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Abstract: The power generalized Weibull distribution due to Bagdonovacius and 

Nikulin (2002) is an alternative,and always provides better fits than the exponentiated 

Weibull family for modeling lifetime data. In this paper, we consider the generalized 

order statistics (GOS) from this distribution. We obtain exact explicit expressions as 

well as recurrence relations for the single, product and conditional moments of 

generalized order statistics from the power generalized Weibull distribution and then we 

use these results to compute the means and variances of order statistics and record 

values for samples of different sizes for various values of the shape and scale 

parameters. 
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1. Introduction 

The two-parameter Weibull distribution is a very popular distribution that has been extensively 

used over the past decades for modeling data in reliability, engineering and biological studies. Because 

of its simplified applicability, it can take the form of either the exponential distribution, the Rayleigh 

distribution or can be skewed either positively or negatively. However, in cases where the hazard rates 

are bathtub or unimodal shapes, the Weibull distribution does not provide a reasonable parametric fit. 

To add more flexibility to Weibull distribution, many researchers developed many generalizations of 

the Weibull distribution by adding new parameters. However, with the increased number of parameters 

in the modified or extended version of the model, the forms of the survival and hazard functions have 

become more and more complicated and the estimation problems have become a challenging task [ see 

Bebbington et al. (2007), Mudholkar and Srivastava (1993), Ghitany et al. (2005), Wahed et al. (2009), 

Cordeiro et al. (2010), Silva et al. (2010), Risti ć and Balakrishnan (2012)]. The power generalized 

Weibull (PGW) distribution is another extension of the Weibull distribution which was first proposed 

by Bagdonova˜cius and Nikulin in (2002). Based on parameter values, the hazard function of PGW 

distribution can be constant, monotone (increasing and decreasing), bathtub shaped and upside down 

bathtub shaped. For more details about this extension, we refer the readers to Bagdonavi˜cius et al. 
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(2006). Besides, it is a right skewed heavy tailed distribution which is not very common in life time 

model. The PGW family can be used as a possible alternative to the Exponentiated Weibull family for 

modeling lifetime data (Nikulin and Haghighi (2009)). 

Bagdonovacius and Nikulin (2002) proposed the PGW distribution, which was further studied by 

Haghighi and Nikulin (2006), Alloyarova et al. (2007), Nikulin and Haghighi (2009) and Voinov et al. 

(2013). Haghighi and Nikulin (2004) proposed chi-squared type statistic to test the validity of the 

Power Generalized Weibull family based on Head-and-Neck cancer censored data. Alloyarova et al. 

(2007) constructed the Hsuan-Robson-Mirvaliev (HRM) statistic for testing the hypothesis based on 

moment-type estimators and investigated its properties. Nikulin and Haghighi (2009) ob- tained 

maximum likelihood estimates of the parameters and the flexibility of the model was shown by using 

Efron’s (1988) head-and-neck cancer clinical trial data. Voinov et al. (2013) constructed modified 

chi-squared tests based on MLEs. Further, they studied power of the tests against ex- ponentiated 

Weibull, three-parameter Weibull, and generalized Weibull distributions using Monte Carlo 

simulations. Kumar and Sanku (2017) obtained the exact explicit expression and recurrence relations 

for generalized order statistics from power generalized Weibull distribution. 

The recurrence relations and identities have great significance because they are useful in reduc- ing 

the number of operations necessary to obtain a general form for the function under consideration and 

they reduce the amount of direct computation, time and labour. This concept is well-established in the 

statistical literature, see Arnold et al. (1992) and Kumar (2015, 2017). Furthermore, they are used in 

characterizing distributions, which is an important area, permitting the identification of population 

distribution from the properties of the sample. Kumar (2013, 2014, 2015) have established recurrence 

relations for marginal and joint moment generating functions of lower generalized order statistics and 

generalized order statistics from Marshall-Olkin extended logistic, extended type II generalized 

logistic and type II exponentiated log-logistic distribution respectively. Bal- akrishnan et al. (2015) 

established some recurrence relations for single and product moments of order statistics of the 

complementary exponential-geometric distribution. Recently, Kumar and Sanku (2017)and Kumar et 

al. (2017) have established the relations for order statistics from ex- tended exponential and power 

generalized Weibull distribution respectively. Kumar and Sanku (2017) obtained the relations for 

single and product moments of generalized order statistics from extended exponential distribution.  

The computation of moments of order statistics is a challenging task for many distributions. For this 

reason, recursive computational methods are often sought. 

A random variable X has the power generalized Weibull (PGW) distribution with parameters α, β 

and λ, if its probability density function (pdf ) is 

f(x) =
𝛼

𝛽𝜆𝛼
𝑥𝛼−1[1 + (

𝑥

𝜆
)𝛼]

1
𝛽

−1
𝑒

1−[1+(
𝑥
𝜆

)𝛼]
1
𝛽

; 𝑥 > 0, 𝛼, 𝛽, 𝜆 > 0 (1) 

the corresponding cumulative distribution function (cdf ) is 
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F(x) = 1 − 𝑒
1−[1+(

𝑥
𝜆

)𝛼]
1
𝛽

;  𝑥 > 0, 𝛼, 𝛽, 𝜆 > 0 
(2) 

 

The hazard function is given by 

h(x) =
𝑓(𝑥)

1 − 𝐹(𝑥)
=

𝛼

𝛽𝜆𝛼
𝑥𝛼−1[1 + (

𝑥

𝜆
)𝛼]

1
𝛽

−1
, 𝑥 > 0 (3) 

 
 

 

 

Figure 1: Probability density function and hazard function of PGW distribution for different values of α, β and λ.  

 

 

Figure 2: Survival function of PGW distribution for different values of α, β and λ. 

 

If β is real and non-integer and |x| < 1, then ( Gradshteyn and Ryzhik 2007, p. 25) 

(1 + x)𝛽 = ∑ (
𝛽

𝑘
)

∞

𝑘=0

𝑥𝑘 . 

One can observe from (1) and (2) that 
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f(x) =
𝛼

𝛽𝜆𝛼
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝑥𝛼(𝑢+1)−1

𝜆𝛼𝑢
�̅�(𝑥), (4) 

where �̅�(𝑥) = 1 − 𝐹(𝑥). Now, the relation in (4) will be exploited to derive recurrence relations 

for the moments of generalized order statistics for the PGW distribution. 

In our present paper, we define generalized order statistics. It will be shown that order statistics, 

record values and progressively Type II censored order statistics are special cases of generalized order 

statistics. First, we establish some explicit expressions for single moments, product moments and 

conditional moments of order statistics and record values. We also provide tabulations of  means and 

variances of order statistics and record values for samples of different sizes of the shape and scale 

parameters. 

The rest of the paper proceeds as follows: In Section 2, we describe briefly the preliminaries of 

generalized order statistics. In Section 3, we derive some explicit expressions and recurrence relations 

for single moments, product moments and conditional moments of generalized order statistics. In 

Section 4, we provide the characterization of PGW distribution based on recurrence relations of single 

moments of generalized order statistics. Tabulations of means and variances of order statistics and 

record values in Section 5. Finally, in Section 5, we make some concluding remarks. 

2. Generalized order statistics and preliminaries 

The concept of generalized order statistics was introduced by Kamps (1995). Since generalized 

order statistics is an unified approach of other ordered random scheme. Suppose X(1, n, m, k),… , X(n, 

n, m, k), (k ≥ 1, m is a real number), are n GOS from an absolutely continuous cumulative distribution 

function cdf F (x) with probability density function pdf f (x), if their joint pdf is of the form 

k (∏ 𝛾𝑗

𝑛−1

𝑗=1

) (∏[1 − 𝐹(𝑥𝑖)]𝑚𝑓(𝑥𝑖)

𝑛−1

𝑖=1

) [1 − F(𝑥𝑛)]𝑘−1𝑓(𝑥𝑛), (5) 

for F−1(0) < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 < F−1(1). where 𝛾𝑗 = k + (n − j)(m + 1) > 0 for j, 1 ≤ j ≤

n, k is a positive integer and m ≥ −1.If m = 0 and k = 1, we obtain the joint pdf of the order 

statistics. If k = 1 and m = −1, we obtain the joint pdf of the first n record values of the identically 

and independently distributed (iid) random variables with cdf F (x) and corresponding pdf f (x). 

Other statistics contained as particular cases include sequential order statistics, progressively type II 

censored order statistics and Pfeifer’s record values. 

In view of (5), the marginal pdf of the r−th GOS, is given by 

𝑓𝑋(𝑟,𝑛,𝑚,𝑘)(𝑥) =
𝐶𝑟−1

(𝑟 − 1)!
[�̅�(𝑥)]𝛾𝑟−1𝑓(𝑥)𝑔𝑚

𝑟−1(𝐹(𝑥)).   (6) 

The joint pdf of r-th and s-th GOS, is 
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𝑓𝑋(𝑟,𝑛,𝑚,𝑘),𝑋(𝑠,𝑛,𝑚,𝑘)(x, y)

=
𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)!
[�̅�(𝑥)]𝑚𝑓(𝑥)𝑔𝑚

𝑟−1(𝐹(𝑥)) × [ℎ𝑚(𝐹(𝑦))

− ℎ𝑚(𝐹(𝑥))]𝑠−𝑟−1[�̅�(𝑥)]𝛾𝑠−1𝑓(𝑦), 

(7) 

for 𝑥 < 𝑦, where �̅�(𝑥) = 1 − 𝐹(𝑥),  

𝐶𝑟−1 = ∏ 𝛾𝑖

𝑟

𝑖=1

 

ℎ𝑚(𝑥) = {
−

1

𝑚 + 1
(1 − 𝑥)𝑚+1, 𝑚 ≠ −1

− ln(1 − 𝑥) , 𝑚 = −1  
 

and 

𝑔𝑚(𝑥) = ℎ𝑚(𝑥) − ℎ𝑚(0), 𝑥 ∈ [0,1). 

3. Relations for single and product moments of generalized order statistics 

In this section, we derive explicit expressions and recurrence relations for single and product 

moments of generalized order statistics from the PGW distribution. 

3.1 Relations for single moments 

We shall first establish explicit expressions for jth single moments of the rth generalized order 

statistics,E(𝑋𝑟,𝑛,𝑚,𝑘
(𝑗)) = 𝜇𝑟,𝑛,𝑚,𝑘

(𝑗). Theorem 1 gives an explicit expression for 1 ≤ r ≤ n and j =

0,1,2, …Theorem 2 gives an explicit expression for 1 ≤ r ≤ n and j a negative integer. 

Theorem1. For the PGW distribution given in (1) and for 1 ≤ r ≤ n and j = 0,1,2, … 

𝜇𝑟,𝑛,𝑚,𝑘
(𝑗)

=
𝜆𝑗𝐶𝑟−1

(𝑟−1)!(𝑚+1)𝑟−1
∑ ∑ (−1)𝜇+

𝑗

𝛼
−𝑙(𝑟−1

𝑢
) (

𝑗

𝛼
𝑙
) ×

𝑒𝛾𝑟−𝑢

𝛾𝑟−𝑢
𝛽𝑙+1

𝑗

𝛼
𝑙=0

𝑟−1
𝑢=0 𝛤(𝛽𝑙 + 1, 𝛾𝑟−𝑢),          (8) 

 

and for 𝑚 = −1 

𝜇𝑟,𝑛,−1,𝑘
(𝑗)

=
𝜆𝑗𝑒𝑘𝑘𝑟

(𝑟 − 1)!
∑ ∑

(−1)𝑢+
𝑗
𝛼

+𝑟−𝑙−1

𝑘𝛽𝑙+𝑢
(

𝑟 − 1

𝑢
) (

𝑗/𝛼

𝑙
)

𝑗/𝛼

𝑙=0

× 𝛤(𝛽𝑙 + 𝑢 + 1, 𝑘)

𝑟−1

𝑢=0

, (9) 

 

where Γ(a, x) denotes the incomplete gamma function defined by 𝛤(𝑎, 𝑥) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡.
∞

𝑥
 

Proof. Using (6), we have 

𝜇𝑟,𝑛,𝑚,𝑘
(𝑗)

=
𝐶𝑟−1

(𝑟 − 1)!
∫ 𝑥𝑗[�̅�(𝑥)]𝛾𝑟−1

∞

0

𝑔𝑚
𝑟−1(𝐹(𝑥))𝑓(𝑥) 𝑑𝑥. 

=
𝐶𝑟−1

(𝑟 − 1)! (𝑚 + 1)𝑟−1
∑(−1)𝑢 (

𝑟 − 1

𝑢
)

𝑟−1

𝑢=0

∫ 𝑥𝑗[1 − 𝐹(𝑥)]𝛾𝑟−𝑢−1
∞

0

𝑓(𝑥) 𝑑𝑥 



626 POWER GENERALIZED WEIBULL DISTRIBUTION BASED ON GENERALISED ORDER STATISTICS 
 

 

=
𝛼

𝛽𝜆𝛼

𝐶𝑟−1

(𝑟 − 1)! (𝑚 + 1)𝑟−1
∑(−1)𝑢 (

𝑟 − 1

𝑢
)

𝑟−1

𝑢=0

𝑒𝛾𝑟−𝑢 × ∫ 𝑥𝑗+𝛼−1
∞

0

[1 + (
𝑥

𝜆
)𝛼]

1
𝛽

−1
exp [−𝛾𝑟−𝑢{1

+ (
𝑥

𝜆
)𝛼}

1
𝛽] dx 

=
𝐶𝑟−1𝜆𝑗

(𝑟 − 1)! (𝑚 + 1)𝑟−1
∑ ∑(−1)𝑢+

𝑗
𝛼

−𝑙 (
𝑟 − 1

𝑢
) (

𝑗
𝛼
𝑙

)

𝑗
𝛼

𝑙=0

𝑟−1

𝑢=0

𝑒𝑟−𝑢
𝛾

𝛾𝑟−𝑢
𝛽𝑙+1

× ∫ 𝑦𝛽𝑙𝑒−𝑦 𝑑𝑦
∞

𝛾𝑟−𝑢

, 

where 𝑦 = (𝛾𝑟−𝑢)[1 + (
𝑥

𝜆
)𝛼]

1

𝛽.The result follows from the definition of the incomplete gamma function. 

For 𝑚 = −1 

𝜇𝑟,𝑛,−1,𝑘
(𝑗)

=
𝜆𝑗𝑒𝑘𝑘𝑟

(𝑟 − 1)!
∑ ∑ −1)𝑢+

𝑗
𝛼

+𝑟−𝑙−1

𝑗/𝛼

𝑙=0

𝑟−1

𝑢=0

(
𝑟 − 1

𝑢
) (

𝑗/𝛼

𝑙
) × 𝑘−𝛽𝑙−𝑢 ∫ 𝑦𝛽𝑙+𝑢𝑒−𝑦

∞

𝑘

𝑑𝑦, 

where y = k[1 + (
𝑥

𝜆
)𝛼]

1

𝛽. The result follows from the definition of the incomplete gamma function. 

In particular, the mean and the variance of generalised order statistic are 

𝜇𝑟,𝑛,𝑚,𝑘 = 𝜇𝑟,𝑛,𝑚,𝑘
(𝑙)

 

= 𝜆
𝐶𝑟−1

(𝑟−1)!(𝑚+1)𝑟−1
∑ ∑ (−1)𝑢+

1

𝛼
−𝑙

1

𝛼
𝑙=0

𝑟−1
𝑢=0 (𝑟−1

𝑢
) (

1

𝛼
𝑙
) ×

𝑒𝛾𝑟−𝑢

𝛾𝑟−𝑢
𝛽𝑙+1 𝛤(𝛽𝑙 + 1, 𝛾𝑟−𝑢),    

(10) 

and 

𝜎𝑟,𝑛,𝑚,𝑘
2 = 𝜇𝑟,𝑛,𝑚,𝑘

(2)
− (𝜇𝑟,𝑛,𝑚,𝑘)2 

= 𝜆2
𝐶𝑟−1

(𝑟 − 1)! (𝑚 + 1)𝑟−1
∑ ∑(−1)𝑢+

2
𝛼

−𝑙

2
𝛼

𝑙=0

𝑟−1

𝑢=0

(
𝑟 − 1

𝑢
) (

2
𝛼
𝑘

) 

×
𝑒𝛾𝑟−𝑢

𝛾𝑟−𝑢
𝛽𝑙+1

𝛤(𝛽𝑙 + 1, 𝛾𝑒−𝑢) − (𝜇𝑟,𝑛,𝑚,𝑘)2, 

(11) 

respectively. 

 

Special cases 

1) If we put m = 0, k = 1 in (8), we get explicit expressions for ordinary order statistics (𝛾𝑟 = 𝑛 − 𝑟 +

1), we have 

 

𝜇𝑟:𝑛
(𝑗)

= 𝐶𝑟:𝑛𝜆𝑗 ∑ ∑(−1)𝑢+
𝑗
𝛼

−𝑙

𝑗/𝛼

𝑙=0

𝑟−1

𝑢=0

(
𝑟 − 1

𝑢
) (

𝑗/𝛼

𝑙
) ×

𝑒𝑛−𝑟+𝑢+1

(𝑛 − 𝑟 + 𝑢 + 1)𝛽𝑙+1
𝛤(𝛽𝑙 + 1, 𝑛 − 𝑟 + 𝑢 + 1), 

which is the result obtained by by Kumar and Sanku (2017). 

In particular, the mean order statistics and the variance order statistics are 
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𝜇𝑟:𝑛
(𝑗)

= 𝐶𝑟:𝑛λ ∑ (
𝑟 − 1

𝑢
)

𝑟−1

𝑢=0

𝑒𝑛−𝑟+𝑢+1 {
(−1)𝑢+

1
𝛼

𝑛 − 𝑟 + 𝑢 + 1
𝛤(1, 𝑛 − 𝑟 + 𝑢 + 1)

+
(−1)𝑢

(𝑛 − 𝑟 + 𝑢 + 1)1+
𝛽
𝛼

𝛤 (
𝛽

𝛼
+ 1, 𝑛 − 𝑟 + 𝑢 + 1)}, 

(12) 
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and 

𝜎𝑟:𝑛
2 = 𝜇𝑟:𝑛

(2)
− [𝜇𝑟:𝑛

(1)
]2 

= 𝐶𝑟:𝑛𝜆2 ∑ (
𝑟 − 1

𝑢
)

𝑟−1

𝑢=0

𝑒𝑛−𝑟+𝑢−1 {
(−1)𝑢+

2
𝛼

𝑛 − 𝑟 + 𝑢 + 1
𝛤(1, 𝑛 − 𝑟 + 𝑢 + 1)

+
(−1)𝑢+

1
𝛼

(𝑛 − 𝑟 + 𝑢 + 1)1+
𝛽
𝛼

𝛤 (
𝛽

𝛼
+ 1, 𝑛 − 𝑟 + 𝑢 + 1)

+
(−1)𝑢

(𝑛 − 𝑟 + 𝑢 + 1)1+
2𝛽
𝛼

𝛤 (
2𝛽

𝛼
+ 1, 𝑛 − 𝑟 + 𝑢 + 1)} − (𝜇𝑟:𝑛

(𝑙)
)2, 

respectively. 

3) If we put k = 1 in (9), ordinary record values we have 

𝜇𝑈(𝑟)
(𝑗)

=
𝑒𝜆𝑗

(𝑟 − 1)!
∑ ∑(−1)𝑢+

𝑗
𝛼

−1+𝑟−𝑙

𝑗
𝛼

𝑙=0

𝑟−1

𝑢=0

(
𝑟 − 1

𝑢
) (

𝑗
𝛼
𝑙

) 𝛤(𝛽𝑙 + 𝑢 + 1,1). 

In particular, the mean record statistics and the variance record statistics are 

𝜇𝑈(𝑟)
(1)

=
𝑒𝜆

(𝑟 − 1)!
∑ (

𝑟 − 1

𝑢
)

𝑟−1

𝑢=0

{(−1)𝑢+
1
𝛼

−1+𝑟𝛤(𝑢 + 1,1) + (−1)𝑢−1+𝑟𝛤 (
𝛽

𝛼
+ 𝑢 + 1,1)}.            (13) 

and 

𝜎𝑈(𝑟)

2 = 𝜇𝑈(𝑟)

(2)
− [𝜇𝑈(𝑟)

(1)
]2

=
𝑒𝜆

(𝑟 − 1)!
∑ (

𝑟 − 1

𝑢
)

𝑟−1

𝑢=0

{(−1)𝑢+
2
𝛼

−1+𝑟𝛤(𝑢 + 1,1)

+ (−1)𝑢+
1
𝛼

−1+𝑟 (

2
𝛼
𝑙
𝛼

) 𝛤 (
𝛽

𝛼
+ 𝑢 + 1,1) + (−1)𝑢−1+𝑟𝛤 (

2𝛽

𝛼
+ 𝑢 + 1,1)}

− [𝜇𝑈(𝑟)

(1)
]2,  

(14) 

respectively. 
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Theorem 2. For the PGW distribution given in (1) and for 1 ≤ r ≤ n and j a negative integer, 

𝜇𝑟,𝑛,𝑚,𝑘
(𝑗)

=
𝜆𝑗𝐶𝑟−1

(𝑟 − 1)! (𝑚 + 1)𝑟−1
∑ ∑(−1)𝑢+

𝑗
𝛼

−𝑙

∞

𝑙=0

(
𝑟 − 1

𝑢
)

𝑟−1

𝑢=0

(
𝑗/𝛼

𝑙
) ×

𝑒𝛾𝑟−𝑢

𝛾𝑟−𝑢
𝛽𝑙+1

𝛤(𝛽𝑙 + 1, 𝛾𝑟−𝑢), (15) 

 

and for 𝑚 = −1 

𝜇𝑟,𝑛,−1,𝑘
(𝑗)

=
𝜆𝑗𝑒𝑘𝑘𝑟

(𝑟 − 1)!
∑ ∑

(−1)𝑢+
𝑗
𝛼

+𝑟−𝑙−1

𝑘𝛽𝑙+𝑢

∞

𝑙=0

𝑟−1

𝑢=0

(
𝑟 − 1

𝑢
) (

𝑗/𝛼

𝑙
) × 𝛤(𝛽𝑙 + 𝑢 + 1, 𝑘). (16) 

Proof. Similar to the proof of Theorem1. 

Theorem 3 establishes a recurrence relation for μr,n,m,k
(j)

. This result holds for positive as well as 

negative j. 

Theorem3. For the PGW distribution given in (1) and for 1 ≤ r ≤ n, 

𝜇𝑟,𝑛,𝑚,𝑘
(𝑗)

=
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)
× [𝛾𝑟𝜇𝑟,𝑛,𝑚,𝑘

(𝑗+𝛼(𝑢+1))
− (𝑟 − 1)𝜇𝑟−1,𝑛,𝑚,𝑘

(𝑗+𝛼(𝑢+1))
] , 𝛽 > 1 . (17) 

Throughout, we follow the conventions that𝜇0,𝑛,𝑚,𝑘
(𝑗)

= 0 for n ≥ 1 and 𝜇0,𝑛,𝑚,𝑘
(𝑗)

= 1 for 1 ≤ r < n. 

Proof. For 1 ≤ r ≤ n. we have from (4) and (5) 

𝜇𝑟,𝑛,𝑚,𝑘
(𝑗)

=
𝐶𝑟−1

(𝑟 − 1)!
∫ 𝑥𝑗

∞

0

[�̅�(𝑥)]𝛾𝑟−1𝑔𝑚
𝑟−1(𝐹(𝑥))𝑓(𝑥) 𝑑𝑥 

=
𝛼

𝛽𝜆𝛼

𝐶𝑟−1

(𝑟 − 1)!
∑ (

1
𝛽

− 1

𝜇
)

∞

𝑢=0

1

𝜆𝛼𝑢
∫ 𝑥𝑗+𝛼(𝑢+1)−1[�̅�

∞

0

(𝑥)]𝛾𝑟𝑔𝑚
𝑟−1(𝐹(𝑥)) 𝑑𝑥. 

Now integrating by parts, we obtain 

𝜇𝑟,𝑛,𝑚,𝑘
(𝑗)

=
𝛼

𝛽𝜆𝛼

𝐶𝑟−1

(𝑟 − 1)!
∑ (

1
𝛽

− 1

𝑢
)

∞

0

1

𝜆𝛼𝑢

× {
𝛾𝑟

𝑗 + 𝛼(𝑢 + 1)
∫ 𝑥𝑗+𝛼(𝑢+1)−1

∞

0

[�̅�(𝑥)]𝛾𝑟−1𝑔𝑚
𝑟−1(𝐹(𝑥))𝑓(𝑥) 𝑑𝑥

−
𝑟 − 1

𝑗 + 𝛼(𝑢 + 1)
∫ 𝑥𝑗+𝛼(𝑢+1)

∞

0

[�̅�(𝑥)]𝛾𝑟−𝑚𝑔𝑚
𝑟−2(𝐹(𝑥))𝑓(𝑥) 𝑑𝑥}. 

The result follows. 

In particular, upon setting r = 1 in Theorem 3, we deduce the following result. 

Corollary 1. For PGW distribution, 

𝜇1,𝑛,𝑚,𝑘
(𝑗)

=
𝛼

𝛽
𝛾1 ∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)
𝜇1,𝑛,𝑚,𝑘

(𝑗+𝛼(𝑢+1))
 (18) 
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Special Cases. 

1) For m = 0, k = 1 in (17) and (18), we get the recurrence relations for ordinary order statistics 

𝜇𝑟:𝑛
(𝑗)

=
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)
× [(𝑛 − 𝑟 + 1)𝜇𝑟:𝑛

(𝑗+𝛼(𝑢+1))
− (𝑟 − 1)𝜇𝑟−1:𝑛

(𝑗+𝛼(𝑢+1))
], (19) 

and 

𝜇1:𝑛
(𝑗)

=
𝛼

𝛽
𝑛 ∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)
𝜇1:𝑛

(𝑗+𝛼(𝑢+1))
.       (20) 

2) For m = −1, k ≥ 1 in (17) and (18), we get recurrence relations for record values 

𝜇𝑈(𝑟):𝑘

(𝑗)
=

𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)
[𝑘𝜇𝑈(𝑟):𝑘

(𝑗+𝛼(𝑢+1))
− (𝑟 + 1)𝜇

𝑈(𝑟−1):𝑘

(𝑗+𝛼(𝑢+1))
], (21) 

and 

𝜇𝑈(1):𝑘
(𝑗)

= 𝑘
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)
𝜇𝑈(1):𝑘

(𝑗+𝛼(𝑢+1))
. (22) 

3.2 Relations for product moments 

We shall first establish explicit expressions for the product moment of ith and jth generalized 

order statistics,E [𝑋𝑟,𝑠,𝑛,𝑚,𝑘
(𝑖,𝑗)

] = 𝜇𝑟,𝑠,𝑛,𝑚,𝑘
(𝑖,𝑗)

.Theorem 4 gives an explicit expression for 1 ≤ r < s ≤ n 

and i, j = 0, 1, 2, . . .. Theorem 5 gives an explicit expression for 1 ≤ r < s ≤ n, i = 0, 1, 2, . . . and j 

a negative integer. Theorem 6 gives an explicit expression for 1 ≤ r < s ≤ n, j = 0, 1, 2, . . . 

and i a negative integer. Theorem 7 gives an explicit expression for 1 ≤ r < s ≤ n and both i 

and j negative integers. 

Theorem 4. For the PGW distribution given in (1) and for 1 ≤ r < s ≤ n, i, j = 0,1,2, …, 

𝜇𝑟,𝑠;𝑛,𝑚,𝑘
(𝑖,𝑗)

=
𝜆𝑖+𝑗𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)! (𝑚 + 1)𝑠−2
∑ ∑ ∑ ∑(−1)𝑢+𝑣+

(𝑖+𝑗)
𝛼

−𝑝−𝑞

𝑖/𝛼

𝑞=0

𝑗/𝛼

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗/𝛼

𝑝
) (

𝑖/𝛼

𝑞
)

𝑒𝛾𝑟−𝑢

(𝛽𝑞 + 1)𝛾𝑟−𝑢
2+𝛽(𝑝+𝑞)

× 2𝐹1 (1,2 + 𝛽(𝑝 + 𝑞); 2 + 𝛽𝑞;
(𝑢 + 𝑠 − 𝑟 − 𝑣)(𝑚 + 1)

𝛾𝑟−𝑢
) , 𝑚 ≠ −1 

(23) 
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and for m = −1 

𝜇𝑟,𝑠;𝑛,−1,𝑘
(𝑖,𝑗)

=
𝜆𝑖+𝑗𝑒𝑘𝑘𝑠

(𝑟 − 1)! (𝑠 − 𝑟 − 1)!
∑ ∑ ∑ ∑(−1)

𝑖+𝑗
𝛼

+𝑟+𝑣−𝑢−𝑝−𝑞−1

𝑖/𝛼

𝑞=0

𝑗/𝛼

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗/𝛼

𝑝
) (

𝑖/𝛼

𝑞
)

𝛤(𝛽(𝑝 + 𝑞) + 𝑠 − 𝑟 + 𝑢 + 1)

(𝛽𝑞 + 𝑢 + 𝑣 + 1)

× 2𝐹1(1, 𝛽(𝑝 + 𝑞) + 𝑠 − 𝑟 + 𝑢 + 1; 𝛽𝑞 + 𝑢 + 𝑣 + 2; 1), 

(24) 

where 2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) denotes the Gauss hypergeometric function defined by 

2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) = ∑
(𝑎)𝑘(𝑏)𝑘

(𝑐)𝑘

∞

𝑘=0

𝑥𝑘

𝑘!
, 

where (e)k = e(e + 1) … (e + k − 1) 

Proof. From (7), we have 

𝜇𝑟,𝑠;𝑛,𝑚,𝑘
(𝑖,𝑗)

=
𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)!
∫ ∫ 𝑥𝑖

∞

𝑥

∞

0

𝑦𝑗[�̅�(x)]𝑚𝑓(𝑥)𝑔𝑚
𝑟−1(𝐹(𝑥)) × [𝑔𝑚(𝐹(𝑦))

− 𝑔𝑚(𝐹(𝑥))]𝑠−𝑟−1[�̅�(y)]𝛾𝑠−1𝑓(𝑦) 𝑑𝑦 𝑑𝑥

=
𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)! (𝑚 + 1)𝑠−2
∑ ∑ (−1)𝑢+𝑣

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

(
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
)

× ∫ ∫ 𝑥𝑖
∞

𝑥

∞

0

𝑦𝑗[�̅�(x)](𝑠−𝑟+𝑢−𝑣)(𝑚+1)−1[�̅�(y)]𝛾𝑠−𝑣−1𝑓(𝑥)𝑓(𝑦) 𝑑𝑦 𝑑𝑥

=
𝛼2𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)! (𝑚 + 1)𝑠−2𝛽2𝜆2𝛼
∑ ∑ (−1)𝑢+𝑣

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

(
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
)

× ∫ ∫ 𝑥𝑖+𝛼−1
∞

𝑥

∞

0

𝑦𝑗+𝛼−1[1 + (
𝑥

𝜆
)𝛼]

1
𝛽

−1
[1 + (

𝑦

𝜆
)𝛼]

1
𝛽

−1
× exp ({1 − [1

+ (
𝑥

𝜆
)𝛼]

1
𝛽

−1
} (𝑠 − 𝑟 + 𝑢 − 𝑣)(𝑚 + 1)) × exp ({1 − [1 + (

𝑦

𝜆
)𝛼]

1
𝛽

−1
} 𝛾𝑠−𝑣) 𝑑𝑦 𝑑𝑥

=
𝛼𝜆𝑗𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)! (𝑚 + 1)𝑠−2𝛽𝜆𝛼
∑ ∑ ∑(−1)𝑢+𝑣+

𝑗
𝛼

−𝑝

𝑗
𝛼

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗
𝛼
𝑝

)
𝑒𝛾𝑟−𝑢

𝛾𝑠−𝑣
𝛽𝑝+1

× ∫ 𝑥𝑖+𝛼−1
∞

𝑥

[1

+ (
𝑥

𝜆
)𝛼]

1
𝛽(𝑠 − 𝑟 + 𝑢 − 𝑣)(m + 1)) × Γ(βp + 1, [1 + (

𝑥

𝜆
)𝛼]

1
𝛽𝛾𝑠−𝑣) 𝑑𝑥 

(25) 
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=
𝜆𝑖+𝑗𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)! (𝑚 + 1)𝛽𝑞+𝑠−1
∑ ∑ ∑ ∑(−1)𝑢+𝑣+

𝑖+𝑗
𝛼

−𝑝−𝑞

𝑖
𝛼

𝑞=0

𝑗
𝛼

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗
𝛼
𝑝

) (

𝑖
𝛼
𝑞

)
𝑒𝛾𝑟−𝑢

𝛾𝑠−𝑣
𝛽𝑝+1

(𝑠 − 𝑟 + 𝑢 − 𝑣)𝛽𝑞+1

× ∫ 𝑤𝛽𝑞𝑒−𝑤𝛤 (𝛽𝑞 + 1,
𝜔𝛾𝑟−𝑣

(𝑠 − 𝑟 + 𝑢 − 𝑣)(𝑚 + 1)
)

∞

(𝑠−𝑟+𝑢−𝑣)(𝑚+1)

𝑑𝑤 

where z = 𝛾𝑠−𝑣[1 + (
𝑦

𝜆
)𝛼]

1

𝛽and w = (u + s − r − v)(m + 1)[1 + (
𝑥

𝜆
)𝛼]

1

𝛽. The result follows by 

using equation (6.455.1) in Gradshteyn and Ryzhik (2007) to calculate the integral in (25).  

For m = −1 

𝜇𝑟,𝑠;𝑛,𝑚,𝑘
(𝑖,𝑗)

=
𝑘𝑠

(𝑟−1)!(𝑠−𝑟−1)!
∫ ∫ 𝑥𝑖𝑦𝑗[−𝑙𝑛�̅�(𝑥)]𝑟−1 𝑓(𝑥)

�̅�(𝑥)

∞

𝑥

∞

0
× [−𝑙𝑛�̅�(𝑦) +

𝑙𝑛�̅�(𝑥)]𝑠−𝑟−1[�̅�(𝑦)]𝑘−1𝑓(𝑦) 𝑑𝑦 𝑑𝑥 =

𝛼2𝑘𝑠𝑒𝑘

(𝑟−1)!(𝑠−𝑟−1)!𝛽2𝜆2𝛼
∑ ∑ (−1)𝑟−1−𝑢+𝑣(𝑟−1

𝑢
)(𝑠−𝑟−1

𝑣
)𝑠−𝑟−1

𝑣=0
𝑟−1
𝑢=0 × ∫ ∫ 𝑥𝑖+𝛼−1𝑦𝑗+𝛼−1∞

𝑥
[1 +

∞

0

(
𝑥

𝜆
)𝛼]

𝑢+𝑣

𝛽
+

1

𝛽
−1

× [1 + (
𝑦

𝜆
)𝛼]

𝑠−𝑟−1−𝑣

𝛽
+

1

𝛽
−1

exp (−k{[1 + (
𝑦

𝜆
)𝛼)]

1

𝛽}) dy 𝑑𝑥 =

𝛼𝑘𝑠𝑒𝑘𝜆𝑗

(𝑟−1)!(𝑠−𝑟−1)!𝛽𝜆𝛼
∑ ∑ ∑

(−1)
𝑟−1−𝑢+𝑣+

𝑗
𝛼

−𝑝

𝑘𝛽𝑝+𝑠−𝑟−𝑣

𝑗

𝛼
𝑝=0

𝑠−𝑟−1
𝑣=0

𝑟−1
𝑢=0 × (𝑟−1

𝑢
)(𝑠−𝑟−1

𝑣
) (

𝑗

𝛼
𝑝

) ×

∫ 𝑥𝑖+𝛼−1∞

0
[1 + (

𝑥

𝜆
)𝛼]

𝑢+𝑣

𝛽
+

1

𝛽
−1

∫ 𝑧𝛽𝑝+𝑠−𝑟−1−𝑣∞

𝑘[1+(
𝑥

𝜆
)𝛼]

1
𝛽

𝑒−𝑧 𝑑𝑧𝑑𝑥 =

𝛼𝑘𝑠𝑒𝑘𝜆𝑗

(𝑟−1)!(𝑠−𝑟−1)!𝛽𝜆𝛼
∑ ∑ ∑

(−1)
𝑟−1−𝑢+𝑣+

𝑗
𝛼

−𝑝

𝑘𝛽𝑝+𝑠−𝑟−𝑣

𝑗

𝛼
𝑝=0

𝑠−𝑟−1
𝑣=0

𝑟−1
𝑢=0 × (𝑟−1

𝑢
)(𝑠−𝑟−1

𝑣
) (

𝑗

𝛼
𝑝

) ×

∫ 𝑥𝑖+𝛼−1∞

0
[1 + (

𝑥

𝜆
)𝛼]

𝑢+𝑣

𝛽
+

1

𝛽
−1

𝛤(𝛽𝑝 + 𝑠 − 𝑟 − 𝑣, 𝑘[1 + (
𝑥

𝜆
)𝛼]

1

𝛽) 𝑑𝑥 =

𝑘𝑠𝑒𝑘𝜆𝑖+𝑗

(𝑟−1)!(𝑠−𝑟−1)!
∑ ∑ ∑ ∑

(−1)
𝑟−1−𝑢+𝑣+

(𝑖+𝑗)
𝛼

−𝑝−𝑞

𝑘𝛽𝑝+𝑠−𝑟−𝑣

𝑖

𝛼
𝑞=0

𝑗

𝛼
𝑝=0

𝑠−𝑟−1
𝑣=0

𝑟−1
𝑢=0 × (𝑟−1

𝑢
)(𝑠−𝑟−1

𝑣
) (

𝑗

𝛼
𝑝

) (
𝑖

𝛼
𝑞

) ×

∫ 𝑤𝛽𝑞+𝑢+𝑣∞

0
𝛤(𝛽𝑝 + 𝑠 − 𝑟 − 𝑣, 𝑘𝑤)𝑑𝑤  

(26) 

where w = [1 + (
𝑥

𝜆
)𝛼]

1

𝛽. The result follows by using equation (6.455.1) in Gradshteyn and 

Ryzhik(2007) to calculate the integral in (26). 

The proof is complete. 

  



Devendra Kumar, Neetu Jain                               633 
 

 

Special Cases. 

1) For m = 0 and k = 1 in (23), we get the explicit expression for product moments of ordinary 

order statistics 

𝜇𝑟,𝑠;𝑛
(𝑖,𝑗)

= 𝜆𝑖+𝑗𝐶𝑟,𝑠:𝑛 ∑ ∑ ∑ ∑ (−1)𝑢+𝑣+
𝑖+𝑗

𝛼
−𝑝−𝑞𝑖/𝛼

𝑞=0
𝑗/𝛼
𝑝=0

𝑠−𝑟−1
𝑣=0

𝑟−1
𝑢=0 (𝑟−1

𝑢
) ×

(𝑠−𝑟−1
𝑣

) (𝑗/𝛼
𝑝

) (𝑖/𝛼
𝑞

)
𝑒𝑛−𝑟+𝑢+1

(𝛽𝑞+1)(𝑛−𝑟+𝑢+1)2+𝛽(𝑝+𝑞) × 2𝐹1 (1,2 + 𝛽(𝑝 + 𝑞); 2 + 𝛽𝑞;
(𝑢+𝑠−𝑟−𝑣)

(𝑛−𝑟+𝑢+1)
),  

which is the result obtained by Kumar and Sanku (2017). 

In particular, the covariance of order statistics is 

𝜇𝑟,𝑠;𝑛
(1,1)

= 𝜆2𝐶𝑟,𝑠:𝑛 ∑ ∑ ∑ ∑ (−1)𝑢+𝑣+
2

𝛼
−𝑝−𝑞1/𝛼

𝑞=0
1/𝛼
𝑝=0

𝑠−𝑟−1
𝑣=0

𝑟−1
𝑢=0 (𝑟−1

𝑢
) ×

(𝑠−𝑟−1
𝑣

) (1/𝛼
𝑝

) (1/𝛼
𝑞

)
𝑒𝑛−𝑟+𝑢+1

(𝛽𝑞+1)(𝑛−𝑟+𝑢+1)2+𝛽(𝑝+𝑞) × 2𝐹1 (1,2 + 𝛽(𝑝 + 𝑞); 2 + 𝛽𝑞;
(𝑢+𝑠−𝑟−𝑣)

(𝑛−𝑟+𝑢+1)
).  

(27) 

 

2) For k = 1 in (24), we get explicit expression for record values 

𝜇𝑈𝑟,𝑠

(𝑖,𝑗)
=

𝜆𝑖+𝑗𝑒

(𝑟 − 1)! (𝑠 − 𝑟 − 1)
∑ ∑ ∑ ∑(−1)

𝑖+𝑗
𝛼

+𝑟+𝑣−𝑢−𝑝−𝑞−1

𝑖/𝛼

𝑞=0

𝑗/𝛼

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗/𝛼

𝑝
) (

𝑖/𝛼

𝑞
)

𝛤(𝛽(𝑝 + 𝑞) + 𝑠 − 𝑟 + 𝑢 + 1)

(𝛽𝑞 + 𝑢 + 𝑣 + 1)

× 2𝐹1(1, 𝛽(𝑝 + 𝑞) + 𝑠 − 𝑟 + 𝑢 + 1; 𝛽𝑞 + 𝑢 + 𝑣 + 2; 1). 

(28) 

Theorem 5. For the PGW distribution given in (1) and for 1 ≤ r < s ≤ n and i = 0, 1, 

2, . . .and j a negative integer, 

𝜇𝑟,𝑠;𝑛,𝑚,𝑘
(𝑖,𝑗)

=
𝜆𝑖+𝑗𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)! (𝑚 + 1)𝑠−1
∑ ∑ ∑ ∑(−1)𝑢+𝑣+

𝑖+𝑗
𝛼

−𝑝−𝑞

𝑖/𝛼

𝑞=0

∞

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗/𝛼

𝑝
) (

𝑖/𝛼

𝑞
)

𝑒𝛾𝑟−𝑢

(𝛽𝑞 + 1)𝛾𝑟−𝑢
2+𝛽(𝑝+𝑞)

× 2𝐹1 (1,2 + 𝛽(𝑝 + 𝑞); 2 + 𝛽𝑞;
(𝑢 + 𝑠 − 𝑟 − 𝑣)(𝑚 + 1)

𝛾𝑟−𝑢
) , 𝑚 ≠ 1 

(29) 

and for m = −1 

  



634 POWER GENERALIZED WEIBULL DISTRIBUTION BASED ON GENERALISED ORDER STATISTICS 
 

 

𝜇𝑟,𝑠;𝑛,−1,𝑘
(𝑖,𝑗)

=
𝜆𝑖+𝑗𝑒𝑘𝑘𝑠

(𝑟 − 1)! (𝑠 − 𝑟 − 1)!
∑ ∑ ∑ ∑(−1)

𝑖+𝑗
𝛼

+𝑟+𝑣−𝑢−𝑝−𝑞−1

𝑖/𝛼

𝑞=0

∞

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗/𝛼

𝑝
) (

𝑖/𝛼

𝑞
)

𝛤(𝛽(𝑝 + 𝑞) + 𝑠 − 𝑟 + 𝑢 + 1)

(𝛽𝑞 + 𝑢 + 𝑣 + 1)

× 2𝐹1(1, 𝛽(𝑝 + 𝑞) + 𝑠 − 𝑟 + 𝑢 + 1; 𝛽𝑞 + 𝑢 + 𝑣 + 2; 1), 

(30) 

where 2𝐹1(𝑎, 𝑏, 𝑐; 𝑥) denotes the Gauss hypergeometric function defined by 

2𝐹1(𝑎, 𝑏, 𝑐; 𝑥) = ∑
(𝑎)𝑘(𝑏)𝑘

(𝑐)𝑘

∞

𝑘=0

𝑥𝑘

𝑘!
, 

where (e)k = e(e + 1) … (e + k − 1) denotes the ascending fractorial. 

Proof. Similar to the proof of Theorem 4. 

Theorem 6. For the PGW distribution given in (1) and for 1 ≤ r < s ≤ n and j = 0, 1, 

2, . . .and i a negative integer, 

𝜇𝑟,𝑠;𝑛,𝑚,𝑘
(𝑖,𝑗)

=
𝜆𝑖+𝑗𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)! (𝑚 + 1)𝑠−2
∑ ∑ ∑ ∑(−1)𝑢+𝑣+

𝑖+𝑗
𝛼

−𝑝−𝑞

∞

𝑞=0

𝑗
𝛼

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗
𝛼
𝑝

) (

𝑖
𝛼
𝑞

)
𝑒𝛾𝑟−𝑢

(𝛽𝑞 + 1)𝛾𝑟−𝑢
2+𝛽(𝑝+𝑞)

× 2𝐹1 (1,2𝛽(𝑝 + 𝑞); 2 + 𝛽𝑞;
(𝑢 + 𝑠 − 𝑟 − 𝑣)(𝑚 + 1)

𝛾𝑟−𝑢
) , 𝑚 ≠ −1 

(31) 

and for m = −1 

𝜇𝑟,𝑠;𝑛,−1,𝑘
(𝑖,𝑗)

=
𝜆𝑖+𝑗𝑒𝑘𝑘𝑠

(𝑟 − 1)! (𝑠 − 𝑟 − 1)!
∑ ∑ ∑ ∑(−1)

𝑖+𝑗
𝛼

+𝑟+𝑣−𝑢−𝑝−𝑞−1

∞

𝑞=0

𝑗/𝛼

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗
𝛼
𝑝

) (

𝑖
𝛼
𝑞

)
𝛤(𝛽(𝑝 + 𝑞) + 𝑠 − 𝑟 + 𝑢 + 1)

(𝛽𝑞 + 𝑢 + 𝑣1)

× 2𝐹1(1, 𝛽(𝑝 + 𝑞) + 𝑠 − 𝑟 + 𝑢 + 1; 𝛽𝑞 + 𝑢 + 𝑣 + 2; 1) 

(32) 

 

Proof. Similar to the proof of Theorem 4. 
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Theorem 7. For the PGW distribution given in (1) and for 1 ≤ r < s ≤ n and both i and j 

negative integers, 

𝜇𝑟,𝑠;𝑛,𝑚,𝑘
(𝑖,𝑗)

=
𝜆𝑖+𝑗𝐶𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)! (𝑚 + 1)𝑠−2
∑ ∑ ∑ ∑(−1)𝑢+𝑣+

𝑖+𝑗
𝛼

−𝑝−𝑞

∞

𝑞=0

∞

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗/𝛼

𝑝
) (

𝑖/𝛼

𝑞
)

𝑒𝛾𝑟−𝑢

(𝛽𝑞 + 1)𝛾𝑟−𝑢
2+𝛽(𝑝+𝑞)

× 2𝐹1 (1,2 + 𝛽(𝑝 + 𝑞); 2 + 𝛽𝑞;
(𝑢 + 𝑠 − 𝑟 − 𝑣)(𝑚 + 1)

𝛾𝑟−𝑢
) , 𝑚 ≠ −1 

(33) 

and for m = −1 

𝜇𝑟,𝑠;𝑛,−1,𝑘
(𝑖,𝑗)

=
𝜆𝑖+𝑗𝑒𝑘𝑘𝑠

(𝑟 − 1)! (𝑠 − 𝑟 − 1)!
∑ ∑ ∑ ∑(−1)𝑢+𝑣+

𝑖+𝑗
𝛼

+𝑟+𝑣−𝑢−𝑝−𝑞−1

∞

𝑞=0

∞

𝑝=0

𝑠−𝑟−1

𝑣=0

𝑟−1

𝑢=0

× (
𝑟 − 1

𝑢
) (

𝑠 − 𝑟 − 1

𝑣
) (

𝑗/𝛼

𝑝
) (

𝑖/𝛼

𝑞
)

𝛤(𝛽(𝑝 + 𝑞) + 𝑠 − 𝑟 + 𝑢 + 1)

(𝛽𝑞 + 𝑢 + 𝑣 + 1)

× 2𝐹1(1, 𝛽(𝑝 + 𝑞) + 𝑠 − 𝑟 + 𝑢 + 1; 𝛽𝑞 + 𝑢 + 𝑣 + 2; 1), 

(34) 

Proof. Similar to the proof of Theorem 4. 

Theorem 8 establishes a recurrence relation for µ(i,j). This result holds for positive as well as 

negative values of i and j. 

Theorem 8. For the PGW distribution given in (1) and for 1 ≤ r < s ≤ n, 

𝜇𝑟,𝑠;𝑛,𝑚,𝑘
(𝑖,𝑗)

=
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)
× [𝛾𝑠𝜇𝑟,𝑠,𝑛,𝑚,𝑘

(𝑖,𝑗+𝛼(𝑢+1)
− (𝑠 − 𝑟 − 1)𝜇𝑟,𝑠−1,𝑛,𝑚,𝑘

(𝑖,𝑗+𝛼(𝑢+1)
] (35) 

Proof. For 1 ≤ r ≤ n, we have from (4) and (7) 

𝜇𝑟,𝑠,𝑛,𝑚,𝑘
(𝑖,𝑗)

=
𝑐𝑠−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)!
∫ 𝑥𝑖

∞

0

[�̅�(𝑥)]𝑚𝑔𝑚
𝑟−1(𝐹(𝑥))𝐺(𝑥)𝑓(𝑥) 𝑑𝑥 

(36) 

where 

G(x) = ∫ 𝑦𝑗
∞

𝑥

[ℎ𝑚(𝐹(𝑦)) − ℎ𝑚(𝐹(𝑥))]𝑠−𝑟−1[�̅�(𝑦)]𝛾𝑠−1𝑓(𝑦) 𝑑𝑦

=
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

1

𝜆𝛼(𝑢+1)
∫ 𝑦𝑗+𝛼(𝑢+1)−1

∞

𝑥

[�̅�(𝑦)]𝛾𝑠[ℎ𝑚(𝐹(𝑦)) − ℎ𝑚(𝐹(𝑥))]𝑠−𝑟−1 𝑑𝑦 

By integrating by parts with respect to y, we obtain 
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G(x) =
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)
[𝛾𝑠 ∫ 𝑦𝑗+𝛼(𝑢+1)

∞

𝑥

[�̅�(𝑦)]𝛾𝑠−1[ℎ𝑚(𝐹(𝑦))

− ℎ𝑚(𝐹(𝑥))]𝑠−𝑟−1𝑓(𝑦) 𝑑𝑦 − (𝑠 − 𝑟

− 1) ∫ 𝑦𝑗+𝛼(𝑢+1)
∞

𝑥

[�̅�(𝑦)]𝛾𝑠+𝑚[ℎ𝑚(𝐹(𝑦)) − ℎ𝑚(𝐹(𝑥))]𝑠−𝑟−2𝑓(𝑦) 𝑑𝑦]. 

(37) 

The result follows by combining (36) and (37). 

In particular, upon setting s = r + 1 in Theorem 8, we deduce the following result. 

Corollary2. For the distribution given in (1) and 1 ≤ r < n, n ≥ 1, k = 1,2, …, 

𝜇𝑟,𝑟+1,𝑛,𝑚,𝑘
(𝑖,𝑗)

=
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)𝛾𝑟+1

𝑗 + 𝛼(𝑢 + 1)
𝜇𝑟,𝑟+1,𝑛,𝑚,𝑘

(𝑖,𝑗+𝛼(𝑢+1))
.   (38) 

 

Special Cases 

1) For m = 0, k = 1 in (35), we get the recurrence relations for ordinary order statistics 

𝜇𝑟,𝑠:𝑛
(𝑖,𝑗)

=
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)
× [(𝑛 − 𝑠 + 1)𝜇𝑟,𝑠−1:𝑛

(𝑖,𝑗+𝛼(𝑢+1))
]. (39) 

2) For m = −1, k ≥ 1, (35), we get the recurrence relation for record values 

𝜇𝑈(𝑟,𝑠):𝑛
(𝑖,𝑗)

=
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)
× [𝑘𝜇

𝑈(𝑟,𝑠):𝑛

(𝑖,𝑗+𝛼(𝑢+1))
]. 

(40) 

3.3 Relations for conditional moments 

Let X(r, n, m, k), r = 1, 2, . . . , n be gos, then from a continuous population with cdf F (x) and pdf f 

(x), then the conditional pdf of X(s, n, m, k) given X(r, n, m, k) = x, 1 ≤ r < s ≤ n, in view of (6) and (7), 

is 

𝑓𝑠|𝑟(𝑦|𝑥) =
𝐶𝑠−1

(𝑠−𝑟−1)!𝐶𝑟−1

[ℎ𝑚(𝐹(𝑦))−ℎ𝑚(𝐹(𝑥))]𝑠−𝑟−1[𝐹(𝑦)]𝛾𝑠−1

[�̅�(𝑥)]𝛾𝑟+1
𝑓(𝑦), 𝑦 > 𝑥,  

(41) 

and the conditional pdf of X(r, n, m, k) given X(s, n, m, k) = y, 1 ≤ r < s ≤ n 

𝑓𝑟|𝑠(𝑥|𝑦) =
(𝑠 − 1)! (𝑚 + 1)[�̅�(𝑥)][1 − (�̅�(𝑥))𝑚+1]𝑟−1

(𝑟 − 1)! (𝑠 − 𝑟 − 1)!

×
[(�̅�(𝑥))𝑚+1 − (�̅�(𝑦))𝑚+1]

[1 − (�̅�(𝑦))𝑚+1]𝑠−1
𝑓(𝑥), 𝑦 > 𝑥. 

(42) 

We shall first establish conditional moments of GOS, X(s, n, m, k) given X(r, n, m, k) = x i.e. 

E[𝑋(𝑗)(s, n, m, k)|X(r, n, m, k) = x] = 𝜇𝑠,𝑛,𝑚,𝑘|𝑟,𝑛,𝑚,𝑘
(𝑗)

and X(r, n, m, k) given X(s, n, m, k) = y i.e 

E[𝑋(𝑗)(s, n, m, k)|X(r, n, m, k) = y] = 𝜇𝑠,𝑛,𝑚,𝑘|𝑟,𝑛,𝑚,𝑘
(𝑗)

. Theorem 9 gives the conditional moments of 
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GOS, X(s, n, m, k) given X(r, n, m, k) = x for 1 ≤ r < s ≤ n and j = 0, 1, 2, . . .. Theorem 10 gives the 

conditional moments of GOS, X(r, n, m, k) given X(s, n, m, k) = y for 1 ≤ r < s ≤ n and j = 0, 1, 2,... 

Theorem 9. For the distribution given in (1) and 1 ≤ r < s ≤ n , n ≥ 1,k = 1, 2, . . . and i, j = 0, 1, 

2, . . . 

𝜇𝑠,𝑛,𝑚,𝑘|𝑟,𝑛,𝑚,𝑘
(𝑗)

=
𝜆𝑗𝐶𝑠−1

(𝑠 − 𝑟 − 1)! 𝐶r−1(𝑚 + 1)𝑠−𝑟−1

× ∑ ∑(−1)𝑢+
𝑗
𝛼

−𝑝

𝑗/𝛼

𝑝=0

𝑠−𝑟−1

𝑢=0

(
𝑠 − 𝑟 − 1

𝑢
) (

𝑗/𝛼

𝑝
)

×
𝑒𝛾𝑠−𝑢𝛤(𝛽𝑝 + 1, 𝛾𝑠−𝑢[1 + (

𝑥
𝜆

)𝛼]
1
𝛽)

𝛾𝑠−𝑢
𝛽𝑝+1

𝑒
[1+(

𝑥
𝜆

)𝛼]
1
𝛽𝛾𝑠

 

(43) 

Proof. Similar to the proof of Theorem 4. 

Theorem 10. For the distribution given in (1) and 1 ≤ r  < s ≤ n, n ≥ 1,k = 1, 2, . . . andi, j = 0, 1, 

2, . . . 

𝜇𝑟,𝑛,𝑚,𝑘|𝑠,𝑛,𝑚,𝑘
(𝑗)

=
𝜆𝑗(𝑠 − 1)! (𝑚 + 1)𝑒

{1−[1+(
𝑦
𝜆

)𝛼]
1
𝛽}(𝑚+1)𝑢

(𝑟 − 1)! (𝑠 − 𝑟 − 1)! [1 − 𝑒
{1−[1+(

𝑦
𝜆

)𝛼]
1
𝛽}(𝑚+1)

]𝑠−1

× ∑ ∑ ∑(−1)𝑢+𝑣+
𝑗
𝛼

−𝑝

𝑗/𝛼

𝑝=0

𝑟−1

𝑣=0

𝑠−𝑟−1

𝑢=0

(
𝑠 − 𝑟 − 1

𝑢
) (

𝑟 − 1

𝑣
) × (

𝑗
𝛼
𝑝

)
𝑒𝜀

𝜀𝛽𝑝+1
𝛤(𝛽𝑝

+ 1, 𝜀[1 + (
𝑥

𝜆
)𝛼]

1
𝛽), 

(44) 

 

where 𝜉 = (𝑠 − 𝑟 − 𝑢 + 𝑣)(𝑚 + 1) and Γ(a, x) denotes the incomplete gamma function defined 

by Γ(a, x) = ∫ 𝑡𝑎−1𝑒−𝑡∞

𝑥
𝑑𝑡 

Proof: Similar to the proof of Theorem1. 

 

Remark 1: For k = 1, m = 0 and k = 1, m = −1 in (43) and (44), we obtain the conditional momemts 

of order statistics and record values, respectively. 

4 Characterization 

In this section, we characterize the PGW distribution based on conditional moments of order  

statistics. Let L(a, b) denote the space of all integrable functions on (a, b). A sequence (ℎ𝑛) ⊂ 𝐿(𝑎, 𝑏) 

is called complete on L(a, b) if for all functions g ∈ L(a, b) the condition 

∫ 𝑔(𝑥)
𝑏

𝑎

𝑓𝑛(𝑥) 𝑑𝑥 = 0, 𝑛 ∈ N 

implies g(x) = 0 a.e. on (a, b). We start with the following result of Lin (1986). 
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Proposition 1. Let 𝑛0 be any fixed non-negative integer, −∞ ≤ a < b ≤ ∞ and g(x) ≥ 0 

a.n absolutely continuou function with 𝑔′(𝑥) ≠ 0 𝑎. 𝑒 𝑜𝑛 (𝑎, 𝑏). Then the sequence of functions 

{(g(x))𝑛𝑒−𝑔(𝑥), n ≥ 𝑛0} is complete in L(a, b) if and only if g(x) is strictly monotone on (a, b). 

 

Using the above proposition, we obtain a stronger version of Theorem 3. 

Theorem 11. Let X be a non-negative random variable having an absolutely continuous cdf F 

(x) with F (0) = 0 and 0 < F (x) < 1 for all x > 0. Then 

𝜇𝑟,𝑛,𝑚,𝑘
(𝑗)

=
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

𝜆−𝛼(𝑢+1)

𝑗 + 𝛼(𝑢 + 1)

∞

𝑢=0

× [𝛾𝑟𝜇𝑟,𝑛,𝑚,𝑘

(𝑗+𝛼(𝑢+1))
− (𝑟 − 1)𝜇𝑟−1,𝑛,𝑚,𝑘

(𝑗+𝛼(𝑢+1))
]. (45) 

if and only if 

F(x) = 1 − 𝑒
1−[1+(

𝑥
𝜆

)𝛼]
1
𝛽

;  𝑥 > 0, 𝛼, 𝛽, 𝜆 > 0 

Proof. The necessary part follows immediately from equation (17). On the other hand if the recurrence 

relation in equation (45) is satisfied, then on using equations (4), we have 

𝐶𝑟−1

(𝑟 − 1)!
∫ 𝑥𝑗[�̅�(𝑥)]𝛾𝑟−1𝑔𝑚

𝑟−1
∞

0

(𝐹(𝑥))𝑓(𝑥) 𝑑𝑥

=
𝐶𝑟−1

(𝑟 − 1)!

𝛼

𝛽
(

1
𝛽

− 1

𝑢
)

𝜆−𝛼(𝑢+1)

𝛼(𝑢 + 1 + 𝑗)

× {𝛾𝑟 ∫ 𝑥𝑗+𝛼(𝑢+1)
∞

0

[�̅�(𝑥)]𝛾𝑟−1𝑔𝑚
𝑟−1(𝐹(𝑥)) 𝑑𝑥

− (𝑟 − 1) ∫ 𝑥𝑗+𝛼(𝑢+1)
∞

0

[�̅�(𝑥)]𝛾𝑟−1−1𝑔𝑚
𝑟−1(𝐹(𝑥))𝑓(𝑥) 𝑑𝑥}.   

(46) 

Integrating by parts the last integral on the right hand side of equation (46), we get 

𝐶𝑟−1

(𝑟 − 1)!
∫ 𝑥𝑗[�̅�(𝑥)]𝛾𝑟−1𝑔𝑚

𝑟−1
∞

0

(𝐹(𝑥))𝑓(𝑥) 𝑑𝑥

=
𝐶𝑟−1

(𝑟 − 1)!

𝛼

𝛽
(

1
𝛽

− 1

𝑢
)

𝜆−𝛼(𝑢+1)

𝛼(𝑢 + 1 + 𝑗)
× {𝛾𝑟 ∫ 𝑥𝑗+𝛼(𝑢+1)

∞

0

[�̅�(𝑥)]𝛾𝑟−1𝑔𝑚
𝑟−1(𝐹(𝑥)) 𝑑𝑥

− 𝛾𝑟 ∫ 𝑥𝑗+𝛼(𝑢+1)
∞

0

[�̅�(𝑥)]𝛾𝑟−1𝑔𝑚
𝑟−1(𝐹(𝑥))𝑓(𝑥) 𝑑𝑥 − 𝑗 + 𝛼(𝑢

+ 1) ∫ 𝑥𝑗+𝛼(𝑢+1)
∞

0

[�̅�(𝑥)]𝛾𝑟𝑔𝑚
𝑟−1(𝐹(𝑥)) 𝑑𝑥. 

which reduces to 

𝐶𝑟−1

(𝑟 − 1)!
∫ 𝑥𝑗[�̅�(𝑥)]𝛾𝑟−1𝑔𝑚

𝑟−1
∞

0

(𝐹(𝑥)){𝑓(𝑥)} −
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝑥𝛼(𝑢+1)−1

𝜆𝛼(𝑢+1)
�̅�(𝑥)} 𝑑𝑥 = 0 



640 POWER GENERALIZED WEIBULL DISTRIBUTION BASED ON GENERALISED ORDER STATISTICS 
 

 

It now follows from Proposition 1 

f(x) =
𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

𝑥𝛼(𝑢+1)−1

𝜆𝛼(𝑢+1)
�̅�(𝑥)

∞

𝑢=0

 

or 

𝑓(𝑥)

�̅�(𝑥)
=

𝛼

𝛽
∑ (

1
𝛽

− 1

𝑢
)

∞

𝑢=0

𝑥𝛼(𝑢+1)−1

𝜆𝛼(𝑢+1)
 

which proves that 

F(x) = 1 − 𝑒
1−[1+(

𝑥
𝜆

)𝛼]
1
𝛽

; 𝑥 > 0, 𝛼, 𝛽, 𝜆 > 0 

5 Numerical Computation 

The recurrence relations obtained in the preceding sections allow us to evaluate the means and 

variances of all order statistics and record values for all sample sizes in a simple recursive manner. In 

Figure 3, we have presented the means of all order statistics for sample size n = 1(1)5 and α = 

0.5(0.5)3.5, β = 0.5 and λ = 0.5 and we observe that the mean of order statistics decreasing as α 

increasing. The variances are presentation in Figure 4 of all order statistics for different values of r and 

n for α = 0.5(0.5)3.5, β = 0.5 and λ = 0.5 and we observe that as α increases, variances of order statistics 

decreases. From Figure 5-6, similar conclusion can be drawn for mean and variances of record values. 

Tabular values of means and variances of order statistics and record values are presented in Appendix. 

  

Figure 3: Mean of order statistics for α = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 
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Figure 4: Variance of order statistics for α = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5. 

 

 

Figure 5: Mean of record values for α = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5. 

  

Figure 6: Variance of record values for α = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5. 
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6 Discussion 

In this paper, recurrence relations for single and product moments of generalized order 

statistics from PGW distribution have been derived. The expressions of conditional moments of 

general- ized order statistics from PGW distribution have also been derived. One characterization of 

the distributions is shown. The numerical computations of moments are shown for order statistics as 

well as record values and we see that the moments of order statistics and record values of the 

distribution are well behaved. This will encourage the study of the other properties of generalized order 

statistics for future scope of research. 
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