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Abstract: Minimum Hellinger distance estimation (MHDE) for parametric model is 

obtained by minimizing the Hellinger distance between an assumed parametric model 

and a nonparametric estimation of the model. MHDE receives increasing attention for 

its efficiency and robustness. Recently, it  has been extended from parametric models 

to semiparametric models. This manuscript considers a two-sample semiparametric 

location-shifted model where two independent samples are generated from two 

identical symmetric distributions with different location parameters. We propose to use 

profiling technique in order to utilize the information from both samples to estimate 

unknown symmetric function. With the profiled estimation of the function, we propose 

a minimum profile Hellinger distance estimation (MPHDE) for the two unknown 

location parameters. This MPHDE is similar to but dif- ferent from the one introduced 

in Wu and Karunamuni (2015), and thus the results presented in this work is not a 

trivial application of their method.  The difference is due to the two-sample nature of 

the model and thus we use different approaches to study its asymptotic properties such 

as consistency and asymptotic normality. The efficiency and robustness properties of 

the proposed MPHDE are evaluated empirically though simulation studies. A real data 

from a breast cancer study is analyzed to illustrate the use of the proposed method. 

 

Key words: Minimum Hellinger distance estimation, profiling, two-sample 

location-shifted model, efficiency, robustness. 

 

1 Introduction 

Minimum distance estimation of unknown parameters in a parametric model is obtained by 

minimizing the distance between a nonparametric distribution esti- mation (such as empirical, kernel, 

etc) and an assumed parametric model. Some well-known examples of minimum distance estimation 

include least-squares esti- mation and minimum Chi-square estimation. Among different minimum 

distance estimations, minimum Hellinger distance estimation (MHDE) receives increasing attention 

for its superior properties in efficiency and robustness. The idea of the estimation using Hellinger 
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distance was firstly introduced by Beran (1977) for parametric models. Simpson (1987) examined the 

MHDE for discrete data. Yang (1991) and Ying (1992) studied censored data in survival analysis by 

using the MHDE. Woo and Sriram (2006) and Woo and Sriram (2007) employed the MHDE method 

to investigate mixture complexity in finite mixture models. The MHDEs for mixture models were 

also studied by  many literatures such as Lu et al. (2003) and Xiang et al. (2008). Other applications 

of the MHDE method can be referred to Takada (2009), N’drin and Hili (2013) and Prause et al. 

(2016). 

Recently, the MHDE method was extended to semiparametric model of gen- eral form. Wu and 

Karunamuni (2009) and Wu and Karunamuni (2012) proved that MHDE retains good efficiency and 

robustness properties for semiparametric model of general form under certain conditions. However, 

the MHDE usually re- quires an estimate of infinite-dimensional nuisance parameter in 

semiparametric models, which leads to computational difficulty. To solve this problem, Wu and 

Karunamuni (2015) proposed a minimum profile Hellinger distance estimation (MPHDE). The 

MPHDE method profiles out the infinite-dimensional nuisance parameter and thus circumvents the 

computational obstacle. Wu and Karuna- muni (2015) derived the MPHDE for one-sample 

symmetric location model, while in real applications two-sample location-shifted symmetric model is 

often encoun- tered. For example, as we  will show in data application section, the comparison  of 

biomarkers across different patient groups requires two-sample models. There- fore, in this 

manuscript we extend the MPHDE approach to two-sample location- shifted symmetric model. 

The idea of using profiling approach is quite intuitive but its theoretical frame- work is often 

complicated to study. For one-sample case, Wu and Karunamuni (2015) used the Hellinger distance 

between the location model and its nonpara- metric estimation. However, this method does not work 

for our two-sample case because it cannot utilize the information for the nuisance parameter 

contained in both samples. To handle the two-sample estimation, we propose a new Hellinger 

distance between the location-shifted model and its estimation that involves the nuisance density 

estimation and the location parameters of our interest. Conse- quently, a novel approach is proposed 

to explore the asymptotic properties of the resulted estimator obtained from minimizing the new 

Hellinger distance. 

The remainder of this paper is organized as follows. In Section 2 we propose  a MPHDE  for  

the  two-sample semiparametric  location-shifted  model.  Section 3 presents the asymptotic 

properties of the proposed MPHDE with all proofs deferred to appendix. In Section 4, we evaluate 

the performance of the MPHDE  by simulation studies compared with commonly used least-squares 

and maximum 

likelihood estimation methods. A data from a real breast cancer study is analyzed in Section 5 to 

demonstrate the use of the proposed method. Concluding remarks are given in Section 6. 
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2 MPHDE for Two-Sample Location Model 

Suppose we have two samples with n0 and n1 independent and identically dis- tributed (i.i.d.) 

random variables (r.v.s), respectively. Denote the two samples as𝑋𝑖, 𝑖 = 1,⋯ , 𝑛0 , and 𝑌𝑗, 𝑗 =

1,⋯ , n1. We assume that the two samples are independent and they follow  

𝑋1,⋯,𝑋𝑛0    ~
ⅈ.ⅈ.𝑑.𝑓

0(⋅)
=𝑓(∙−𝜃0)

𝑌1,⋯,𝑌𝑛1    ~
ⅈ.ⅈ.𝑑.𝑓

1(⋅)
=𝑓(∙−𝜃1)

        (1) 

where θ = (θ0, θ1)
⊤is the location parameter vector of our interest and the unknown f ∈ H is 

treated as the nuisance parameter. Here H is the collection of all continuous even densities. We focus 

on model (1) in this paper and work on the inference for the location parameter θ. Model (1) could be 

represented in a regression form. Let total sample size be n = n0 + n1. The r.v.s in model (1) could 

be written as{(𝑍𝑖, 𝐷𝑖): 𝑖 = 1,⋯ , 𝑛}, where (𝑍1, … , 𝑍𝑛)
⊤ = (𝑋1,⋯ , 𝑋𝑛0 , 𝑌1, ⋯ ,⋅ 𝑌𝑛1)

⊤
 and Di is an 

indicator function taking Di = 1  if  Zi is from  f1 and 0 otherwise.Model  (1) can be equivalently 

represented as 

𝑍𝐼̇ = 𝜃0 + (𝜃1 − 𝜃0)𝐷𝑖 + 𝜖𝑖 

where the i.i.d. error terms ϵi’s are from f . 

For any given θ, since X1 – θ0, . . . , Xn0 – θ0, Y1 – θ1, . . . , Yn1 − θ1 are i.i.d. r.v.s from f , we can 

estimate the unknown f using the following kernel density estimator based on the pooled sample: 

𝑓(𝜃；𝑥) =
1

𝑛𝑏𝑛
{∑𝐾[

𝑥 − (𝑋𝑖 − 𝜃0)

𝑏𝑛
]

𝑛0

𝑖=1

+∑𝐾[
𝑥 − (𝑌𝑖 − 𝜃1)

𝑏𝑛
]

𝑛1

𝑖=1

} 

=
𝑛0

𝑛
{

1

𝑛0𝑏𝑛
∑𝐾[

𝑥 − (𝑋𝑖 − 𝜃0)

𝑏𝑛
]

𝑛0

𝑖=1

+
𝑛1
𝑛
∑𝐾[

𝑥 − (𝑌𝑖 − 𝜃1)

𝑏𝑛
]

𝑛1

𝑖=1

} 

= 𝜌0𝑓0(𝑥 + 𝜃0) + 𝜌1𝑓1(𝑥 + 𝜃1) 

where 𝜌0 = 𝑛0/𝑛, 𝜌1 = 1 − 𝜌0 = 𝑛1/𝑛, kernel function K is a symmetric density function, the 

bandwidth bn is a sequence of positive constants such that bn → 0 as n → ∞, and 𝑓0 and 𝑓1  are 

kernel density estimators of f0 and f1, respectively. To be specific, f0 and f1 have 

𝑓0̂(𝑥) =
1

𝑛0𝑏𝑛
∑ 𝐾(

𝑥−𝑋ⅈ

𝑏𝑛
)

𝑛0
𝑖=1        (3) 

and 

𝑓1̂(𝑥) =
1

𝑛1𝑏𝑛
∑ 𝐾(

𝑥−𝑌ⅈ

𝑏𝑛
)

𝑛1
𝑖=1        (4) 

Even though ρ0 and ρ1 depend on n, we depress their dependence for notation simplicity. We 

generally require that ni/n → ρi as n → ∞ with ρi ∈ (0, 1), i = 0, 1.  Based  on (2), f0 and f1 can also 

be estimated respectively by 

𝑓0̃(𝑥) = 𝑓(𝜃；𝑥 − 𝜃0) = 𝜌0𝑓0(𝑥) + 𝜌1𝑓1(𝑥 − 𝜃0 + 𝜃1) 

and 
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𝑓1̃(𝑥) = 𝑓(𝜃；𝑥 − 𝜃1) = 𝜌0𝑓0(𝑥 + 𝜃0 − 𝜃1) + 𝜌1𝑓1(𝑥) 

To obtain the MPHDE of θ, we firstly profile the unknown nuisance parameter f out by 

minimizing the sum of the squared Hellinger distance for the two samples, i.e. 

𝑚𝑖𝑛
𝑓∈𝐻

{||𝑓0̃

1
2(𝑥) − 𝑓0

1
2(𝑥)||

2

+ ||𝑓1̃

1
2(𝑥) − 𝑓1

1
2(𝑥)||

2

}

= 𝑚𝑖𝑛
𝑓∈𝐻

{||[𝜌0𝑓0(𝑥) + 𝜌1𝑓1(𝑥 − 𝜃0 + 𝜃1)]
1
2 − 𝑓

1
2(𝑥 − 𝜃0)||

2

+ ||[𝜌0𝑓0(𝑥 + 𝜃0 − 𝜃1) + 𝜌1𝑓1(𝑥)]
1
2 − 𝑓

1
2(𝑥 − 𝜃1)||

2

}

= 𝑚𝑖𝑛
𝑓∈𝐻

{2 ||[𝜌0𝑓0(𝑥 + 𝜃0) + 𝜌1𝑓1(𝑥 + 𝜃1)]
1
2 − 𝑓

1
2(𝑥)||

2

}

= 4{1 −𝑚𝑎𝑥
𝑓∈𝐻

∫[𝜌0𝑓0(𝑥 + 𝜃0) + 𝜌1𝑓1(𝑥 + 𝜃1)]
1
2 𝑓

1
2(𝑥) 𝑑𝑥}

= 4 {1 −𝑚𝑎𝑥
𝑓∈𝐻

∫𝑓
1
2(𝜃；𝑥) 𝑓

1
2(𝑥) 𝑑𝑥} 

Note that 𝑓
1

2(𝜃;⋅) can be represented  as 

𝑓
1
2(𝜃; 𝑥) =

1

2
[𝑓
1
2(𝜃; 𝑥) + 𝑓

1
2(𝜃; −𝑥)] +

1

2
[𝑓
1
2(𝜃; 𝑥) − 𝑓

1
2(𝜃;−𝑥)] = 𝜂1̂(𝜃; 𝑥) + 𝜂2̂(𝜃; 𝑥), 

say, 

where 𝜂1̂(𝜃;．) is an even function while 𝜂2̂(𝜃;．) is an odd function. As a result, 

∫𝑓
1
2(𝜃；𝑥) 𝑓

1
2(𝑥) 𝑑𝑥 = ∫[𝜂1̂(𝜃; 𝑥) + 𝜂2̂(𝜃; 𝑥)]𝑓

1
2(𝑥) 𝑑𝑥 = ∫𝜂1̂(𝜃; 𝑥)𝑓

1
2(𝑥) 𝑑𝑥 

By the Cauchy-Schwarz inequality, ∫𝜂1̂(𝜃; 𝑥)𝑓
1

2(𝑥) 𝑑𝑥 is uniquely maximized by  

𝑓
1

2(𝑥) = 𝜂1̂(𝜃; 𝑥)/‖𝜂1̂(𝜃; 𝑥)‖ and thus  𝑓
1

2(𝑥) = 𝜂1̂
2(𝜃; 𝑥)/‖𝜂1̂(𝜃; 𝑥)‖

2 is the profiled f . 

Therefore, after replacing 𝑓
1

2(𝑥) with 𝜂1̂(𝜃; 𝑥)/‖𝜂1̂(𝜃; 𝑥)‖, the MPHDE 𝜃 of θ is given by 

𝜃 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑡=(𝑡0,𝑡1)

⊤∈ℝ2
∫𝜂1̂(𝑡; 𝑥)

𝜂1̂(𝑡;𝑥)

‖𝜂1̂(𝑡;𝑥)‖
𝑑𝑥            

= 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑡∈ℝ2

 ‖𝜂1̂(𝑡; 𝑥)‖               

= 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑡∈ℝ2

‖𝑓
1

2(𝑡; 𝑥) + 𝑓
1

2(𝑡; −𝑥)‖         (5) 

= 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑡∈ℝ2

∫[𝜌0𝑓0(𝑥 + 𝑡0) + 𝜌1𝑓1(𝑥 + 𝑡1)]
1
2[𝜌0𝑓0(−𝑥 + 𝑡0) + 𝜌1𝑓1(−𝑥 + 𝑡1)]

1
2 𝑑𝑥 

= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑡∈ℝ2

‖𝑓
1

2(𝑡; 𝑥) − 𝑓
1

2(𝑡;−𝑥)‖             
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= :  𝑇(𝑓0, 𝑓1) 

where in the last equality we represent 𝜃 as a functional T which only depends on 𝑓0 and 𝑓1. 

As there is no explicit expression of the solution to the above optimization in (5), 𝜃 has to be 

calculated numerically. In this manuscript, the computation was implemented by the R function “nlm” 

with the medians of Xi and Yi to be the initial values of 𝜃0 and 𝜃1, respectively. The numerical 

optimization leads to satisfactory results in our simulation and data application studies. All of them 

successfully achieve convergence. 

Remark 1. Even though θ can take any value in ℝ2, we can use a large enough compact subset 

of ℝ2, say Θ = [−A, A]2 with A to be a large positive number, so that θ is an interior point of Θ, i.e.  

θ ∈ int(Θ). Thus in what follows we will optimize θ over Θ instead of ℝ2 simply for technical 

convenience. 

Remark 2. The proposed MPHDE involves the mixture model 𝜌0𝑓(．− 𝜃0) + 𝜌1𝑓(．− 𝜃1) 

which has been studied by many literatures such as  ecently Xi- ang et al. (2014), Erisoglu and 

Erisoglu (2013), and Ngatchou-Wandji and Bulla(2013). For the identifiability of this model, we can 

assume θ0 < θ1 without any loss of generality. By Theorem 2 of Hunter et al. (2007), this mixture 

model is identifiable if ρ0 ∈ (0, 0.5) ∪ (0.5, 1). If f is unimodal, then this mixture model is 

identifiable even when ρ0 = 0.5. Therefore the identifiability is not a problem for the MPHDE and we 

will assume from now on that the mixture model is identifiable for the sake of simplicity. 

Remark 3. For one-sample location model 𝑓(．− 𝜃), the Hellinger distance is between the 

location model, involving both f and θ together, and its nonparametric estimation. For this 

two-sample model, in order to use the information about the nuisance parameter f contained in both 

the first and second samples, the Hellinger distance is between f and its estimation that involves the 

nuisance density estimation and the location parameters of our interest. 

 

3 Asymptotic Properties 

In this section, we discuss the asymptotic distribution of the MPHDE 𝜃 given in (5) for the 

two-sample semiparametric location-shifted model (1). Note that 𝜃 given in (5) is a bit different 

than the MPHDE defined in Wu and Karunamuni (2015) for general semiparametric models in the 

sense that the former incorpo- rates the model assumption in the nonparametric estimation of f while 

the later uses a completely nonparametric estimation of f not depending on the model at all. In this 

sense, we can not apply the asymptotics obtained in Wu and Karuna- muni (2015) to our model (1). 

Instead we will directly derive below the existence,consistency and asymptotic normality of 𝜃. Let F 

be the set of all densities with respect to (w.r.t.) Lebesgue measure on the real line. We first give in 

the next theorem the existence and uniqueness of the MPHDE 𝜃. 

 

Theorem 1. Suppose that T is defined by (5). Then, 

(i) For any g0, g1 ∈ F, there exists T (g0, g1) satisfying (5). 
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(ii) If T (g0, g1) is unique, then T is continuous at (𝑔0, 𝑔1)
⊤ in the Hellinger metric. In another 

word, T (gn0, gn1) → T (g0, g1) for any sequences gn0  and gn1 such that ‖𝑔𝑛𝑖
1/2 − 𝑔𝑖

1/2‖ → 0 as  

n → ∞, i = 0, 1. 

 

(iii) The MPHDE is Fisher-consistent, i.e.  T (f0, f1) = θ  uniquely for every (𝑓0,𝑓1)
⊤ 

satisfying model (1). 

The following theorem is a consequence of Theorem 1 which gives the consis- tency of the 

MPHDE 𝜃 defined in (5). 

Theorem 2. Suppose that the kernel K in (3) and (4) are absolutely continuous, has compact 

support and bounded first derivative, and the bandwidth bn satisfies bn → 0 and 𝑛1/2𝑏𝑛 → ∞ as  

n → ∞. If f in model (1) is uniformly continuous on its support, then ‖𝑓𝑖
1/2

− 𝑓𝑖
1/2‖

𝑝
→ 0, i = 0, 1, 

and furthermore the MPHDE 𝜃
𝑝
→ 𝜃. 

The next Theorem 3 gives the expression of the different 𝜃 − 𝜃 which will be used to establish 

the asymptotic normality of θˆ in Theorem 4. 

Theorem 3. Assume that the conditions in Theorem 2 are satisfied. Further suppose f has 

uniformly continuous first derivative. Then 

∑ (𝜃 − 𝜃)1 = −(𝜌0
𝜌1
) [𝜌0 ∫

𝑓′

𝑓
(𝑥) 𝑓0(𝑥 + 𝜃0) 𝑑𝑥 + 𝜌1 ∫

𝑓′

𝑓
(𝑥) 𝑓1(𝑥 + 𝜃1) 𝑑𝑥] ∙ (1 + 𝑜𝑝(1)), (6) 

where 

∑ =
1
(
𝜌0

2 𝜌0𝜌1
𝜌0𝜌1 𝜌1

2 )∫
(𝑓′)2

𝑓
(𝑥) 𝑑𝑥 − (

𝜌0 0
0 𝜌0

)∫𝑓′′(𝑥)𝑑𝑥 

With (6) and some regularity condition we can immediately derive the asymptotic distribution of 

𝜃 − 𝜃 given in the next theorem. 

Theorem 4. Assume that the conditions in Theorem 3 are satisfied and in addition f has 

continuous third derivative, ∫𝑓′′(𝑥) 𝑑𝑥 ≠ ∫
(𝑓′)2

𝑓
(𝑥) 𝑑𝑥 and the bandwidth satisfies 𝑛𝑏6𝑛 → 0 as 

n → ∞. Then the asymptotic distribution of √𝑛(𝜃 − 𝜃) is N (0, Σ) with covariance matrix Σ defined 

by 

∑=

{
 
 

 
 ∫

(𝑓′)2

𝑓
𝑑𝑥 𝛴1

−1 (
𝜌0

2 𝜌0𝜌1
𝜌0𝜌1 𝜌1

2 )𝛴1
−1,              𝑖𝑓 ∫𝑓′′(𝑥) 𝑑𝑥 ≠ 0

[∫
(𝑓′)2

𝑓
𝑑𝑥]−1 (

1/𝜌0 0
0 1/𝜌0

) ,                     𝑖𝑓 ∫ 𝑓′′(𝑥) 𝑑𝑥 = 0

 

Remark 3. Distributions satisfying ∫𝑓′′(𝑥) 𝑑𝑥 = 0 include those with support on the whole real 

line, such as normal and t distributions. The distributions satisfying ∫𝑓′′(𝑥) 𝑑𝑥 ≠ 0 include those 

with finite support and its first derivative evaluated at boundary of support is non-zero, such as 

f(x) =
3

4
(1 − 𝑥2)𝑓𝑜𝑟|𝑥| ≤ 1. 
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Remark 4. If the two samples in (1) are actually a single sample from the mixture 𝜌0𝑓(∙ −𝜃0) +

𝜌1𝑓(∙ −𝜃1) with known classification for each data point, then by comparing the lower bound of 

asymptotic variance described in Wu and Karunamuni (2015) with the results in our Theorem 4, we 

can conclude that the proposed MPHDE 𝜃 defined in (5) is efficient, in the semiparametric sense, 

for any f . In addition, if ∫𝑓′′(𝑥) 𝑑𝑥 = 0 , then this semiparametric model is an adaptive model and 

the proposed MPHDE 𝜃 is an adaptive estimator. 

 

4 Simulation Studies 

We assess the empirical performance of the proposed MPHDE in Section 2 for the two-sample 

location-shifted model. Five hundred simulations are run for each parameter configuration. We 

consider a parameter setting of (𝜃0, 𝜃1)
⊤ = (0,1)⊤ and simulate four different distributions for f (x): 

normal, Student’s t, triangular and Laplace. We set the standard deviation to be 1 for normal 

distribution, the degrees of freedom to be 4 for t distribution. The triangular distribution has density 

function 

𝑓(𝑥) =
𝑐 − |𝑥|

𝑐2
, |𝑥| ≤ 𝑐, 

and we set c = 1. The Laplace distribution has density function 

𝑓(𝑥) =
1

2𝑏
𝑒𝑥𝑝 (−

|𝑥|

𝑏
), 

and we set b = 1.  The bandwidth bn is chosen to be bn = 𝑛−1/5according to the bandwidth 

requirement in Theorem 4. The biweight kernel 𝐾(𝑡) =
15

16
(1 − 𝑡2)2for |t| ≤ 1 is employed in the 

simulation studies. We consider both smaller sample sizes n0 = n1 = 20 and larger sample sizes n0 = 

n1 = 50. 

As a comparison, we also give both least-squares estimation (LSE) and max- imum likelihood 

estimation (MLE). For the two-sample location-shifted model (1) under our consideration, simple 

calculation shows that the LSEs of θ0 and θ1 are essentially the sample means �̅� and �̅� respectively. 

With f assumed known, straight calculation says that the MLEs of θ0 and θ1 are sample means for 

normal case and sample medians for Laplace case, while there is no explicit expression of the MLEs 

for Student’s t and Triangular populations. Tables 1 and 2 display the simulation results of MPHDE, 

LSE and MLE methods for sample sizes n0 = n1 = 20 and n0 = n1 = 50, respectively. In the tables, 

the term Bias represents the average of biases over the 500 repetitions; the terms RMSE and SE are 

the average of root mean squared errors and empirical standard errors, respectively; and the term CR 

represents the empirical coverage rate for 95% confidence intervals. From Tables 1 and 2 we can see 

that all the three estimation approaches have fairly small bias. In terms of standard errors, the 

MPHDE has worse performance than the LSE and the MLE regardless of sample size. 

To investigate the robustness properties of the proposed MPHDE and make comparison, we 
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examine the performance of the three methods under data con- tamination. In this simulation, the 

data from model (1) is intentionally contami- nated by a single outlying observation. This is 

implemented, say for n0 = n1 = 20,by replacing the last observation X20 with an integer number z 

varying from −20 and 20. To quantify the robustness, the α-influence function (α-IF) discussed by Lu 

et al. (2003) is used. The α-IF for parameter θi, i = 0, 1, is defined as  

𝐼𝐹(𝑧) = 𝑛𝑖(𝜃𝑖
𝑧 − 𝜃𝑖), 

where 𝜃𝑖
𝑧 represents the estimate based on the contaminated data with outlying observation  

X20 = z and 𝜃𝑖 denotes the estimate based on the uncontaminated 

 

Table 1: Simulation results for n0 = n1 = 20. 

MPHDE Bias(θ0) RMSE(θ0) SE(θ0) CR(θ0) Bias(θ1) RSME(θ1) SE(θ1) CR(θ1) 

Normal -0.025 0.307 0.331 0.924 -0.012 0.325 0.341 0.948 

Student’s t -0.008 0.350 0.380 0.936 -0.025 0.340 0.389 0.946 

Triangular 0.002 0.115 0.115 0.918 -0.005 0.114 0.115 0.918 

Laplace 0.006 0.310 0.343 0.952 -0.024 0.297 0.344 0.964 

LSE Bias(θ0) RMSE(θ0) SE(θ0) CR(θ0) Bias(θ1) RSME(θ1) SE(θ1) CR(θ1) 

Normal -0.001 0.234 0.213 0.944 -0.005 0.229 0.214 0.926 

Student’s t -0.014 0.312 0.298 0.944 -0.030 0.319 0.299 0.930 

Triangular -0.0001 0.095 0.088 0.914 -0.002 0.095 0.088 0.910 

Laplace -0.004 0.332 0.298 0.916 -0.002 0.327 0.298 0.916 

MLE Bias(θ0) RMSE(θ0) SE(θ0) CR(θ0) Bias(θ1) RSME(θ1) SE(θ1) CR(θ1) 

Normal -0.001 0.234 0.213 0.944 -0.005 0.229 0.214 0.926 

Student’s t -0.011 0.266 0.292 0.950 -0.030 0.277 0.293 0.958 

Triangular -0.001 0.107 0.106 0.928 -0.008 0.102 0.105 0.916 

Laplace -0.0009 0.274 0.287 0.932 -0.023 0.257 0.287 0.950 
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Table 2:  Simulation results for n0 = n1 = 50. 

MPHDE Bias(θ0) RMSE(θ0) SE(θ0) CR(θ0) Bias(θ1) RSME(θ1) SE(θ1) CR(θ1) 

Normal -0.009 0.200 0.220 0.942 0.007 0.205 0.218 0.946 

Student’s t 0.008 0.221 0.244 0.962 0.012 0.228 0.243 0.942 

Triangular -0.004 0.070 0.074 0.950 -0.004 0.070 0.074 0.950 

Laplace -0.010 0.187 0.207 0.968 -0.007 0.187 0.205 0.956 

LSE Bias(θ0) RMSE(θ0) SE(θ0) CR(θ0) Bias(θ1) RSME(θ1) SE(θ1) CR(θ1) 

Normal -0.007 0.139 0.139 0.958 0.003 0.143 0.138 0.944 

Student’s t -0.003 0.197 0.193 0.954 -0.001 0.194 0.192 0.958 

Triangular -0.003 0.057 0.057 0.940 -0.002 0.056 0.057 0.942 

Laplace -0.006 0.199 0.194 0.944 -0.006 0.189 0.194 0.952 

MLE Bias(θ0) RMSE(θ0) SE(θ0) CR(θ0) Bias(θ1) RSME(θ1) SE(θ1) CR(θ1) 

Normal -0.007 0.139 0.139 0.958 0.003 0.143 0.138 0.944 

Student’s t -0.001 0.169 0.174 0.954 0.003 0.173 0.173 0.936 

Triangular -0.003 0.060 0.066 0.946 -0.003 0.062 0.066 0.952 

Laplace -0.012 0.154 0.167 0.940 -0.011 0.157 0.164 0.954 

 

data. The α-IF is calculated by using the change in the estimate before and after contamination 

divided by the contamination rate, i.e. 1/ni. We can similarly calculate the α-IF when outlying 

observations contaminate the second sample. The simulation results in Figure 1 are for θ0, n0 = n1 = 

20 and the case that the  first sample is contaminated. The results for θ1, n0 = n1 = 50 or the case 

that the second sample is contaminated are very similar to those in Figure 1 and thus omitted to save 

space. 

Figure 1 presents the average α-IFs over 500 simulation runs for the MPHDE, MLE and LSE of 

θ0 under normal, t, triangular and Laplace distributions. Regardless of the population distribution, the 

α-IF of the MPHDE are bounded and converge to the same small constant when the value of the 

outlying observation gets larger and larger on either side, while the α-IFs of the MLE and LSE are 

unbounded in general. Therefore, compared to the MLE and LSE methods, the MPHDE has a little 

lower efficiency but this limitation is compensated by its excellent robustness. In summary, the 

MPHDE method always results in reasonable estimates no matter data is contaminated or not, 

whereas the MLE and LSE methods under contaminated data lead to significantly biased estimates. 
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5 Data Applications 

In this section, we demonstrate the use of the proposed MPHDE method through analyzing a 

breast cancer data collected in Calgary, Canada (Feng et al., 2016). Breast cancer is regarded as the 

most common cancer and the second leading cause of cancer death for females in North America. 

Existing studies suggest that it would be more informative to use some protein expression levels as 

indicators of biological behavior (Feng et al., 2015). These biomarkers could reflect genetic 

properties in cancer formation and cancer aggressiveness. Our dataset has 316 patients diagnosed 

with breast cancer between years 1985 and 2000. Two interested biomarkers measured on these 

patients are Ataxia telangiectasia mutated (ATM) and Ki67. ATM is a protein to support maintaining 

genomic stability. Comparing with normal breast tissue, ATM could be significantly reduced in the 

tissue with breast cancer. Ki67 is a protein expressed exclusively in proliferating cells. It is often 

used as a prognostic marker in breast cancer. 

Let 𝜃(1)and 𝜃(2) denote the location parameters in the distributions of the protein expression 

level of ATM and Ki67 biomarkers, respectively. Our research focuses on the comparison of the 

protein expression levels across both cancer stages (Stage) and lymph node (LN). As for cancer stage, 

𝜃0
(𝑘)

 and 𝜃1
(𝑘)

 (k = 1, 2) denote the location parameters in the distributions of protein expression 

level for Stage I and Stage II/III patients, respectively. Regarding LN status, 𝜃0
(𝑘)

 and 𝜃1
(𝑘) (k = 1, 

2) denote the location parameters in the distributions of protein expression level for negative LN 

(LN-) and positive LN (LN+) patients,  respectively.  Figure  2 displays the boxplots for ATM 

and Ki67 expression levels across both cancer stages and LN statuses, respectively. From this figure 

we do see the difference in location of both ATM and Ki67 variables across both cancer stages and 

LN statuses, especially for Ki67 considering the smaller variation in expression level. 
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(a) Normal          (b) Student’s t     

 

(c) Triangular      (d) Laplace     

Figure 1: The average α-IFs under (a) normal distribution, (b) Student’s t dis- tribution, (c) triangular 

distribution and  (d)  Laplace  distribution.  Thin-solid line represents the zero horizontal baseline, and the 

thick-solid, dot-dashed and dashed lines represent respectively the MPHDE, LSE and MLE approaches. 
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Figure 2: Boxplots for ATM and Ki67 expression levels across cancer stages and LN statuses  

(0: negative; > 0: positive). 

To compare the two biomarkers ATM and Ki67, we calculate the MPHDEs 𝜃0
(𝑘)

 and 𝜃1
(𝑘)

 for 

both k = 1 and k = 2. The parameter estimates (Est.), estimated standard errors (SE), 95% confidence 

intervals (CI) and p-values are reported in Table 3. Based on the results in this table, both of the two 

biomarkers have significant difference across cancer stages and LN statuses. For cancer stage, ATM 

has higher expression level in stage I group than in stage II/III group (p = 0.046). On the other hand, 

Ki67 has lower expression level in stage I group than in stage II/III group (p < 0.001). For LN status, 

ATM has higher expression 
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Table 3: Breast cancer data analysis results based on MPHDE. 

Cancer Stage 

Biomarker Group Est. SE 95%CI p-value 

ATM I �̂�0
(1)

 90.35 (73.33,107.37) 0.046 

ATM II/III �̂�1
(1)

 68.11 (54.39,81.84) 

Ki67 I �̂�0
(2)

 6.29 (5.05,7.53) <0.001 

Ki67 II/III �̂�1
(2)

 8.63 (5.55,11.70) 

Lymph node(LN)Status 

Biomarker Group Est. SE 95%CI p-value 

ATM LN－ �̂�0
(1)

 95.89 (76.92, 114.87) 0.019 

ATM LN＋ �̂�1
(1)

 70.17 (60.10,80.25) 

Ki67 LN－ �̂�0
(2)

 6.82 (6.13,7.49) <0.001 

Ki67 LN＋ �̂�1
(2)

 10.02 (5.20,14.81) 

 

level in negative LN group than in positive LN group (p = 0.019), while Ki67 has lower 

expression level in negative LN group than in positive LN group (p < 0.001). 

 

6 Concluding Remarks 

In this paper, we propose to use MPHDE for the inferences of the two-sample semiparametric 

location-shifted model. Compared with commonly used least- squares and maximum likelihood 

approaches, the proposed method leads to ro- bust inferences. Simulation results demonstrate 

satisfactory performance and the analysis for the breast cancer data exemplifies its utility in real 

practice. 
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Appendix 

The proofs of Theorems 1, 2, 3 and 4 are presented in this section. The techniques used in the 

proofs are similar to those in Karunamuni and Wu (2009). 

A1. Proof of Theorem 1. (i) With 𝑡 = (𝑡0,𝑡1)
⊤, define d(t) = ‖[𝜌0𝑔0(𝑥 + 𝑡0) + 𝜌1𝑔1(𝑥 +

𝑡1)]
1/2 + [𝜌0𝑔0(−𝑥 + 𝑡0) + 𝜌1𝑔1(−𝑥 + 𝑡1)]

1/2‖. For any sequence 𝑡𝑛 = (𝑡𝑛0,𝑡𝑛1)
⊤ such that  

tn → t as n → ∞, 

|𝑑(𝑡𝑛) − 𝑑(𝑡)| 

≤ ‖[𝜌0𝑔0(𝑥 + 𝑡𝑛0) + 𝜌1𝑔1(𝑥 + 𝑡𝑛1)]
1
2 + [𝜌0𝑔0(−𝑥 + 𝑡𝑛0) + 𝜌1𝑔1(−𝑥 + 𝑡𝑛1)]

1
2

− [𝜌0𝑔0(𝑥 + 𝑡0) + 𝜌1𝑔1(𝑥 + 𝑡1)]
1
2 − [𝜌0𝑔0(−𝑥 + 𝑡0) + 𝜌1𝑔1(−𝑥 + 𝑡1)]

1
2‖ 

≤ ‖[𝜌0𝑔0(𝑥 + 𝑡𝑛0) + 𝜌1𝑔1(𝑥 + 𝑡𝑛1)]
1
2 − [𝜌0𝑔0(𝑥 + 𝑡0) + 𝜌1𝑔1(𝑥 + 𝑡1)]

1
2‖

+ ‖[𝜌0𝑔0(−𝑥 + 𝑡𝑛0) + 𝜌1𝑔1(−𝑥 + 𝑡𝑛1)]
1
2 − [𝜌0𝑔0(−𝑥 + 𝑡0) + 𝜌1𝑔1(−𝑥 + 𝑡1)]

1
2‖ 

≤ 2 {𝜌0∫|𝑔0(𝑥 + 𝑡𝑛0) − 𝑔0(𝑥 + 𝑡0)| 𝑑𝑥 + 𝜌1∫|𝑔1(𝑥 + 𝑡𝑛1) − 𝑔1(𝑥 + 𝑡1)| 𝑑𝑥}

1
2

 

2 {𝜌0∫|𝑔0(𝑥 + 𝑡𝑛0) − 𝑔0(𝑥 + 𝑡𝑛0 − 𝑡0)| 𝑑𝑥 + 𝜌1∫|𝑔1(𝑥 + 𝑡𝑛1) − 𝑔1(𝑥 + 𝑡𝑛1 − 𝑡1)| 𝑑𝑥}

1
2
. 

 

Since ∫𝑔0(𝑥) 𝑑𝑥 = ∫𝑔0(𝑥 + 𝑡𝑛0 − 𝑡0) 𝑑𝑥 = 1 , ∫[𝑔0(𝑥) − 𝑔0(𝑥 + 𝑡𝑛0 − 𝑡0)]
+ 𝑑𝑥 =

∫[𝑔0(𝑥) − 𝑔0(𝑥 + 𝑡𝑛0 − 𝑡0)]
− 𝑑𝑥  . Thus ∫|𝑔0(𝑥) − 𝑔0(𝑥 + 𝑡𝑛0 − 𝑡0)| 𝑑𝑥 = 2∫[𝑔0(𝑥) −

𝑔0(𝑥 + 𝑡𝑛0 − 𝑡0)]
+ 𝑑𝑥. We also have |𝑔0(𝑥) − 𝑔0(𝑥 + 𝑡𝑛0 − 𝑡0)|

+ ≤ 𝑔0(𝑥), thus by the Dominated  

Convergence Theorem ∫|𝑔0(𝑥) − 𝑔0(𝑥 + 𝑡𝑛0 − 𝑡0)| 𝑑𝑥 → 0  as  n → ∞. Similarly ∫|𝑔1(𝑥 +

𝑡𝑛1) − 𝑔1(𝑥 + 𝑡𝑛1 − 𝑡1)| 𝑑𝑥 → 0. Therefore 𝑑(𝑡𝑛) → 𝑑(𝑡) 𝑎𝑠 𝑛 → ∞, i.e. d(t) is continuous in t 

and then the maximum can be achieved over Θ. 

(ii) Define dn(t) = ‖[𝜌0𝑔𝑛0(𝑥 + 𝑡0) + 𝜌1𝑔𝑛1(𝑥 + 𝑡1)]
1/2 + [𝜌0𝑔𝑛0(−𝑥 + 𝑡0) + 𝜌1𝑔𝑛1(−𝑥 +

𝑡1)]
1/2‖ and  write 𝜃𝑛 = 𝑇(𝑔𝑛0, 𝑔1) and 𝜃 = 𝑇(𝑔𝑛0, 𝑔1). Then by similar argument as in (i), 

|𝑑𝑛(𝑡) − 𝑑(𝑡)| ≤ 2 {𝜌0∫|𝑔𝑛0(𝑥) − 𝑔0(𝑥)| 𝑑𝑥 + 𝜌1∫|𝑔𝑛1(𝑥) − 𝑔1(𝑥)| 𝑑𝑥}

1
2
. 

By Hӧlder’s inequality, ∫|𝑔𝑛0(𝑥) − 𝑔0(𝑥)| 𝑑𝑥 ≤ ‖𝑔𝑛0
1/2 + 𝑔0

1/2‖ ∙ ‖𝑔𝑛0
1/2 − 𝑔0

1/2‖ ≤

4‖𝑔𝑛0
1/2 − 𝑔0

1/2‖ . Similarly ∫|𝑔𝑛1(𝑥) − 𝑔1(𝑥)| 𝑑𝑥 → 0,  and thus supt |dn(t) −d(t)| → 0. This 

implies dn(θ) − d(θ) → 0 and dn(θn) − d(θn) → 0. If 𝜃𝑛 ≠ 𝜃, then the compactness of Θ ensures that 

there exists a subsequence {θm} ⊆ {θn} such that θm → θ′ ≠ θ, implying θ′ ∈ Θ and d(θm) → d(θ′) by 

continuity of d from (i). From above results, we have dm(θm) – dm(θ) → d(θ′) − d(θ). By the definition 

of θm, dm(θm) – dm(θ) ≥ 0. Hence, d(θ′) − d(θ) ≥ 0. But by the definition of θ and its uniqueness, d(θ) 

> d(θ′). This is a contradiction. Therefore, θn → θ. 
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(iii) For (𝑓0,𝑓1)
⊤ satisfying model (1), 

𝑇(𝑓0, 𝑓1) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑡∈𝛩

||[𝜌0𝑓(𝑥 − 𝜃0 + 𝑡0) + 𝜌1𝑓(𝑥 − 𝜃1 + 𝑡1)]
1
2

− [𝜌0𝑓(−𝑥 − 𝜃0 + 𝑡0) + 𝜌1𝑓(−𝑥 − 𝜃1 + 𝑡1)]
1
2||. 

By the symmetry of f and the identifiability of 𝜌0𝑓(∙ −𝜃0) + 𝜌1𝑓(∙ −𝜃1) , the minimum is 

achieved when θi – ti = −θi + ti, i.e. ti = θi for i = 0, 1. Thus 𝑇(𝑓0, 𝑓1) = 𝜃. 

A2. Proof of Theorem 2. If we can prove that ‖𝑓
𝑖

1

2 − 𝑓
𝑖

1

2‖
𝑝
→ 0 𝑎𝑠 𝑛 → ∞, i = 0, 1, then by (ii) 

and (iii) of Theorem 1, 𝑇(𝑓0̂, 𝑓1̂)
𝑝
→ 𝑇(𝑓0, 𝑓1), i.e.𝜃

𝑝
→ 𝜃. It is easy to show that 𝑠𝑢𝑝𝑥|𝑓0̂(𝑥) − 𝑓0(𝑥)|

𝑝
→0. Note that ‖𝑓0

1

2 − 𝑓0

1

2‖

2

≤ ∫ |𝑓0(𝑥) − 𝑓0̂(𝑥)|𝑑𝑥 by the same technique used in the proof of 

Theorem 1 (i) and Dominated Convergence Theorem we have ∫ |𝑓0(𝑥) − 𝑓0̂(𝑥)|𝑑𝑥
𝑝
→0 and thus 

‖𝑓0

1

2 − 𝑓0

1

2‖

2
𝑝
→0. Similarly ‖𝑓1

1

2 − 𝑓1

1

2‖

2
𝑝
→0. 

A3. Proof of Theorem 3. By Theorem 2, 𝜃 → 𝜃 𝑎𝑠 𝑛 → ∞. Thus for large n, 𝜃 ∈ int(Θ) since  

θ ∈ int(Θ). Denote ℎ𝑡(𝑥) = 𝜌𝑜𝑓0(𝑥 + 𝑡0) + 𝜌1𝑓1(𝑥 + 𝑡1) , ℎ̂𝑡(𝑥) = 𝜌𝑜𝑓0(𝑥 + 𝑡0) + 𝜌1𝑓1(𝑥 +

𝑡1), 𝑠𝑡 = ℎ𝑡
1/2

 and �̂�𝑡 = ℎ̂𝑡
1/2

. Note that hθ = f . We claim that for any t ∈ int(Θ) , any 2 × 1 real 

vector e of unit euclidean length and any scalar ϵ close to zero, 

𝑠𝑡+𝜖𝑒(𝑥) = 𝑠𝑡(𝑥) + 𝜖𝑒
⊤�̇�𝑡(𝑥) + 𝜖𝑒

⊤𝑢𝜖(𝑥)     (A.1) 

and 

�̇�𝑡+𝜖𝑒(𝑥) = �̇�𝑡(𝑥) + 𝜖�̈�𝑡(𝑥)𝑒 + 𝜖𝑣𝜖(𝑥)𝑒     (A.2) 

hold for both 𝑠𝑡  and �̂�𝑡 , where �̇�𝑡 = 
𝜕𝑠𝑡

𝜕𝑡
 and �̈�𝑡 = 

𝜕2𝑠𝑡

𝜕𝑡2
 with components in L2, and the 

components of 𝑢𝜖 and 𝑣𝜖 individually tend to zero in L2 as ϵ → 0. The proof of this statement is 

shown at the end of this proof. (A.1) yields that 

𝑙𝑖𝑚
𝜖→0

𝜖−1∫[ℎ̂𝑡+𝜖𝑒

1
2(𝑥)ℎ̂𝑡+𝜖𝑒

1
2(−𝑥) − ℎ̂𝑡

1
2(𝑥)ℎ̂𝑡

1
2(−𝑥)]𝑑𝑥 

= ∫[𝑒⊤�̇̂�𝑡(𝑥)�̂�𝑡(−𝑥) + 𝑒
⊤�̇̂�𝑡(−𝑥)�̂�𝑡(𝑥)] 𝑑𝑥 

= 2𝑒⊤∫ �̇̂�𝑡(𝑥)�̂�𝑡(−𝑥)𝑑𝑥 

Since 𝜃  is the optimizer defined in (5), we have ∫ �̇̂��̂�(𝑥)�̂��̂�(−𝑥) 𝑑𝑥 = 0 . 

Similarly ∫ �̇�𝜃(𝑥)𝑠𝜃(−𝑥) 𝑑𝑥 = 0 , ∫
𝜕ℎ̂𝑡

𝜕𝑡
(𝑥) 𝑑𝑥 =

𝜕

𝜕𝑡
∫ ℎ̂𝑡(𝑥) 𝑑𝑥 = 0  and ∫

𝜕ℎ𝑡

𝜕𝑡
(𝑥) 𝑑𝑥 =

𝜕

𝜕𝑡
∫ℎ𝑡(𝑥) 𝑑𝑥 = 0 for any t ∈ int(Θ). Thus (A.1) and (A.2) give 

0 = 2∫ �̇̂��̂�(𝑥)�̂��̂�(−𝑥) 𝑑𝑥 
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= 2∫[�̇̂�𝜃(𝑥)�̂�𝜃(−𝑥) + (𝜃 − 𝜃)
⊤
�̇̂�𝜃(−𝑥)�̂�𝜃(𝑥) + �̈̂�𝜃(𝑥)(𝜃 − 𝜃)�̂�𝜃(−𝑥)]𝑑𝑥 + 𝑜𝑝(𝜃 − 𝜃) 

= 2∫ �̇̂�𝜃(𝑥)�̂�𝜃(−𝑥)𝑑𝑥 + 2∫[�̇̂�𝜃(−𝑥)�̇̂�𝜃
⊤
(𝑥) + �̂�𝜃(−𝑥)�̈̂�𝜃(𝑥)] 𝑑𝑥 (𝜃 − 𝜃) + 𝑜𝑝(𝜃 − 𝜃) 

(A.3) 

Since 𝑓0 → 𝑓0 and𝑓1 → 𝑓1 uniformly by the proof of Theorem 2, 

−2∫[�̇̂�𝜃(−𝑥)�̇̂�𝜃
⊤
(𝑥) + �̂�𝜃(−𝑥)�̈̂�𝜃(𝑥)]𝑑𝑥 

= −2∫[�̇̂�𝜃(−𝑥)�̇̂�𝜃
⊤
(𝑥) + �̂�𝜃(−𝑥)�̈̂�𝜃(𝑥)]𝑑𝑥 + 𝑜𝑝(1) 

= −2∫{
1

4𝑓(𝑥)
 (
𝜌0𝑓

′(𝑥)

𝜌1𝑓
′(𝑥)

)(
𝜌0𝑓

′(−𝑥)

𝜌1𝑓
′(−𝑥)

)

⊤

+
1

2
 (
𝜌0𝑓

′′(𝑥) 0

0 𝜌1𝑓
′′(𝑥)

)

−
1

4𝑓(𝑥)
 (
𝜌0𝑓

′(𝑥)

𝜌1𝑓
′(𝑥)

)(
𝜌0𝑓

′(−𝑥)

𝜌1𝑓
′(−𝑥)

)

⊤

} + 𝑜𝑝(1) 

= (
𝜌0

2 𝜌0𝜌1
𝜌0𝜌1 𝜌1

2 )∫
(𝑓′)2

𝑓
(𝑥) 𝑑𝑥 − (

𝜌0 0
0 𝜌0

)∫𝑓′′(𝑥)𝑑𝑥 + 𝑜𝑝(1) 

= 𝛴1 + 𝑜𝑝(1) 

Direct calculation gives 

∫2�̇̂�𝜃(𝑥)�̂�𝜃(−𝑥)𝑑𝑥 = ∫2�̇̂�𝜃(𝑥)[�̂�𝜃(−𝑥) − �̂�𝜃(𝑥)] 𝑑𝑥 

= ∫ ℎ̂
𝜃

−
1
2(𝑥)

𝜕ℎ̂𝜃
𝜕𝜃

(𝑥) [ℎ̂
𝜃

1
2(−𝑥) − ℎ̂

𝜃

1
2(𝑥)] 𝑑𝑥 

= ∫ ℎ̂
𝜃

−
1
2(𝑥)

𝜕ℎ̂𝜃
𝜕𝜃

(𝑥) [ℎ̂
𝜃

1
2(−𝑥) − ℎ̂

𝜃

1
2(𝑥)]

−1

[ℎ̂𝜃(−𝑥) − ℎ̂𝜃(𝑥)] 𝑑𝑥 

= ∫𝑈𝑛(𝑥){𝜌0[𝑓0(−𝑥 + 𝜃0) − 𝑓(−𝑥)] − 𝜌0[𝑓0(𝑥 + 𝜃0) − 𝑓(𝑥)] + 𝜌1[𝑓0(−𝑥 + 𝜃1) − 𝑓(−𝑥)]

− 𝜌1[𝑓1(𝑥 + 𝜃1) − 𝑓(𝑥)]} 𝑑𝑥 

where 𝑈𝑛(x) = ℎ̂𝜃
−
1

2(𝑥)
𝜕ℎ̂𝜃

𝜕𝜃
(𝑥) [ℎ̂

𝜃

1

2 (−𝑥) − ℎ̂
𝜃

1

2 (𝑥)]

−1

. With 𝑈(𝑥) = ℎ
𝜃

−
1

2(𝑥)
𝜕ℎ𝜃

𝜕𝜃
(𝑥) [ℎ

𝜃

1

2 (−𝑥) −

ℎ
𝜃

1

2 (𝑥)]

−1

=
1

2
(𝜌0
𝜌1
)
𝑓′

𝑓
(𝑥), 

we have 

∫𝑈𝑛(𝑥)[𝑓0(−𝑥 + 𝜃0) − 𝑓(−𝑥)] 𝑑𝑥 

= ∫𝑈𝑛(−𝑥)[𝑓0(𝑥 + 𝜃0) − 𝑓(𝑥)] 𝑑𝑥 

= ∫𝑈(−𝑥)[𝑓0(𝑥 + 𝜃0) − 𝑓(𝑥)] 𝑑𝑥 +∫[𝑈𝑛(−𝑥) − 𝑈(−𝑥)][𝑓0(𝑥 + 𝜃0) − 𝑓(𝑥)] 𝑑𝑥 

= −
1

2
(
𝜌0
𝜌1
)∫

𝑓′

𝑓
(𝑥) 𝑓0(𝑥 + 𝜃0) 𝑑𝑥 ∙ (1 + 𝑜𝑝(1)). 
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Similarly, 

∫𝑈𝑛(𝑥)[𝑓0(𝑥 + 𝜃0) − 𝑓(𝑥)] 𝑑𝑥 = ∫𝑈(𝑥)[𝑓0(𝑥 + 𝜃0) − 𝑓(𝑥)] 𝑑𝑥 ∙ (1 + 𝑜𝑝(1)) 

=
1

2
(
𝜌0
𝜌1
)∫

𝑓′

𝑓
(𝑥) 𝑓0(𝑥 + 𝜃0) 𝑑𝑥 ∙ (1 + 𝑜𝑝(1)). 

∫𝑈𝑛(𝑥)[𝑓1(−𝑥 + 𝜃1) − 𝑓(−𝑥)] 𝑑𝑥 = ∫𝑈(−𝑥)[𝑓1(𝑥 + 𝜃1) − 𝑓(𝑥)] 𝑑𝑥 

= −
1

2
(
𝜌0
𝜌1
)∫

𝑓′

𝑓
(𝑥) 𝑓1(𝑥 + 𝜃1) 𝑑𝑥 ∙ (1 + 𝑜𝑝(1)). 

∫𝑈𝑛(𝑥)[𝑓1(𝑥 + 𝜃1) − 𝑓(𝑥)] 𝑑𝑥 = ∫𝑈(𝑥)[𝑓1(𝑥 + 𝜃1) − 𝑓(𝑥)] 𝑑𝑥 

=
1

2
(
𝜌0
𝜌1
)∫

𝑓′

𝑓
(𝑥) 𝑓1(𝑥 + 𝜃1) 𝑑𝑥 ∙ (1 + 𝑜𝑝(1)). 

Thus 

∫2�̇̂�𝜃(𝑥)�̂�𝜃(−𝑥) 𝑑𝑥

= −(
𝜌0
𝜌1
) [𝜌0∫

𝑓′

𝑓
(𝑥) 𝑓0(𝑥 + 𝜃0) 𝑑𝑥 + 𝜌1∫

𝑓′

𝑓
(𝑥)𝑓1(𝑥 + 𝜃1) 𝑑𝑥] ∙ (1 + 𝑜𝑝(1)) 

and (A.3) is reduced to (6). 

A4. Proof of Theorem 4. 

If f ′′(x)dx ≠ 0, then det(Σ1) ≠ 0 and thus Σ1
−1 exists. The expression of 𝜃 − 𝜃 from (6) 

indicates that 𝜃0 − 𝜃0 and 𝜃1 − 𝜃1 have asymptotic correlation 1. Since 

∫
𝑓′

𝑓
(𝑥) 𝑓0(𝑥 + 𝜃0) 𝑑𝑥 =

1

𝑛0
∑∫

𝑓′

𝑓
(𝑥)

1

𝑏𝑛
𝐾(
𝑥 − (𝑋𝑖 − 𝜃0)

𝑏𝑛
) 𝑑𝑥

𝑛0

𝑖=1

, 

by CLT and 𝑛𝑏6𝑛 → 0,√𝑛0 ∫
𝑓′

𝑓
(𝑥) 𝑓0(𝑥 + 𝜃0) 𝑑𝑥  has asymptotic normal distribution with 

mean 0 and variance ∫
(𝑓′)2

𝑓
(𝑥) 𝑑𝑥. Similarly, √𝑛1 ∫

𝑓′

𝑓
(𝑥) 𝑓1(𝑥 + 𝜃1) 𝑑𝑥 has asymptotic normal 

distribution with mean 0 and variance ∫
(𝑓′)2

𝑓
(𝑥) 𝑑𝑥. By the independence of the two samples Xi’s 

and Yj’s, hence the result. 

If∫𝑓′′(𝑥)𝑑𝑥 = 0, then Σ1 = (ρ0, ρ1)
⊤(𝜌0, 𝜌1)∫

(𝑓′)
2

𝑓
𝑑𝑥 is not invertible. Expression (6) says 

∫
(𝑓′)2

𝑓
𝑑𝑥 (

𝜌0
𝜌1
) (𝜌0, 𝜌1)(𝜃 − 𝜃) = −(

𝜌0
𝜌1
) (𝜌0, 𝜌1)(

∫
𝑓′

𝑓
(𝑥) 𝑓0(𝑥 + 𝜃0) 𝑑𝑥

∫
𝑓′

𝑓
(𝑥) 𝑓1(𝑥 + 𝜃1) 𝑑𝑥

)(1 + 𝑜𝑝(1)) 

holds for any 𝜌0, 𝜌1 ∈ (0, 0.5) ∪ (0.5, 1), thus 
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𝜃 − 𝜃 = −[∫
(𝑓′)2

𝑓
𝑑𝑥]−1(

∫
𝑓′

𝑓
(𝑥) 𝑓0(𝑥 + 𝜃0) 𝑑𝑥

∫
𝑓′

𝑓
(𝑥) 𝑓1(𝑥 + 𝜃1) 𝑑𝑥

)(1 + 𝑜𝑝(1)) 

and thus the result. 
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