 

(𝑖) − (𝑖𝑖𝑖) in three subsections. 
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3.1 Characterizations based on two truncated moments 

In this subsection we present characterizations of TLGFr distribution in terms of a simple 

relationship between two truncated moments. This characterization result employs a theorem 

due to Glänzel (1987),see Theorem 3.1 below. Note that the result holds also when the 

interval 𝐻 is not closed. Moreover, as mentioned above, it could be also applied when the 

cdf F does not have a closed form. As shown in Glänzel (1990), this characterization is stable 

in the sense of weak convergence. 

Theorem 3.1. 

Let (Ω,ℱ, 𝑷) be a given probability space and let 𝐻 = [𝑑, 𝑒] be an interval for some 

𝑑 < 𝑒(𝑑 = −∞, 𝑒 = ∞ might as well be allowed).Let 𝑋:Ω → 𝐻 be a continuous random 

variable with the distribution function 𝐹 and let 𝑔 and ℎ be two real functions defined on 

𝐻 such that 

𝐸[𝑔(𝑋)|𝑋 ≥ 𝑥] = 𝐸[ℎ(𝑋)|𝑋 ≥ 𝑥]𝜉(𝑥), 𝑥 ∈ 𝐻,  

is defined with some real function 𝜉. Assume that 𝑔, ℎ ∈ 𝐶1(𝐻), 𝜉𝐶2(𝐻) and 𝐹 is twice 

continuously differentiable and strictly monotone function on the set 𝐻. Finally, assume that 

the equation 𝜉ℎ = 𝑔  has no real solution in the interior of 𝐻 .Then 𝐹  is uniquely 

determined by the functions 𝑔, ℎ and 𝜉, particularly 

𝐹(𝑥) = ∫𝐶

𝑥

𝑎

|
𝜉′(𝑢)

𝜉(𝑢)ℎ(𝑢) − 𝑔(𝑢)
| 𝑒𝑥𝑝 (−𝑠(𝑢))𝑑𝑢,  

where the function 𝑠 is a solution of the differential equation 𝑠′ =
𝜉′ℎ

𝜉ℎ−𝑔
 and 𝐶 is the 

normalization constant,such that ∫ 𝑑𝐹
𝐻

= 1. 

We like to mention that this kind of characterization based on the ratio of truncated 

moments is stable in the sense of weak convergence (see, Glänzel 1990), in particular, let us 

assume that there is a sequence {𝑋𝑛} of random variables with distribution functions{𝐹𝑛} 

such that the functions 𝑞1𝑛, 𝑞2𝑛 and 𝜉𝑛(𝑛 ∈ ℕ) satisfy the conditions of  Theorem 3.1 

and let 𝑞1𝑛 → 𝑞1 , 𝑞2𝑛 → 𝑞2 for some continuously differentiable real functions 𝑞1 and 

𝑞2 . Let, finally, 𝑋 be a random variable with distribution F. Under the condition that 

𝑞1𝑛(𝑋) and 𝑞2𝑛(𝑋) are uniformly integrable and the family {𝐹𝑛} is relatively compact, the 

sequence 𝑋𝑛 converges to 𝑋 in distribution if and only if 𝜉𝑛 converges to  , where 

𝜉(𝑥) =
𝐸[𝑞2(𝑋)|𝑋 ≥ 𝑥]

𝐸[𝑞1(𝑋)|𝑋 ≥ 𝑥]
.  

This stability theorem makes sure that the convergence of distribution functions is 

reflected by corresponding convergence of the functions 𝑞1, 𝑞2 and 𝜉 , respectively. It 

guarantees, for instance, the “convergence” of characterization of the Wald distribution to 
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that of the  Lévy-Smirnov distribution if 𝛼 → ∞, as was pointed out in Glänzel and 

Hamedani(2001). 

A further consequence of the stability property of Theorem 3.1 is the application of this 

theorem to special tasks in statistical practice such as the estimation of the parameters of 

discrete distributions. For such purpose, the functions 𝑞1, 𝑞2 and, specially, 𝜉 should be as 

simple as possible. Since the function triplet is not uniquely determined it is often possible to 

choose 𝜉 as a linear function. Therefore, it is worth analyzing some special cases which 

helps to find new characterizations reflecting the relationship between individual continuous 

univariate distributions and appropriate in other areas of statistics. 

In some cases, one can take 𝑞1(𝑥) = 1, which reduces the condition of Theorem 1 to 

𝐄[𝑞2(𝑋)|𝑋 ≥ 𝑥] = 𝜉(𝑥),𝑥 ∈ 𝐻. We, however, believe that employing three functions 𝑞1, 𝑞2 

and 𝜉 will enhance the domain of applicability of Theorem 3.1. 

Proposition 3.1 

Let 𝑋:Ω → (0,∞)  be a continuous random variable and let, ℎ(𝑥) = {1 −

𝑒𝑥𝑝 [−𝜃(
𝑎

𝑥
)𝑏]}−1{2 − 𝑒𝑥𝑝 [−𝜃(

𝑎

𝑥
)𝑏]}1−𝛼  and 𝑔(𝑥) = ℎ(𝑥)𝑒𝑥𝑝 [−𝜃𝛼(

𝑎

𝑥
)𝑏]  for 𝑥 > 0 .The 

random variable 𝑋 has pdf (5) if and only if the function 𝜉 defined in Theorem 3.1 has the 

form 

ξ(𝑥) =
1

2
{1 + exp [−𝜃𝛼 (

𝑎

𝑥
)
𝑏

]} , x > 0. (13) 

Proof. Let 𝑋 be a random variable with pdf (5), then 

(1 − 𝐹(𝑥))𝐸[ℎ(𝑥)|𝑋 ≥ 𝑥] = 2 {1 − 𝑒𝑥𝑝 [−𝜃𝛼 (
𝑎

𝑥
)
𝑏

]} , 𝑥 > 0,  

and 

(1 − 𝐹(𝑥))𝐸[𝑔(𝑥)|𝑋 ≥ 𝑥] = {1 − 𝑒𝑥𝑝 [−2𝜃𝛼 (
𝑎

𝑥
)
𝑏

]} , 𝑥 > 0,  

and finally 

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥) =
1

2
ℎ(𝑥) {1 − 𝑒𝑥𝑝 [−𝜃𝛼 (

𝑎

𝑥
)
𝑏

]} > 0 𝑓𝑜𝑟 𝑥 > 0.  

Conversely,if 𝜉 is given as above,then  

𝑠′(𝑥) =
𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=
𝜃𝛼𝑏𝑎𝑏𝑥−(𝑏+1)exp [−𝜃𝛼 (

𝑎
𝑥)

𝑏

]

1 − exp [−𝜃𝛼 (
𝑎
𝑥)

𝑏

]
 𝑥 > 0,  

and hence 

𝑠(𝑥) = −log {1 − 𝑒𝑥𝑝 [−𝜃𝛼 (
𝑎

𝑥
)
𝑏

]} , 𝑥 > 0.  

Now,in view of Theorem 3.1, 𝑋 has density (5). 
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Corollary 3.1.  

Let 𝑋:Ω → (0,∞) be a continuous random variable and let ℎ(𝑥) be as in Proposition 

3.1. The pdf of 𝑋 is (5) if and only if there exist functions 𝑔 and 𝜉 defined in Theorem 

3.1 satisfying the differential equation 

𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=
𝜃𝛼𝑏𝑎𝑏𝑥−(𝑏+1)exp [−𝜃𝛼 (

𝑎
𝑥)

𝑏

]

1 − exp [−𝜃𝛼 (
𝑎
𝑥)

𝑏

]
, 𝑥 > 0.  

The general solution of the differential equation in Corollary 3.1 is 

𝜉(𝑥) = {1 − exp [−𝜃𝛼 (
𝑎

𝑥
)
𝑏

]}−1[−∫𝜃𝛼𝑏𝑎𝑏𝑥−(𝑏+1) exp [−𝜃𝛼 (
𝑎

𝑥
)
𝑏

] (ℎ(𝑥))
−1
𝑔(𝑥) + 𝐷], 

 

where 𝐷 is a constant. Note that a set of functions satisfying the above differential equation 

is given in Proposition 3.1 with D =
1

2
. However, it should be also noted that there are other 

triplets (ℎ, 𝑔, 𝜉) satisfying the conditions of Theorem 3.1. 

3.2 Characterization in terms of the reverse hazard function 

The reverse hazard function,𝑟𝐹, of a twice differentiable distribution function,𝐹,is defined 

as 

𝑟𝐹(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
, 𝑥 ∈ support of 𝐹.  

Proposition 3.2.  

Let 𝑋:Ω → (0,∞) be a continuous random variable. The pdf of 𝑋 is (5) if and only if 

its reverse hazard function 𝑟𝐹(𝑥) satisfies the differential equation 

𝑟𝐹
′(𝑥) + (𝑏 + 1)𝑥−1𝑟𝐹(𝑥) = −

𝜃𝑏𝑎𝑏𝑥−(𝑏+1)exp [−𝜃 (
𝑎
𝑥)

𝑏

]

{2 − exp [−𝜃 (
𝑎
𝑥)

𝑏

]}2
. (14) 

Proof. If 𝑋 has pdf (5), then clearly (14) holds. Now, if (14) holds, then 

𝑑

𝑑𝑢
{𝑥(𝑏+1)𝑟𝐹(𝑥)} = 2𝛼𝜃𝑏𝑎

𝑏
𝑑

𝑑𝑥
{
1 − exp [−𝜃 (

𝑎
𝑥)

𝑏

]

2 − exp [−𝜃 (
𝑎
𝑥)

𝑏

]
},  

or 

𝑟𝐹(𝑥) =
2𝛼𝜃𝑏𝑎𝑏𝑥−(𝑏+1){1 − exp [−𝜃 (

𝑎
𝑥)

𝑏

]}

2 − exp [−𝜃 (
𝑎
𝑥)

𝑏

]
,  

which is the reverse hazard function of the TLGFr distribution. 
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3.3 Characterization based on certain functions of the random variable 

The following proposition has already appeared in Hamedani (2013), so we will just state 

it here which can be used to characterize TLGFr distribution. 

Proposition 3.3. 

Let 𝑋:Ω → (𝑑, 𝑒) be a continuous random variable and let 𝜓(𝑥) be a differentiable 

function on (𝑑, 𝑒) with 𝑙𝑖𝑚𝑥→𝑒 − 𝜓(𝑥) = 1. Then for δ ≠ 1, 

𝐸[𝜓(𝑋)|𝑋 ≤ 𝑥] = 𝛿𝜓(𝑥)  

implies 

Remarks 3.1. It is easy to see that for certain functions, e.g., 

𝜓(𝑥) = exp [−𝜃 (
𝑎

𝑥
)
𝑏

] {2 − exp [−𝜃 (
𝑎

𝑥
)
𝑏

]} , 𝛿 =
𝛼

𝛼 + 1
  

and (𝑑, 𝑒) = (0,∞) ,proposition 3.3 provides a characterization of TLGFr distribution. 

Clearly there are other suitable functions  , we choose the above one for simplicity. 

4 Parameter estimation 

Several approaches for parameter estimation has been proposed in the literature but 

maximum likelihood method is the most commonly employed. The maximum likelihood 

estimators (MLEs) enjoy desirable properties and can be used for constructing confidence 

intervals and regions and also in test statistics. The normal approximation for these 

estimators in large samples can be easily handled either analytically or numerically. So, we 

consider the estimation of the unknown parameters of this family from complete samples 

only by maximum likelihood. Let 𝑥1, … , 𝑥𝑛 be a random sample from TLGFr distributions 

with parameters 𝛼,𝜃, 𝑎 and 𝑏.Let 𝜂 = (𝛼, 𝜃, 𝑎, 𝑏)Tbe the 4 × 1 parameter vector. For 

determining the MLE of 𝜂, we have the log-likelihood function 

ℓ = ℓ(𝜼) 

= 𝑛 log 2 + 𝑛 log 𝛼 + 𝑛 log𝜃 + 𝑛 log𝑏 + 𝑛 𝑏loga

− (𝑏 + 1)∑log

𝑛

𝑖=1

(𝑥𝑖) − 𝜃𝛼∑(
𝑎

𝑥𝑖
)
𝑏

𝑛

𝑖=1

+∑𝑙𝑜𝑔(1 − 𝑠𝑖
𝜃)

𝑛

𝑖=1

+ (𝛼 − 1)∑𝑙𝑜𝑔(2 − 𝑠𝑖
𝜃)

𝑛

𝑖=1

, 

 

where 𝑠𝑖 = exp [−(
𝑎

𝑥𝑖
)𝑏]. The components of the score vector, 𝑼(𝜼) =

ℓ

𝜼
= (

ℓ

𝛼
,
ℓ

𝜃
,
ℓ

𝑎
,
ℓ

𝑏
)𝑇 

are given by  
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𝑈𝛼 =
𝑛

𝛼
− 𝜃∑(

𝑎

𝑥𝑖
)
𝑏

𝑛

𝑖=1

+∑log(2 − 𝑠𝑖
𝜃)

𝑛

𝑖=1

, 

𝑈𝜃 =
𝑛

𝜃
− 𝛼∑(

𝑎

𝑥𝑖
)
𝑏

𝑛

𝑖=1

−∑
𝑠𝑖
𝜃𝑙𝑜𝑔𝑠𝑖

(1 − 𝑠𝑖
𝜃)

𝑛

𝑖=1

− (α − 1)∑
𝑠𝑖
𝜃log𝑠𝑖

(2 − 𝑠𝑖
𝜃)
,

𝑛

𝑖=1

 

𝑈𝑎 =
𝑛𝑏

𝑎
− 𝜃𝛼𝑎𝑏−1𝑏∑𝑥𝑖

𝑏

𝑛

𝑖=1

−∑
𝜃𝑚𝑖𝑠𝑖

𝜃−1

(1 − 𝑠𝑖
𝜃)

𝑛

𝑖=1

− (α − 1)∑
𝜃𝑚𝑖𝑠𝑖

𝜃−1

(2 − 𝑠𝑖
𝜃)

𝑛

𝑖=1

 

 

and  

𝑈𝑏 =
𝑛

𝑏
+ 𝑛 log𝑎 −∑log(𝑥𝑖)

𝑛

𝑖=1

− 𝜃𝛼∑(
𝑎

𝑥𝑖
)
𝑏

𝑛

𝑖=1

log (
𝑎

𝑥𝑖
) 

−∑
𝜃𝑧𝑖𝑠𝑖

𝜃−1

(1 − 𝑠𝑖
𝜃)

𝑛

𝑖=1

− (α − 1)∑
𝜃𝑧𝑖𝑠𝑖

𝜃−1

(2 − 𝑠𝑖
𝜃)

𝑛

𝑖=1

, 

 

where 𝑧𝑖 = −(
𝑎

𝑥𝑖
)
𝑏

log (
𝑎

𝑥𝑖
) exp [− (

𝑎

𝑥𝑖
)
𝑏

] and 𝑚𝑖 = −𝑏𝑎
𝑏−1𝑥𝑖

−𝑏𝑒𝑥𝑝 [−(
𝑎

𝑥𝑖
)
𝑏

]. 

Setting the nonlinear system of equations 𝑈𝛼 = 0 , 𝑈𝜃 = 0 , 𝑈𝑎 = 0  and 𝑈𝑏 = 0  

and;solving them simultaneously yields the MLE �̂� = (�̂�, 𝜃, �̂�, �̂�)𝑇 .To solve these 

equations,it is usually more convenient to use nonlinear optimization methods such as the 

quasi-Newton algorithm to numerically maximize ℓ . For interval estimation of the 

parameters, we obtain the 4 × 4  observed information matrix 𝐽(𝜼) = {
2ℓ

𝑟𝑠
} (for 𝑟, 𝑠 =

𝛼, 𝜃, 𝑎, 𝑏) , whose elements can be computed numerically.Under standard regularity 

conditions when 𝑛 → ∞,the  distribution of �̂� can be approximated by a multivariate 

normal 𝑁4(0, 𝐽(�̂�)
−1) distribution to construct approximate confidence intervals for the 

parameters. Here, 𝐽(�̂�) is the total observed information matrix evaluated at �̂�. The method 

of the re-sampling bootstrap can be used for correcting the biases of the MLEs of the model 

parameters. Good interval estimates may also be obtained using the bootstrap percentile 

method. 
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5 Simulation study 

In this section, we present some simulations for different sample sizes to assess the 

accuracy of the MLEs. Simulating random variables from well defined probability 

distributions has been discussed in the computational statistics literature, e.g. the inverse 

transformation method, the rejection and acceptance sampling technique, etc. An ideal 

technique for simulating from the TLGFr distribution is the inversion method. We can 

simulate random variable 𝑋 by 

𝑋 = 𝑎[−
1

𝜃
ln {1 − √1 − 𝑈

1
𝛼}]−

1
𝑏,  

where 𝑈 is a uniform random number in (0,1). For selected combinations of 𝑎,𝑏,𝛼 and 𝜃 

we generate samples of sizes 𝑛 = 50, 100, 200, 300, 500 and 1, 000  from the TLGFr 

distribution. We repeat the simulations 𝑁 = 1000 times and evaluate the mean estimates 

and the root mean squared errors (RMSEs). We use two combinations for the parameter 

values (I: 𝑎 = 2, 𝑏 = 0.5, 𝛼 = 1.5 and 𝜃 = 2 and II: 𝑎 = 0.5, 𝑏 = 1.5, 𝛼 = 2 𝑎𝑛𝑑 𝜃 =

0.5).The empirical results obtained using a script AdequacyModel of the R-package are 

given in Table 2 and Table 3. It can be observed that as sample size increases the mean 

squared error decreases. Therefore, the maximum likelihood method works very well to 

estimate the model parameters of the TLGFr distribution. 

 

Table 2: Empirical means and the RMSEs for 𝑎 = 2, 𝑏 = 0.5, 𝛼 = 1.5 𝑎𝑛𝑑 𝜃 = 2. 

Estimated Values (RMSE) 

Sample size(n) �̂� �̂� �̂� 𝜃 

50 3.9845 0.5378 4.8042 3.1633 

 (5.4382) (0.1084) (8.1385) (3.0408) 

100 3.5187 0.5272 3.5857 2.9926 

 (4.3291) (0.0887) (5.7399) (2.7028) 

200 3.2358 0.5177 2.9464 2.6954 

 (3.8035) (0.0707) (4.2470) (2.0572) 

300 3.0797 0.5146 2.5250 2.5275 

 (3.4286) (0.0642) 2.5250 2.5275 

500 2.9771 0.5102 2.3531 2.3071 

 (2.8980) (0.0546) (2.6241) (1.3926) 

1000 2.5287 0.5070 1.9724 2.2207 

 (1.8546) (0.0449) (1.6607) (1.0559) 
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Table 3: Empirical means and the RMSEs for 𝑎 = 0.5, 𝑏 = 1.5, 𝛼 = 2 𝑎𝑛𝑑 𝜃 = 0.5. 

Estimated Values (RMSE) 

Sample size(n) �̂� �̂� �̂� 𝜃 

50 0.5895 1.6214 6.9156 0.6689 

 (0.3412) (0.3299) (12.8743) (0.5908) 

100 0.5718 1.5865 5.5775 0.6359 

 (0.3093) (0.2651) (9.4981) (0.4894) 

200 0.5654 1.5553 4.1179 0.5725 

 (0.2673) (0.2171) (5.9609) (0.3672) 

300 0.5527 1.5453 3.9076 0.5623 

 (0.2639) (0.1968) (5.3145) (0.3167) 

500 0.5582 1.5426 2.9794 0.5525 

 (0.2220) (0.1712) (3.2903) (0.2853) 

1000 0.5434 1.5302 2.6175 0.5279 

 (0.1798) (0.1334) (2.4793) (0.2044) 

6 Regression model 

When the explanatory variables affect the response variable 𝑋, they need to be in-clude in 

the models. To include the information of the explanatory variables, parametric models are 

widely used. A regression model that provides a good fit to lifetime data tends to yield more 

precise estimates of the quantities of interest. The non-inclusion of explanatory variables in 

the model, when really necessary, will result in considerable part of the variability in the 

response variable as residual. Recently, several regression models have been proposed in the 

literature, considering the class of location, for example, Cordeiro et al. (2016) introduced a 

new class of survival regression models considering the log-gamma extended Weibull model, 

Ramires et al. (2013) presented the beta generalized half-normal geometric regression model 

to predict the myelogenous leukemia,Cordeiro et al. (2015) introduced the log-generalized 

Weibull-log-logistic regression model for entomological data, among others. 

Let 𝑋 be a random variable having the pdf (5) with 𝜃 = 1. A class of regression models 

for location is characterized by the fact that the random variable 𝑌 = 𝑙𝑜𝑔 (𝑋)  has a 

distribution with location parameter 𝜇(𝑣) dependent only on the explanatory variable vector 

and a scale parameter 𝜎 > 0. The log-linear model can be hen written as 

𝑌 = 𝜇(𝑣) + 𝜎𝑍,  

 

where 𝑍 has the distribution which does not depend on 𝑣. The density function of the 

random variable 𝑌, re-parameterized in terms of 𝜇 = 𝑙𝑜𝑔 (𝑎) and 𝜎 = 1/𝑏, is given by 
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f(y) =
2𝛼

𝜎
exp [−𝛼𝑒−

(𝑦−𝜇)
𝜎 −

(𝑦 − 𝜇)

𝜎
] 

[1 − exp (−𝑒−
(𝑦−𝜇)
𝜎 )]{2 − exp [−𝑒−

(𝑦−𝜇)
𝜎 ]}𝛼−1, 

(15) 

where 𝛼 > 0 is skewness parameter, 𝜇 ∈ ℝ is the location parameter and 𝜎 > 0 is the 

scale parameter. 

We refer to equation (15) as the log-Topp Leone Fréchet (LTLFr) distribution,say 

𝑌~𝐿𝑇𝐿𝐹𝑟(𝛼, 𝜇, 𝜎) .If 𝑋~𝑇𝐿𝐹𝑟(𝛼, 𝑎, 𝑏), 𝑡ℎ𝑒𝑛 𝑌 = 𝑙𝑜𝑔(𝑋)~𝐿𝑇𝐿𝐹𝑟(𝛼, 𝜇, 𝜎). The survival 

function corresponding to (15) is given by 

𝑆(𝑦) = 1 − (𝑒𝑥𝑝 [−𝑒−
(𝑦−𝜇)
𝜎 ])𝛼[2 − (𝑒𝑥𝑝 [−𝑒−

(𝑦−𝜇)
𝜎 ])]𝛼. (16) 

Consider the standardized random variable given by 𝑍 = (𝑌 − 𝜇)/𝜎.The density 

function of 𝑍 is given by  

𝑓(𝑧) = 2𝛼 𝑒𝑥𝑝[−𝛼𝑒−𝑧 − 𝑧] [1 − 𝑒𝑥𝑝 (−𝑒−𝑧)]{2 − 𝑒𝑥 𝑝[−𝑒−𝑧]}𝛼−1. (17) 

Now, we propose a linear location regression model linking the response variable 𝑦𝑖 and 

the explanatory variable vector 𝑣𝑖
𝑇 = (𝑣𝑖1, … , 𝑣𝑖𝑝) as follows 

𝑦𝑖 = 𝑣𝑖
𝑇𝜏 + 𝜎𝑧𝑖 , 𝑖 = 1,… , 𝑛, (18) 

where the random error 𝑧𝑖 has density function (5),τ = (𝜏1, … , 𝜏𝑝)
𝑇 , 𝜎 > 0 and 𝛼 > 0 are 

unknown parameters. The parameter 𝑣𝑖 = 𝑣𝑖
𝑇𝜏 is the location of 𝑦𝑖. The location parameter 

vector 𝑣 = (𝑣1, … , 𝑣𝑛)
𝑇 is represented by a linear model 𝑣 = 𝑽𝝉, where 𝑽 = (𝑣1, … , 𝑣𝑛)

𝑇 

is a known model matrix. With the LTLFr model (18), it is possible to incorporate 

explanatory variables in the analysis, opening new possibilities for fitting different types of 

data set. 

Consider a sample (𝑦1, 𝑣1),… , (𝑦𝑛, 𝑣𝑛) of 𝑛  independent observations, where each 

random response is defined by 𝑦𝑖 = min{log(𝑥𝑖) , log (𝑐𝑖)}.We assume non-informative 

censoring such that the observed lifetimes and censoring times are independent. Let F and C 

be the sets of individuals for which 𝑦𝑖 is the log-lifetime or log-censoring, respectively. 

Conventional likelihood estimation techniques can be applied here. The log-likelihood 

function for the vector of parameters 𝜼 = (𝛼, 𝜎, 𝜏𝑇)𝑇 from model (18) has the form 𝑙(𝜼) =

∑ 𝑙𝑖𝑖∈𝐹 (𝜼) + ∑ 𝑙𝑖
(𝑐)

𝑖∈𝐶 (𝜼),where 𝑙𝑖(𝜼) = 𝑙𝑜𝑔[𝑓(𝑦𝑖)] , 𝑙𝑖
(𝑐)(𝜼) = 𝑙𝑜𝑔[𝑆(𝑦𝑖)] , 𝑓(𝑦𝑖)  is the 

density (15) and 𝑆(𝑦𝑖) is the survival function (16).The total log-likehood function for 𝜼 

reduces to  
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𝑙(𝜼) = −∑(𝛼𝑒−𝑧𝑖 + 𝑧𝑖)

𝑖∈𝐹

+∑log[1 − exp(−𝑒−𝑧𝑖)]

𝑖∈𝐹

+ (𝛼 − 1)∑log

𝑖∈𝐹

{2 − exp[−𝑒−𝑧𝑖]}𝑟log (
2𝛼

𝜎
)

+∑{1 − (exp[−𝑒−𝑧𝑖])𝛼[2 − (exp[−𝑒−𝑧𝑖])]𝛼}

𝑖∈𝐶

, 

(19) 

where 𝑧𝑖 = (𝑦𝑖 − 𝑣𝑖
𝑇𝜏)/𝜎 and 𝑟 is the number of uncensored observations (failures).The 

MLE �̂�  of the vector of unknown parameters can be calculated by maximizing the 

log-likelihood (19). We use the NLMixed procedure in SAS to calculate the estimate �̂�.  

The elements of the (𝑝 + 2) × (𝑝 + 2)  observed information matrix −�̈�(𝜼) , say 

−𝑳𝛼𝛼 ,−𝑳𝛼𝜎 ,−𝑳𝛼𝜏𝑗 ,−𝑳𝜎𝜎 ,−𝑳𝜎𝜏𝑗  and −𝑳𝛽𝑗𝛽𝑠(𝑓𝑜𝑟 𝑗, 𝑠 = 1,… , 𝑝)  have to be evaluated 

numerically. Inference on 𝜼 can be conducted based on the approximate multivariate 

normal 𝑁𝑝+2(0, −�̈�(�̂�)
−1) distribution for �̂�. 

7 Applications 

In many statistical applications, the interest is centered on estimating some population 

parameters. For example, the average rainfall, the median temperature, the average income 

and others are based on samples taken from the same population. Sometimes, the most 

important values are not the average or median, but the maximum or minimum values (see 

Castillo (1994)). For example, the maximum flood height, maximum earthquake intensity, 

largest wildfire, the amounts of large insurance losses etc.. Largest values, such as loads, 

earthquakes, winds, floods, waves, and the smallest values, such as strength, stress, are the 

key to failure of engineering works, so construction engineering should be based on extreme 

values. Some publications related to extremes from fields such as ocean engineering, 

structural engineering, material strength and fatigue strength can be found in Court (1953), 

Goodknight and Russell (1963), Draper (1963), Earle et al. (1974), Cavanie et al. (1976), 

Chakrabarti and Cooley (1977), Battjes (1978), Leadbetter et al. (1983), Bryant (1983), 

Castillo and Sarabia (1992), Castillo and Sarabia (1994), Harlow (2002), Ferro and Segers 

(2003), Nadarajah and Kotz (2008), Borgman(1963, 1970, 1973) Zaharim et al. (2009), 

Mubarak (2013), Afify et al. (2015), Afify et al. (2016a), Afify et al. (2016b), Yousof et al. 

(2016), among others. 

In this section, we provide two applications to real data to illustrate the importance of the 

TLGFr distribution presented in Section 1. We also present an application for the regression 

model proposed in Section 6. 

For the first two examples, we compare the fits of the TLGFr distribution with other 

models such as Fréchet (Fr), Kumaraswamy Fréchet (KFr), exponentiated Fréchet (EFr), beta 

Fréchet (BFr), transmuted Fréchet (TFr), Marshal-Olkin Fréchet (MOFr) and McDonald 

Fréchet (McFr) distributions given by: 
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⚫ KFr ∶ 𝑓(𝑥; 𝛼, 𝜃, 𝑎, 𝑏) = 𝛼𝜃𝑏𝑎𝑏𝑥−(𝑏+1) exp [−𝛼 (
𝑎

𝑥
)
𝑏

] {1 − exp [−𝛼 (
𝑎

𝑥
)
𝑏

]}
𝜃−1

; 

⚫ EFr ∶ 𝑓(𝑥; 𝛼, 𝜃, 𝑎, 𝑏) = 𝛼𝑏𝑎𝑏𝑥−(𝑏+1) exp [−𝛼 (
𝑎

𝑥
)
𝑏

] {1 − exp [−(
𝑎

𝑥
)
𝑏

]}
𝛼−1

; 

⚫ BFr ∶ 𝑓(𝑥; 𝛼, 𝑎, 𝑏) =
𝑏𝑎𝑏

𝐵(𝛼,𝜃)
𝑥−(𝑏+1) exp [−𝛼 (

𝑎

𝑥
)
𝑏

] {1 − exp [− (
𝑎

𝑥
)
𝑏

]}
𝜃−1

; 

⚫ TFr ∶ 𝑓(𝑥; 𝜃, 𝑎, 𝑏) = 𝑏𝑎𝑏𝑥−(𝑏+1) exp [− (
𝑎

𝑥
)
𝑏

] {1 + 𝜃 − 2𝜃 exp [−(
𝑎

𝑥
)
𝑏

]} ; 

⚫ MOFr ∶ 𝑓(𝑥; 𝛼, 𝑎, 𝑏) = 𝛼𝑏𝑎𝑏𝑥−(𝑏+1) exp [−(
𝑎

𝑥
)
𝑏

] {𝛼 + (1 − 𝛼) exp [− (
𝑎

𝑥
)
𝑏

]}
−2

; 

⚫ McFr ∶ 𝑓(𝑥; 𝛼, 𝜃, 𝛾, 𝑎, 𝑏) =
𝛾𝑏𝑎𝑏𝑥−(𝑏+1)

𝐵(𝛼,𝜃)
exp [−(

𝑎

𝑥
)
𝑏

] (exp [− (
𝑎

𝑥
)
𝑏

])𝛼𝛾−1(1 −

(exp [− (
𝑎

𝑥
)
𝑏

])𝛾)𝜃−1. 

The parameters of the above densities are all positive real numbers except for the TFr 

distributions for which |𝜃| ≤ 1. In the third example, we compare the LTLFr regression 

model with the LFr regression model. 

To evaluate performance of considered models, the MLEs of the parameters for the 

considered models are calculated and five goodness-of-fit statistics are used to compare the 

new distribution. The measures of goodness of fit including the Akaike information criterion 

(AIC), Bayesian information criterion (BIC), Anderson-Darling (A*), Cramér- von Mises 

(W*) and Kolmogrov-Smirnov (K-S) statistics are computed to compare the fitted models. In 

general, the smaller the values of these statistics, the better the fit to the data. The required 

computations are carried out in the R language for the first two applications. In the third 

application (censored data) the computations were done using the subroutine nlmixed of the 

SAS software. 

7.1 Breaking stress of carbon ftbers 

This data set is an uncensored data set consisting of 100 observations on breaking stress 

of carbon fibers (in Gba) given by Nichols and Padgett (2006) and these data are used by 

Mahmoud and Mandouh (2013) to fit the transmuted Fréchet distribution. 

The statistics of the fitted models are presented in Table 4 and the MLEs and 

corresponding standard errors are given in Table 5. We note from Table 4 that the TLGFr 

gives the lowest values the AIC, BIC, A*, W* and K-S statistics for the carbon fibres data as 

compared to the other generalizations of Fréchet distribution. Therefore, TLGFr distribution 

yields the best fit for the subject data. 

 



H. M. Yousof, S. M. A. Jahanshahi, T. G. Ramires, G. R. Aryal and G. G. Hamedani            697

 

Table 4: The statistics: AIC, BIC, W*, A*, K-S for the carbon fibers data. 

Model Goodness of fit criteria 

 AIC BIC W* A* K-S P-value(K-S) 

TLGFr 113.78 124.21 0.0803 0.6111 0.0757 0.6159 

Fr 114.38 124.59 0.1090 0.7657 0.0874 0.4282 

KFr 113.94 124.36 0.0812 0.6217 0.0759 0.6118 

EFr 113.88 124.30 0.1091 0.7658 0.0874 0.4287 

BFr 113.93 124.35 0.0809 0.6207 0.0757 0.6147 

TFr 114.40 124.31 0.0871 0.6209 0.0782 0.5734 

MOFr 113.98 124.80 0.0886 0.6142 0.0763 0.5168 

McFr 123.97 137.00 0.1333 1.0608 0.0807 0.5332 

 

Table 5: MLEs and their standard errors (in parentheses) for the carbon fibers data. 

Model Estimates 

 �̂� 𝜃 �̂� �̂� 𝛾 

TLGFr 3.4224 0.8287 1.3264 2.7435 - 

 (7.6918) (13.1029) (7.6681) (0.5657) - 

Fr - - 1.3968 4.3724 - 

   (0.0336) (0.3278) - 

KFr 0.8489 1.6239 1.6341 3.4208 - 

 (16.083) (0.6979) (9.049) (0.7635) - 

EFr 1.0251 - 1.3889 4.3730 - 

 (17.789) - (5.5116) (0.3277) - 

BFr 0.7346 1.5830 1.6684 3.5112 - 

 (1.5290) (0.7132) (0.7662) (0.9683) - 

TFr - -0.7166 1.2656 4.7121 - 

 - (0.2616) (0.0579) (0.3657) - 

MOFr 0.0033 - 6.2296 1.2419 - 

 (0.0009) - (1.0134) (0.1181) - 

McFr 44.423 19.859 0.0203 46.974 0.8503 

 (25.100) (6.706) (0.0060) (21.871) (0.1353) 

 

The histogram of the carbon fibers data and estimated pdfs and cdfs of the TLGFr 

distribution and its competing models are displayed in Figure 3. 
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Figure 3: Histogram (left) and cdf (right) of the carbon fibers data. 

7.2 Strength of glass ftbers 

The second data set is generated data to simulate the strengths of glass fibers which was 

given by Smith and Naylor (1987). The statistics of the fitted models are presented in Table 

6 and the MLEs and corresponding standard errors are given in Table 7. It is clear from 

Table 6 that the TLGFr gives the lowest values the AIC, BIC, A*, W* and K-S statistics for 

this data set as compared to their sub-models, and therefore these models can be chosen as 

the best ones. 

Table 6: The statistics: AIC, BIC, W*, A*, and K-S for the glass fibers data. 

Model Goodness of fit criteria 

 AIC BIC W* A* K-S P-value(K-S) 

TLGFr 47.765 56.338 0.0620 0.4878 0.0705 0.8905 

Fr 48.127 58.414 0.0707 0.5332 0.0772 0.8185 

KFr 47.866 56.438 0.0634 0.4981 0.0715 0.8810 

EFr 48.127 56.557 0.0707 0.5332 0.0772 0.8187 

BFr 47.880 56.452 0.0640 0.5008 0.0716 0.8804 

TFr 48.738 57.168 0.0655 0.4939 0.0735 0.8470 

MOFr 48.031 56.460 0.0629 0.4902 0.0813 0.7685 

McFr 56.773 67.488 0.1161 0.9193 0.0831 0.7455 
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Table 7: MLEs and their standard errors (in parentheses) for the glass fibers data 

Model Estimates 

 �̂� 𝜃 �̂� �̂� 𝛾 

TLGFr 13.681 0.1553 1.7708 3.0833 - 

 (58.034) (3.1422) (11.793) (0.7578) - 

Fr - - 1.4108 5.4377 - 

 - - (0.0344) (0.5192) - 

KFr 0.2855 1.2824 1.9142 4.7731 - 

 (9.1338) (0.6388) (12.836) (1.3134) - 

EFr 0.9059 - 1.4367 5.4379 - 

 (2.764) - (4.324) (0.5193) - 

BFr 1.2996 1.2649 1.3945 4.7927 - 

 (4.4378) (0.6640) (0.9304) (1.4641) - 

TFr - 0.7778 1.5491 4.3139 - 

 - (0.2477) (0.0655) (0.5849) - 

MOFr 0.0023 - 5.2383 1.4537 - 

 (0.0004) - (0.8209) (0.1650) - 

McFr 56.227 14.953 0.0073 29.104 1.1770 

 (30.539) (4.733) (0.0013) (11.304) (0.1595) 

 

The histogram of the second data and estimated pdfs and cdfs of the TLGFr distribution 

and its competing models are displayed in Figure 4. It is clear that the TLGFr distribution 

yields the best fit for this data. 

  

Figure 4: Histogram (left) and cdf (right) of the glass fibers data. 

7.3 Application of log-TLFr regression model 

In this subsection we present an application to the LTLFr regression model proposed in 

Section 6. The statistics used to compare the fitted models are AIC and BIC, due to the fact 

that the 𝐴, 𝑊 and K-S statistics are not appropriate for censored data. 
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Consider a data set reported by Batchelor and Hackett (1970) which are the results of a 

study of 16 acutely burned patients treated with skin allografts. In this study the patients 

received from one to four grafts. For each graft, the time in days 𝑥𝑖 to rejection of the graft 

was recorded as well as an indicator variable 𝑣1 which had a value of 1 if the graft was a 

good match and 0 if it was a poor match. The survival times of some grafts were censored by 

the death of the patient. 

Here, we present results by fitting the model 

𝑦𝑖 = 𝜏0 + 𝜏1𝑣𝑖1 + 𝜎𝑧𝑖,  

where the random variable 𝑌 = 𝑙𝑜𝑔 (𝑋) follows the LTLFr distribution given by (15). The 

MLEs of the model parameters and their asymptotic SEs are listed at the end of Table 8. We 

also present in this table the fitted log-Fréchet (LFr) regression model. We can conclude with 

this table that the LTLFr regression model provides better fit than the LFr regression model. 

 

Table 8: MLEs of the model parameters, corresponding SEs (given in parentheses), p-values in [·] and the 

AIC and BIC statistics. 

Model Estimates AIC BIC 

LTLFr(α, σ, 𝜏0, 𝜏1) 0.773 0.935 3.328 0.665 77.8 83.9 

 (1.066) (0.188) (0.843) (0.254)   

   [0.001] [0.013]   

LFr(σ, 𝜏0, 𝜏1) 0.751 2.670 0.728  79.9 84.5 

 (0.094) (0.179) (0.264)    

  [<0.0001] [0.009]    

 

Figure 5 provides the plots of the empirical and estimated survival functions of the 

LTLFr distribution. These plots indicate that this regression model provides a satisfactory 

adjustment for these data. 
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Figure 5: Estimated LTLFr survival function and empirical survival for each group of skin data. 

8 Conclusions 

In this paper, we introduce a new four-parameter extreme value model called the 

Topp-Leone generated Fréchet (TLGFr) distribution, which extends the Fréchet distribution. 

We study some of its statistical and mathematical properties. We derive explicit expressions 

for the ordinary and incomplete moments, mean deviations and generating function and 

moments of the residual and reversed residual life. Characterizations based on two truncated 

moments as well as based on reverse hazard function and on certain functions of the random 

variable are presented. We estimate the model parameters by maximum likelihood method. 

We assess the performance of the maximum likelihood estimators in terms of biases and 

mean squared errors by means of a simulation study. We introduce a new location-scale 

regression model based on the new distribution. The new distribution applied to three real 

data sets provide better fits than some other related models. 
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