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Abstract: It is well known that under certain regularity conditions the boot- strap 

sampling distributions of common statistics are consistent with their  true sampling 

distributions. However, the consistency results rely heavily on the underlying regularity 

conditions and in fact, a failure to satisfy some of these may lead us to a serious 

departure from consistency. Consequently, the ‘sufficient bootstrap’ method (which 

only uses distinct units in a bootstrap sample in order to reduce the computational 

burden for larger sample sizes) based sampling distributions will also be inconsistent. In 

this paper, we combine the ideas of sufficient and m-out-of-n (m/n) bootstrap methods 

to regain consistency. We further propose the iterated version of this bootstrap method 

in non-regular cases and our simulation study reveals that similar or even better 

coverage accuracies than percentile bootstrap confidence inter- vals can be obtained 

through the proposed iterated sufficient m/n bootstrap with less computational time each 

case. 
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1. Introduction 

The nonparametric bootstrap method introduced by Efron (1979) has become a general 

framework to provide adequate solutions in a wide variety of statistical applications such as 

approximating the sampling distribution of a statistic, pre- diction, estimation, construction of 

confidence intervals, etc. The advantage of using the bootstrap method lies in the fact that under 

certain regularity condi- tions, the bootstrap sampling distribution of a statistic is consistent with 

the true sampling distribution, and it provides more accurate approximations compared to the 

first-order asymptotic theory. However, in some non-regular cases, it may become inconsistent 

due to the invalidity of such regularity conditions. The m/n bootstrap which is based on replacing 

the bootstrap sample size n with m where m = o(n) and m → ∞ as n → ∞, is a possible solution to 

regain the consistency of traditional bootstrap. See Atherya (1978), Bickel and Freedman (1981), 

Bre- tagnolle (1983), Swanepoel (1986), Beran (1997), and Wei et al. (2014) for more 

information. 
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Recently, Singh and Sedory (2011) propose the sufficient bootstrap method that only uses 

the distinct units in a simple random sampling with replacement bootstrap sample of size n to 

reduce the computational burden and leads us to make better inferences in certain cases. 

Although it is consistent as long as the traditional bootstrap works, it becomes inconsistent in 

case of the inconsistency of the traditional bootstrap. As a solution, the idea of m/n bootstrap may 

be combined with sufficient bootstrapping to regain the consistency, see for example Alin et al. 

(2017). In particular, let X1, X2, · · · is a sequence of independent and identically distributed 

(i.i.d.) random variables from an unknown distribution F.Also, let xn = (X1, … , Xn)and xn
∗ =

(X1
∗, … , Xn

∗)be an i.i.d. random sample from F and the bootstrap resample, respectively. To 

perform sufficient m/n bootstrap, we take a random sample of size m = o(n), xm
∗ =

(X1
∗, … , Xm

∗), from xn but use only distinct observations. In this case, let Vn
∗ and Vm

∗be the 

number of distinct observations in xn
∗andxm

∗ ,respectively. Note that every unit in xn  has 

probability 1 − (1 − 1/n)n to appear in a bootstrap sample. Consequently, it can be shown that 

the expected size of the usual and sufficient m/n bootstrap resamples  are  approximately E(Vn
∗) 

= 1 − (1 − e−1)n and E(Vm
∗) = 1 − (1 − e−m/n)n, respectively. 

Further, the iterated bootstrap method (see, Hall (1986)) can be useful in obtaining a higher 

degree of correction, for example to coverage accuracy, by using  a second-level of bootstrap 

resamples to estimate and subsequently derive a correction for the coverage error in the original 

bootstrap procedure. Hall (1986), Beran (1987) DiCiccio and Romano (1988), and Hall and 

Martin (1988) provide theoretical properties of this method and prove that the iterating principle 

reduces the bootstrap errors in many statistical problems. In this study, we pro- pose a 

combination of the iterated bootstrap with sufficient and m/n bootstrap methods (termed as 

iterated sufficient m/n bootstrap) with an aim to reduce the coverage error of the percentile 

confidence interval in non-regular cases. 

The rest of the paper is organized as follows. In Section 2, we provide a detailed information 

about the proposed method. In Section 3, the asymptotic expansions of the coverage probabilities 

for non-iterated and iterated sufficient m/n bootstrap  methods are given. To evaluate the 

finite-sample performance of the proposed method, we consider the non-regular case “function 

of means with null first-order differential” given by Shao (1994) and the results are also 

presented in Section 3. Finally, we conclude with some final remarks described in Section 4. 

2. Iterated sufficient m/n bootstrap method 

Let X1, X2, … be a sequence of i.i.d. random variables from an unknown distribution F ≡ Fθ, 

where the parameter θ is of our primary interest. Let X1, X2, …· be a sequence of i.i.d. random 

variables from an unknown distribution F ≡ Fθ, where the parameter θ is of our primary interest. 

Let xn = (X1, … , Xn)  be an i.i.d. random sample from F , and let Rn(xn, θ)  be an 

approximately pivotal quantity whose distribution is given by Gn = Gn(∙, F). In many cases of 

practical interest (e.g. a location-scale setting), the quantity Rn(xn, θ) generally depends not 
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only on the data and θ, but also on nuisance parameter (such as a scale parameter σ). Suppose Θ 

is the set of all possible values of θ. Then, a level α confidence set for the parameter θ can be 

obtained as 

S𝑛 = {𝑡𝜖Θ: 𝑅𝑛(𝑥𝑛, 𝜃) ≤ 𝐺𝑛
−1(𝛼)} (1) 

for any given αϵ(0,1), where Gn
−1(α) describes the largest α-th quantile of ttn. For any sequence {Fn} 

which converges to F , Gn = G(∙, Fn) is supposed to converge weakly to a continuous distribution 

function G = G(∙, F). Then, Gn(Rn(xn, θ)) is distributed as uniform U(0,1). In classical theory, Gn is 

approximated by its limit. However, in most cases, it is not easy to obtain its limit when the estimate of 

the parameter is a complicated statistic. But bootstrap method makes it possible since it does not 

require the full knowledge of the underlying distribution. Let xn
∗ = (X1

∗, … , Xn
∗) be the bootstrap 

sample from Fn, where Fn is the empirical distribution function which puts mass 1/n to each data 

point. Let also θ̂ be the estimate of θ based on xn. Then, the bootstrap analogue of Rn(xn, θ) with the 

bootstrap distribution conditional on xn  are given as Rn
∗ = Rn(xn

∗, θ̂)  and Gn
∗ = Gn

∗(∙, Fn) , 

respectively. Similar to the Equation 1, the bootstrap estimate of Sn is obtained as 

S𝑛
∗ = {𝑡𝜖Θ: 𝑅𝑛(𝑥𝑛, 𝜃) ≤ 𝐺𝑛

∗−1
(𝛼)} 

Since 𝐹𝑛 is a consistent estimate for F , the bootstrap estimate 𝐺𝑛
∗ converges in probability to G as n 

increases. Moreover, 𝐺𝑛
∗(𝑅𝑛(𝑥𝑛

∗, 𝜃)) converges to a uniform U(0,1) distribution. 

The iterating principle based on Beran (1987)’s prepivoting idea, transforms Rn(xn, θ) into 

Rn,1(xn, θ) = Gn
∗{Rn(xn, θ)} whose distribution is less dependent to F compared to Gn(x). 

Note thatRn,1(xn, θ) is exactly distributed U(0,1) if Rn(xn, θ) is the pivot. Let Gn,1(x) =

P(Rn,1(xn, θ) ≤ x) be the distribution of Rn,1(χn, θ), and let Gn,1
∗(x) = P(Rn,1(xn

∗, θn̂) ≤

x|xn) be its bootstrap estimate. 

Then 

S∗
𝑛,1 = {𝑡𝜖Θ: 𝑅𝑛(𝑥𝑛, 𝜃) ≤ 𝐺𝑛,1

∗−1
(𝛼)} = {𝜃: 𝑅𝑛(𝑥𝑛, 𝜃) ≤ 𝐺𝑛

∗−1
[𝐺𝑛,1

∗−1
(𝛼)] 

defines α level iterated bootstrap confidence set for θ. Generally, the error in S∗
𝑛,1is smaller than the error 

in S∗
𝑛and 𝑆𝑛. The iteration can be repeated continuously to reduce the coverage error of a confidence 

interval to a desired level. Martin (1990) shows that each iteration reduces the coverage error by an order of 

𝑛−1/2and 𝑛−1 for one-sided and two-sided intervals, respectively. On the other hand, each iteration 

increases the computation burden drastically. Also, at each nested resampling step, the support of the 

effective data set on which resampling is based drops - if there are n data points at level 1, then there will be 

roughly 0.632n data points for level 2 resampling, 0.4n at 3rd level, 0.25n at 4th level, and so on when the 

m-out-of-n bootstrap is used. Hence, by considering the shrinking support of the data and computational 

burden of this iterative procedure, to make our proposed method more practical and widely applicable we 

only recommend of doing the double bootstrap where iteration is only being done once. Let 𝑥𝑚,𝑙
∗∗ =

(𝑋1
∗∗, … , 𝑋𝑙

∗∗) denotes a second level bootstrap sample with size l drawn  randomly with replacement 

from 𝑥𝑚
∗. It also requires that l = o(m) and l → ∞ as m, n → ∞. Based on these, we perform our proposed 

method using the following steps. 

  



596 ITERATED SUFFICIENT M-OUT-OF-N (M/N ) BOOTSTRAP FOR NON-REGULAR SMOOTH 

FUNCTION MODELS 
 

We start by drawing a simple random sample of size m, xm
∗ , with replacement from xn. For 

the second level bootstrap, we draw another simple random sample of size l, denoted by xm,l
∗∗  

with replacement from xm
∗ , and use only distinct observations. Let xE(Vm

∗ )
∗  and xE(Vm,l

∗∗ )
∗  be the 

generic bootstrap resamples of size E(Vm
∗ ) = n(1 − e−m/n)  and E(Vm,l

∗∗ ) = m(1 − e−l/m) 

from xn and xm
∗ , respectively, both containing distinct elements only. Also let θ∗̂

E(Vm
∗ ) and 

θ∗∗̂
E(Vm,l

∗∗ ) be the bootstrap estimators of θn and R∗
E(Vm

∗ ) = R(x∗
E(Vm

∗ ), θn̂) and R∗∗
E(Vm,l

∗∗ ) =

R(x∗∗
E(Vm,l

∗∗ ), θm
∗̂ ) be the bootstrap pivotal quantities obtained from x∗

E(Vm
∗ )  and x∗∗

E(Vm,l
∗∗ ) , 

respectively with B1 and B2  being the number of first and second level bootstrap replications. 

Based on the above, we finally define the Monte Carlo algorithm  for the iterated  sufficient 

m/n  bootstrap for the construction of confidence sets 

as follows. 

(a) Resample 𝑥∗
𝐸(𝑉𝑚

∗) from 𝑥𝑛 as explained above, and compute 𝑅∗
𝐸(𝑉𝑚

∗),𝑖, for i = 1, … , 𝐵1. 

(b) For each i, resample a second level bootstrap sample 𝑥∗∗
𝐸(𝑉𝑚,𝑙

∗∗) from 𝑥𝑚
∗ and compute 

𝑅∗∗
𝐸(𝑉𝑚,𝑙

∗∗),𝑗,for j = 1, … , 𝐵2. 

(c) Calculate 𝑍𝑖 =
1

𝐵2
∑ 𝐼(𝑅∗∗

𝐸(𝑉𝑚,𝑙
∗∗),𝑗 ≤ 𝑅∗

𝐸(𝑉𝑚
∗),𝑖)

𝐵2
𝑗=1 ,for i = 1, … , 𝐵1. 

(d) Then, the empirical cumulative distribution of Zi’s, 𝐺∗∗
𝐸(𝑉𝑚,𝑙

∗∗) is asymptotically U(0,1), and 

approximate the distribution of 𝑅∗
𝐸(𝑉𝑚

∗), 𝐺∗
𝐸(𝑉𝑚

∗) = 𝑃(𝑥∗
𝐸(𝑉𝑚

∗), 𝜃�̂�). 

(e) Define the level α confidence set of iterated sufficient m/n bootstrap for Rn 

as 𝑆∗∗
𝐸(𝑉𝑚,𝑙

∗∗) = {𝜃: 𝑅𝑛(𝑥𝑛, 𝜃) ≤ 𝐺𝐸(𝑉𝑚
∗)

∗−1
[𝐺𝐸(𝑉𝑚,𝑙

∗∗)
∗−1

(𝛼)}. 

3. Results 

In this section we consider the non-regular case described in Shao (1994) where the traditional and 

sufficient bootstrap methods fail to provide consistent results. First, in Section 3.1, we give the detailed 

information about this inconsistency problem and the behavior of sufficient m/n bootstrap to establish 

this method’s usefulness to avoid the vexing issue of inconsistency. A finite sample comparative study 

has been presented in Section 3.2. 

3.1. The Problem 

Let us consider the smooth function model described by Bhattacharya and Ghosh (1978). Suppose 

the data X1, … , Xn are i.i.d. from F with mean µ. Let θ = g(μ) with its estimate θn̂ = g(Xn
̅̅̅̅ ), and 

further suppose that the asymptotic variance of n1/2θn̂  admits the representation h(μ) with the 

estimate h(Xn
̅̅̅̅ ) for some smooth functions g and h on Rd. Suppose that g and h are continuously 

differentiable up to a sufficiently high order in an open neighborhood of µ, and F satisfies Cramer’s 

condition with sufficiently many finite moments. Let us assume that ∇g(μ) = 0 and ∇2g(μ) ≠ 0 

where ∇g is the gradient and ∇2g is the Hessian matrix of g. In this case instead of √n-consistency, 

θn̂ is n-consistent  with a limiting distribution which approximates to a chi-squared type distribution. 
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Babu (1984) shows that the traditional bootstrap fails to provide consistent estimator for the 

distribution of Rn(xn, θ). Subsequently, this result can be extended in the case of the sufficient 

bootstrap since E(Vn
∗) = O(1 − e−1).The expansion of E(Vn

∗)(θ̂E(Vn
∗) − θ̂) can be written similar 

to the expansion of (2.4) given in Shao(1994) as 

𝐸(𝑉𝑛
∗)(𝜃𝐸(𝑉𝑛

∗) − 𝜃) = ∇g(𝑋𝑛
̅̅̅̅ )′(𝑋∗̅̅ ̅

𝐸(𝑉∗
𝑛) − 𝑋𝑛

̅̅̅̅ ) +
1

2
(𝑋∗̅̅ ̅

𝐸(𝑉∗
𝑛) −

𝑋𝑛
̅̅̅̅ )

′
∇2g(𝑋𝑛

̅̅̅̅ )(𝑋∗̅̅ ̅
𝐸(𝑉∗

𝑛) − 𝑋𝑛
̅̅̅̅ ) + 𝑜𝑝 (𝐸(𝑉∗−1

𝑛)) 𝑎. 𝑠. 
(2) 

 

Note that, the first term in Eq. 2 does not have an exact limit. It implies that the conditional 

distribution of E(Vn
∗)(θ̂E(Vn

∗) − θ̂)  does not have a limit, suggesting that it is an inconsistent 

estimator of Gn(x).On the other hand, it may be possible to regain the consistency with the iterated 

sufficient m/n bootstrap by choosing E(Vm
∗) = o(n) or o(√log log n). 

In this non-regular case, Cheung et.al (2005) prove that both non-iterated and iterated m/n  

bootstrap methods have the coverage error of order O(n−1/2) if m and l are chosen as m = o(n) and l = 

o(m). They further propose a new iterating scheme for the m/n bootstrap to achieve the coverage error 

of order O(n−2/3) which can be further extended to our case of sufficient bootstrap through the 

following result. 

 

Theorem. Let K(x), H(x), D(β), 𝐼𝑚(𝛼) and 𝐽𝑚.𝑙
∗(𝛼) be defined as in Cheung et.al (2005).   Let also 

𝐼𝐸(𝑉𝑚
∗)(𝛼)  and 𝐽𝐸(𝑉𝑚.𝑙

∗∗)
∗(𝛼)  be the sufficient bootstrap versions of 𝐼𝑚(𝛼)  and 

𝐽𝑚.𝑙
∗(𝛼),respectively. Then, the asymptotic expansions of the coverage probabilities for non-iterated 

and iterated sufficient m/n bootstrap confidence limits are obtained as follows. 

(a) For m = o(n) and m → ∞, 

𝑷𝑭 (𝜃 ≤ 𝐼𝐸(𝑉𝑚
∗)(𝛼))

= 𝛼 − 𝐸(𝑉𝑛
∗)𝑛−1𝐷(1 − 𝛼) + 𝐸(𝑉𝑚

∗)−1𝐾(𝐻−1(1 − 𝛼)) + 𝑂(𝐸(𝑉𝑚
∗)−2

+ 𝐸(𝑉𝑚
∗)∗𝑛−2)

= 𝛼 −
𝑚

𝑛
(1 + 𝑜(1))𝐷(1 − 𝛼) +

1

𝑚
(1 + 𝑜(1))−1𝐾(𝐻−1(1 − 𝛼)) + 𝑂((1

+ 𝑜(1))−2 + (1 + 𝑜(1))2). 
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(b) For m = o(n), l = o(m) and l → ∞, 

𝑷𝑭 (𝜃 ≤ 𝐽∗
𝐸(𝑉𝑚,𝑙

∗∗)
(𝛼))

= 𝛼 − (2𝐸(𝑉𝑚
∗)𝑛−1 − 𝐸(𝑉𝑚,𝑙

∗∗)𝐸(𝑉𝑚
∗)−1𝐷(1 − 𝛼)

+ 𝐸(𝑉𝑚,𝑙
∗∗)−1𝐾(𝐻−1(1 − 𝛼)) + 𝑂(𝐸(𝑉𝑚

∗)2𝑛−2 + 𝐸(𝑉𝑚,𝑙
∗∗)−2

+ 𝐸(𝑉𝑚,𝑙
∗∗)2𝐸(𝑉𝑚

∗)−2)

= 𝛼 − (2
𝑚

𝑛
(1 + 𝑜(1)) −

𝑙

𝑚
(1 + 𝑜(1)))𝐷(1 − 𝛼) +

1

𝑙
(1

+ 𝑜(1))−1𝐾(𝐻−1(1 − 𝛼)) + 𝑂((1 + 𝑜(1))2 + (1 + 𝑜(1))−2 + (1 + 𝑜(1))2) 

Proof. By Taylor series expansion and using the fact that 𝐸(𝑉𝑚
∗) = 𝑛(1 − 𝑒−𝑚/𝑛) and 𝐸(𝑉𝑚,𝑙

∗∗) =

𝑚(1 − 𝑒−𝑙/𝑚) the proof of Theorem directly follows from Proposition 1 as in Cheung et.al (2005). 

 

3.2 A numerical study 

We consider the exponential example given by Cheung et.al (2005) to compare the coverage 

performances of m/n, sufficient m/n bootstrap methods and their iterated versions. The underlying 

distribution F is chosen to be Normal N (0, Σ) where Σ is defined as in Cheung et.al (2005), and the 

parameter of interest is θ = g(μ) = exp (‖𝜇‖2). We estimate the coverage errors for α level upper 

confidence interval for θ using 2000 simulations for α 0.05, 0.1, 0.5, 0.90 and 0.95, with n = 1000, 

5000, 10000, 15000 and 20000, m = 𝑛1/2, 𝑙 =
2𝑚2

𝑛
, 𝑎𝑛𝑑 𝐵1 = 𝐵2 = 1000.  The results are 

presented in Figure 1. Generally, the errors obtained from the large α values seem to be smaller than the 

ones for small α values. For α = 0.05 and 0.1, with increasing n, the coverage accuracies of the 

percentile confidence intervals get better for both traditional and iterated sufficient m/n bootstrap 

methods. On the other hand, the errors obtained from the non-iterated m/n versions remain the same. 

For α = 0.5, while the iterated methods have better performances compared to non-iterated versions in 

small samples, the coverage accuracy of the methods tend to be similar in large sample sizes. For α = 

0.90 and 0.95, all the methods have similar performances. 

We also consider the m in the form of m ∝ Cn1/2 to evaluate the effect of C. We have chosen the C 

values C = 0.5, 1, 1.5, 2, 3 and, 5 for two fixed sample sizes: n = 1000 and n = 10000. The results are 

presented in Figures 2 and3, respectively. For smaller α values, it seems that the coverage accuracies of 

the non-iterated bootstrap methods do not get affected by the C values. For moderate and large α values, 

with moderate C values such as C = 2 or C = 3, we get smaller errors. 
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4. Conclusion 

In this study, we propose introducing the iterating principle in the sufficient m/n bootstrap method 

to improve the coverage accuracy of bootstrap percentile confidence intervals in non-regular smooth 

function models. The results of simulation study show that similar or even better coverage accuracy of 

iterated m/n bootstrap can be obtained by using iterated sufficient m/n bootstrap method. The iteration 

increases the computing time since double bootstrap is used. On the other hand, using only distinct 

units in resamples will reduce the computational burden which is an important result of this study. Our 

records (only for one simulation) show that the computing times are roughly 3.36 min for iterated m/n 

bootstrap and 2.56 min for the sufficient bootstrap version, respectively, when B1 = B2 = 1000 and n = 

20000. That is, by using sufficient bootstrap the computational burden of iterated m/n bootstrap can be 

reduced roughly by 24%. 

As a future study, the performance of the proposed method can also be stud- ied studied for testing 

mixture models or for examining the symmetry of the underlying distribution as an alternative to the 

proposed methods, respectively by Yang et al. (2010) and Zheng and Gastwirth (2010). The proposed 

method can also be used in time series data as studied by Beyaztas and Firuzan (2016). 
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Figure 1: Coverage performances of the bootstrap methods 

 

 

Figure 2: Coverage performances of the bootstrap methods according to C 

values when n = 1000 
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Figure 3: Coverage performances of the bootstrap methods according to C values when n = 10000 
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