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Abstract In DEA framework there are many techniques for finding a common set 

of efficient weights depend on inputs and outputs values in a set of peer Decision-

Making Units (DMUs). In a lot of papers, has been discussed multiple criteria 

decision-making techniques and multiple objective-decision criteria for modeling. 

We know the objective function of a common set of weights is defined like an 

individual efficiency of one DMU with a basic difference: "trying to maximize the 

efficiency of all DMUs simultaneously, with unchanged restrictions". An ideal 

solution for a common set of weights can be the closest set to the derived 

individual solution of each DMU. Now one question can be: "are the closest set 

and minimized set, which is found in most of the techniques, are different?" The 

answer can be: "They are different when the variance between the generated 

weights of a specific input (output) from n DMUs is big". In this case, we will 

apply Singular Value Decomposition (SVD) such that, first, the degree of 

importance weights for each input (output) will be defined and found, then, the 

Common Set of Weights (CSW) will be found by the closest set to these weights. 

The degree of importance values will affect the CSW of each DMU directly. 
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1-Introduction 

Data Envelopment Analysis (DEA), which is a non-parametric method for measuring the 

efficiency of a set of peer DMUs (such as firms or public sectors), was first introduced into the 

Operations Research (OR) literature by Charnes, Cooper, Rhodes (CCR, 1978). Today DEA is one 

of the most powerful tool used for efficiency evaluation, although as Ray Subhash, (2004) has 

pointed, some economists debate the three main components of DEA: (i) Because DEA is a 

nonparametric method, no production, cost, or profit function is estimated from the data. This 

precludes evaluation of marginal products, partial elasticities, marginal costs, or elasticities of 

substitution from a fitted model. As a result, one cannot draw the usual conclusions regarding the 

technology, which is possible when using a parametric functional form. (ii) DEA employs LP 

instead of regression analysis. Whereas a basic course in econometrics centered on the classical 

linear model is an essential ingredient of virtually every graduate program in economics, familiarity 

with LP can by no means be taken for granted. In textbook economics, constraints in standard 

optimization problems are typically assumed to be binding and Lagrange multipliers are almost 

always positive. (iii) This component is the most important of the three as it is non-statistical in 

nature and because the LP solution of a DEA problem produces no standard errors and leaves no 

room for hypothesis testing. But today DEA is a popular tool along with the other tools for relative 

efficiency estimation of DMUs. In some studies decision support tools were developed to allow 
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DMU decision makers to change inputs and outputs attributes in order to see the change impact of 

the DMU efficiency (Alsmadi et al., 2015). DEA computes the relative efficiency of each DMU 

individually through the use of weighted averages and extension the Multiple Criteria of Decision 

Making (MCDM) models obtained CSW criterions for ranking specially when the number of peer 

DMUs is big (Smriti & Khan, 2018). A CSW means only one production frontier hyperplane 

generates a compromised solution, all DMUs lie beneath the hyperplane and agree with the final 

status. Common weights, derived by Multi-Objective Linear Programming (MOLP), are 

theoretically supported by the concept of Pareto efficiency. Recently Yang et al., (2010) proposed 

a new approach to determine a bundle of CSW in DEA efficiency evaluation model by introducing 

a Multi-Objective Integer Programming (MOIP) and can be proven the solution is a Pareto efficient 

solution also. DEA and MOLP both search for set non-inferior solutions thus characterizing the 

DEA model by multi-objective programming is natural reasonable and appropriate. The CSW also 

can be used for ranking all DMUs. Hence, CSW idea can solve these two problems of classic DEA 

methods: finding common weights and ranking the peer DMUs. This idea was initially introduced 

by Cook, Roll, & Kazakov (1990) and developed by Roll, Cook, & Golany, (1991). Sinuany-Stern 

& Friedman, (1998) extended DEA to provide the common weights in order to rank all the units 

on the same scale for given inputs and output sets. Liu & Peng, (1999) introduced a model for 

obtaining the common weights, this model is a linear programming problem and presented a system 

to rank the DMUs. Also, they used this method for surveying group efficiency. Li & Reeves, (1999) 

applied a multi-objective model that considers two additional efficiency measures: minimizing the 

sum of the DMU distances of frontier production (minisum) and minimizing the sum of the largest 

distance (minimax) from it, in addition to maximizing classical efficiency in DEA. Jahanshahloo 

et al., (2005) determined the common weights by the max-min method, then used the common 

weights for ranking efficient DMUs. Amin & Toloo, (2007) proposed a CSW integrated DEA 

model to obtain the most efficient DMUs. Liu & Peng, (2008) tried to introduce a methodology to 

determine one CSW for the performance indices of only DEA efficient DMUs. The ranking was 

done according to the efficiency score weighted by the common set of weights but Tarkhorani et 

al., (2014) showed that the criteria used by Liu et al. are not theoretically strong enough to 

discriminate when efficiency of DMUs are equal hence, their proposal is not generally correct and 

cannot provide an optimal solution. Agrell & Bogetoft, (2010) introduced a game-theoretical 

approach to determine a set of CSWs in a setting where the DMUs must agree upon a common 

endogenous evaluation. In a recent study, Saati et al., (2012) have shown a two-phase CSW 

approach using an ideal virtual unit that is computationally efficient. Their model was applied in 

energy regulation using panel data from Danish district heating plants and Omrani, (2013) 

incorporated the uncertainty into the  Zohrehbandian et al., (2010) common weight DEA model.  

The object of the most of CSW techniques is defined on the best distance between a common 

weight with the other individual efficiency weights related to the inputs (outputs) position and "best 

distance" is defined a "minimized distance" usually. For example in an assumed CCR-Input 

Oriented, if for each input (output), n weights are derived by n repetitions on an optimization model 

(as will be described in (I)), in a special case, probably, the produced variance of n input (output) 

weights can be big and this variance has the principal effect on the results of a CSW technique, 

during minimizing the distances. In these cases, minimizing cannot be useful. This research is tried 

to define another concept of the best distance and that is the closest distance to the importance 

individual efficiency weights related to the inputs (outputs). What is the concept of importance 

weights? The importance weights are the transformed weights by SVD on the two matrices (with 

n×m and n×s dimensions) defined by the values of the input and output efficient weights. After 

applying SVD, the variation between the other corresponding input (output) weights will be 

gathered around these (importance) weights. 

The normalized eigenvalues which are produced by SVD will be named as degree of 

importance of the weights. 

Now a hypothetical DMU (hDMU) can be defined such that each input (output) for hDMU is 

found by a linear combination of the other corresponding n inputs (outputs) and the coefficients in 

each combination would be the degree of importance of the weights. hDMU is a pivotal concept 
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in the present research because the importance weights have bigger eigenvalues with respect to the 

others. Now if a CCR-Input Oriented case is applied for hDMU in a set of n+1 DMUs as will be 

illustrated in (IV) the result would be a CSW such that the common weights are the closest weights 

to the importance individual efficiency weights related to the inputs (outputs). In section 2 we will 

formulate this method and the related CSW model, also an example will be illustrated in section 3. 

SVD can be introduced by correspondence analysis, a famous multivariate analysis in statistics, 

Guttman, (1959), Torgerson, (1958) and Hill, (1973) introduced correspondence analysis as a 

method of scaling rather than of contingency table analysis. It is convenient first to consider 

"gradient analysis", a simpler method of scaling which was developed by Whittaker, (1967) in the 

United States, Correspondence analysis can be regarded as a generalization of gradient analysis 

using the method of successive approximation. In general, SVD can be looked at from three 

mutually compatible points of view. On the one hand, we can see it as a method for transforming 

correlated variables into a set of uncorrelated ones that better expose the various relationships 

among the original data items. At the same time, SVD is a method for identifying and ordering the 

dimensions along which data points exhibit the most variation. This ties into the third way of 

viewing SVD, which is that once we have identified where the most variation is, it's possible to 

find the best approximation of the original data points using fewer dimensions. According to SVD 

logic, The Chi square-distance is a special case of a weighted Euclidean distance where the weights 

are the inverses of the corresponding average profile values. In principal component analysis 

(PCA), a method closely related to SVD, the p dimensions are defined by continuous variables, 

often on different measurement scales. It is necessary to remove the effect of scale in some way, 

and this is usually done by dividing the data by the standard deviations of the respective variables. 

In this case the best-fitting line in each analysis is called a principal axis. More specifically it is 

referred to as the “first principal axis”, since there are other principal axes, in SVD the inertia 

amount is accounted for by a principal axis is called a principal inertia, the first principal inertia 

in SVD refers to the first principal axis. It is also often called an eigenvalue because of the way it 

can be calculated, as an eigenvalue of a square symmetric matrix. Hence, SVD can be seen as a 

method for CSW to find the best weights for inhomogeneous inputs and outputs between n 

observations (DMUs) simultaneously.  Reduced SVD underlying the use of SVD for these tasks 

is that it takes the original data. Here this method consisting of some variant of the weights of input 

and output matrices which are found by CCR method and for each DMU in the first run (thus, for 

m inputs and s outputs we have one input weight matrix with dimension mn  and one output 

weight matrix with dimension sn  ) and breaks the matrices down into linearly independent 

components. These components are in some sense an abstraction away from the noisy correlations 

found in the inputs or outputs to sets of values that best approximate the underlying structure of 

the dataset along each dimension: m or s independently. Because the some of those components 

are very small, they can be ignored, resulting in an approximation of the data that contains 

substantially fewer dimensions less than m and s. Reduce data dimensions to a few dimensions, 

described as 70% to 90% of the total variance in the data, generally. 

 

2- Model 

Let us assume that there are n decision-making units (DMUs) each producing s (n>s) different 

outputs from m (n>m) different inputs. Xij is the input ith of unit jth, while Yrj is the output rth of 

unit jth and Xij’s and Yrj’s are positive. For determining a CSW for DMUs according to Cook et al., 

(1990), Jahanshahloo et al., (2005), Roll et al., (1991) we need to find the weights in two runs: in 

the first run the efficiency of the individual DMUs will be found and in the second run, CSW will 

be found by optimization on the whole of individual efficiencies in one step. Here some activities 

will be added in the first run and that is finding the degree of importance of the weights which is 

derived by applying SVD such that some of DMUs that have the main influence in a combination 

of input (output) weights with respect to the others, will be appeared this fact can be seen by finding 

the normalized eigenvalues of input (output) weight matrices as will described in (I). Now a 

hypothetical DMU (hDMU) with a set of spectral inputs and outputs can be introduced and added 
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to the set of observations (DMUs). Essentially spectral inputs (outputs) are a linear combination of 

main inputs (outputs) such that the coefficients of these linear models have been found by degree 

of importance (normalized eigenvalues ) of the inputs (outputs) weight matrix. Finally, in the 

second run, a CCR multiplier model can be applied for hDMU among peer n+1 DMUs. It would 

be clear the result of solving the model can be a CSW because hDMU has been contained in all 

information about the input and output weights of all n DMUs. Also the result would be a whole 

common set of weights and the common weights will be determined with multiplication this 

quantity by the degree of importance of each DMU from run (I). On the contrary other criterions, 

it is clear that in the present criterion the specific common weight for each input (output) in each 

DMU can differ with the other DUMs. One of the most important benefits of this criterion is 

dimensionally reduction such that for calculation of CSW, similar DMUs with similar relation 

between input and output weights have a pale influence for the others and can be reduced but the 

dissimilar relation between input and output weights have been included with strong influence.     

In the following, the model has been described in details accompany with CCR multiplier 

model. Suppose in the first run two input and output weight matrices have found (𝑽𝑛𝑚 , 𝑼𝑛𝑠) by 

CCR method as follows: 

1st Run: 

max
𝑝
∑𝑢𝑟

𝑝𝑦𝑟𝑝

𝑠

𝑟=1

 ,        𝑝 = 1,… , 𝑛 

𝑠𝑡 ∶   ∑𝜈𝑖
𝑝𝑥𝑖𝑝 = 1

𝑚

𝑖=1

 

          ∑𝑢𝑟
𝑝

𝑠

𝑟=1

𝑦𝑟𝑗 −∑𝜈𝑖
𝑝

𝑚

𝑖=1

𝑥𝑟𝑗 ≤ 0  , 𝑗 = 1,… , 𝑛           →         {
𝑈𝑛𝑠 = [𝑢𝑟

𝑝]
𝑛×𝑠

𝑉𝑛𝑚 = [𝜈𝑖
𝑝]
𝑛×𝑚

},     (𝐼) 

          𝑢𝑟
𝑝 , 𝜈𝑖

𝑝  ≥ 0 , 𝑖 = 1,… ,𝑚  ,   𝑟 = 1,… , 𝑠 

Let 𝑽𝑛𝑚 and 𝑼𝑛𝑠 be nonsingular then by SVD method we write: 

𝑽𝑛𝑚 = 𝑮𝑛𝑚
𝑉 𝑫𝑚𝑚

𝑉 𝑨𝑚𝑚
(𝑉)𝑇 ,       𝑨𝑚𝑚

𝑉 = [𝑎𝑡𝑙
𝑉 ]𝑡,𝑙=1,…,𝑚  ,      𝑫𝑚𝑚

𝑉 = [𝑑𝑡𝑙
𝑉 ]𝑡,𝑙=1,…,𝑚

𝑼𝑛𝑠 = 𝑮𝑛𝑠
𝑈 𝑫𝑠𝑠

𝑈 𝑨𝑠𝑠
(𝑈)𝑇 ,           𝑨𝑠𝑠

𝑈 = [𝑎𝑓𝑞
𝑈 ]

𝑓,𝑞=1,…,𝑠
  ,        𝑫𝑠𝑠

𝑈 = [𝑑𝑓𝑞
𝑈 ]

𝑓,𝑞=1,…,𝑠
 
} (𝐼𝐼) 

Where 𝑴𝑇 ≡ 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑴  hence 𝑮(𝑉)𝑇𝑮𝑉 = 𝑰𝑚𝑚   𝑮(𝑈)𝑇𝑮𝑈 = 𝑰𝑠𝑠 , 

where 𝑰 = [
1…0
…… .
0…1

]  the columns of 𝑮𝑉  and 𝑮𝑈  are orthonormal eigenvectors of VVT  and UUT 

respectively, also the columns of 𝑨𝑉 and 𝑨𝑈 are orthonormal eigenvectors of VTV and UTU , 

𝑫𝑉 and 𝑫𝑈 are diagonal matrices containing the square roots of eigenvalues from 𝑮𝑉 or 𝑨𝑉 

and  𝑮𝑈  or 𝑨𝑈 in descending order respectively. Now define vectors 𝑩𝑉and 𝑩𝑈 (the weight 

vectors of the eigenvalues of 𝑮𝑉  (or 𝑨𝑉 ) and  𝑮𝑈   (or 𝑨𝑈 )  matrices, respectively) as 

follows: 

𝑑𝑡.
𝑉 =∑𝑑𝑡𝑙

𝑉

𝑚

𝑙=1

 , 𝑏𝑡
𝑉 =

𝑑𝑡.
(𝑉)2

∑ 𝑑𝑡.
(𝑉)2𝑚

𝑡=1

, 𝑩𝑚1
𝑉 = [𝑏𝑡

𝑉]𝑡=1,…,𝑚

𝑑𝑓.
𝑈 =∑𝑑𝑓𝑞

𝑈

𝑠

𝑞=1

, 𝑏𝑓
𝑈 =

𝑑𝑓.
(𝑈)2

∑ 𝑑𝑓.
(𝑈)2𝑠

𝑓=1

, 𝑩𝑠1
𝑈 = [𝑏𝑓

𝑈]
𝑓=1,…,𝑠

}
 
 

 
 

  (𝐼𝐼𝐼) 

We can see that the elements of 𝑩𝑉and 𝑩𝑈 are normalized eigenvalues which are found for 

V and U respectively and some of these elements which are very small can be ignored. The 

eliminated elements can be identified by eigenvalues and reduction dimension of vectors: 𝑩𝑉 and 
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𝑩𝑈  and also matrices: 𝑨𝑉   and 𝑨𝑈 . As described in the above, the elements of the vectors 

𝑩𝑉and 𝑩𝑈 are the normalized principal inertias (eigenvalues) and according to the concept of 

inertia which is described at section 1 the variances are also equal to the inertias of the projected 

inputs (outputs) profiles therefore these elements should describe the portion of variance for the 

input and output weights respectively. Let 𝑚0 be the reduced dimension of inputs (𝑚0 < 𝑚) 

and 𝑠0 be the reduced dimension of outputs (𝑠0 < 𝑠) when an accepted percent (instead of 100 

percent) of the variations has been selected therefore we can define the estimation of matrices V 

and U as �̂� and �̂� according to the following conditions:   

∑𝑏𝑡
𝑉

𝑚0

𝑡=1

≅ 0.9  ,   �̂�𝑛𝑚0
= 𝑮𝑛𝑚0

𝑉 𝑫𝑚0𝑚0
𝑉 𝑨𝑚0𝑚0

(𝑉)𝑇
 

∑𝑏𝑓
𝑈

𝑠0

𝑓=1

 ≅ 0.9 , �̂�𝑛𝑠0 = 𝑮𝑛𝑠0
𝑈 𝑫𝑠0𝑠0

𝑈 𝑨𝑠0𝑠0
(𝑈)𝑇   

If we let:

 

 

Now let: ∆𝑛×1= 𝑮𝑛𝑚0
𝑉 𝑩𝑚01

𝑉  and 𝛀𝑛×1 = 𝑮𝑛𝑠0
𝑈 𝑩𝑠01

𝑈 , after some simplification we have: 

∆𝑛×1= 𝑽𝑛𝑚0
𝑨𝑚0𝑚0
𝑉 𝑫𝑚0𝑚0

(𝑉)−1𝑩𝑚01
𝑉  or if 𝜏 = ∑ 𝑑𝑡.

(𝑉)2𝑚0
𝑡=1   

then ∆𝑛×1=
1

𝜏
𝑽𝑛𝑚0

𝑨𝑚0𝑚0
𝑉 𝟏𝑚01 where 𝟏𝑚01 =

[
 
 
 
 
1
.
.
.
1]
 
 
 
 

𝑚0×1

and by the same reason,  

if  𝜂 = ∑ 𝑑𝑓.
(𝑈)2𝑠0

𝑓=1   then 𝛀𝑛×1 =
1

𝜂
𝑼𝑛𝑠0𝑨𝑠0𝑠0

𝑈 𝟏𝑠01  . 

Now assume that we have one hypothetical DMU with m input and s output such that each 

element of  ∆𝑛×1= [𝛿𝑗]𝑗=1,…,𝑛 is the weight of the m input efficiency coefficients for a linear 

combination of n main DMUs inputs and each element of 𝛀𝑛×1 = [𝜔𝑗]𝑗=1,…,𝑛   is the weight 

of s output efficiency coefficients for a linear combination of n main DMUs outputs. Consequently 

the Common Weights of efficiency coefficients for all of n DMUs like 𝛼 and 𝛽 can be found by 

the following optimization: 

2nd Run: 

𝑚𝑎𝑥 (
∑ ∑ 𝛼𝑟𝜔𝑗𝑦𝑗𝑟

𝑛
𝑗=1

𝑠
𝑟=1

∑ ∑ 𝛽𝑖𝛿𝑗
𝑛
𝑗=1 𝑥𝑗𝑖

𝑚
𝑖=1

)

  𝑠𝑡.      
∑ 𝛼𝑟𝑦𝑗𝑟
𝑠
𝑟=1

∑ 𝛽𝑖𝑥𝑗𝑖
𝑚
𝑖=1

≤ 1,   𝑗 = 1,… , 𝑛 + 1 ,    𝛼𝑟 , 𝛽𝑖 ≥ 0
}
 
 

 
 

   (𝐼𝑉) 

For understanding the difference between using this model with respect to the other popular 

methods when the variation of the weights is high, this method has been compared Global criterion 

thus, in the following section by a numerical example. We know that the optimization of Global 

criterion can be defined in two runs according to the following programming: 

      Run1:                         Run2: 

{
 
 

 
 𝑚𝑖𝑛 𝜃𝑝  ,   ∀𝑝 = 1,… , 𝑛

𝑠𝑡.  ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝜃𝑝𝑥𝑖𝑝  ,   𝑖 = 1, … ,𝑚 

  ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 ≤ 𝑦𝑟𝑝 ,   𝑗 = 1, … , 𝑠

|

|
𝑚𝑖𝑛 ∑ [(𝜃𝑝 − 

∑ 𝛼𝑟𝑗
𝑔
𝑦𝑟𝑗

𝑠
𝑟=1

∑ 𝛽𝑖𝑗
𝑔
𝑥𝑖𝑗

𝑚
𝑖=1

)]𝑛
𝑝=1 , 𝜃𝑝 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑅𝑢𝑛1

𝑠𝑡.   
∑ 𝛼𝑟𝑗

𝑔
𝑦𝑟𝑗

𝑠
𝑟=1

∑ 𝛽𝑖𝑗
𝑔
𝑥𝑖𝑗

𝑚
𝑖=1

 ≤ 1 ,   𝛼𝑟𝑗
𝑔
 , 𝛽𝑖𝑗

𝑔
≥ 0 , 𝑗 = 1,… , 𝑛

}
 
 

 
 

  (𝑉) 
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3- Numerical Example 

For illustrating the potential of the model, we will review the numerical illustration was first 

analyzed in (Hokkanen & Salminen, 1997) in which 22 solid waste management treatment systems 

in the Oulu region of Finland have compared over 5 inputs and 3 outputs (defined in Sarkis, 2000). 

The original data is presented in the following Table: 

 
Table1: Information of 22 solid waste management treatment systems in the Oulu region of Finland with 5 

inputs and 3 outputs (see Sarkis, 2000) 

DMU  Inputs  Outputs  

     Surface    

   Health Acidification water Technical  Resource 

 
Cost 

Global 

Effects 
Effects releases releases feasibility Employees 

recovery 

1 656 552,678,100 609 1190 670 5.00 14 13,900 

2 786 539,113,200 575 1190 682 4.00 18 23,600 

3 912 480,565,400 670 1222 594 4.00 24 39,767 

4 589 559,780,715 411 1191 443 9.00 10 13,900 

5 706 532,286,214 325 1191 404 7.00 14 23,600 

6 834 470,613,514 500 1226 384 6.50 18 40,667 

7 580 560,987,877 398 1191 420 9.00 10 13,900 

8 682 532,224,858 314 1191 393 7.00 14 23,600 

9 838 466,586,058 501 1229 373 6.50 22 41,747 

10 579 561,555,877 373 1191 405 9.00 9 13,900 

11 688 532,302,258 292 1191 370 7.00 13 23,600 

12 838 465,356,158 499 1230 361 6.50 17 42,467 

13 595 560,500,215 500 1191 538 9.00 12 13,900 

14 709 532,974,014 402 1191 489 7.00 17 23,600 

15 849 474,137,314 648 1226 538 6.50 20 40,667 

16 604 560,500,215 500 1191 538 9.00 12 13,900 

17 736 532,974,014 402 1191 489 7.00 17 23,600 

18 871 474,137,314 648 1226 538 6.50 20 40,667 

19 579 568,674,539 495 1193 558 9.00 7 13,900 

20 695 536,936,873 424 1195 535 6.00 18 23,600 

21 827 457,184,239 651 1237 513 7.00 16 45,167 

22 982 457,206,173 651 1239 513 7.00 16 45,167 

 
By optimization (I) and continuing with model (II) (Details of output by SAS in Appendix) we 

have 3 dimension reduction for the inputs because as illustrated in Diagonal of 𝑫5,5
𝑉  matrix which 

is located in the Appendix. The first two elements of this matrix have more than 85 percent 

(accepted percent) of inputs information and by this percent we can have 2 dimension reductions 

for the outputs and by Diagonal of 𝑫3,3
𝑈    it can be seen, more than 72 percent (accepted percent) 

of information is in the first eigenvalue. Therefore 2 dimension reductions will be considered hence 

𝑚0 = 2 and 𝑠0 = 1. If the optimization is continued by (III) and according to Δ22,1 and Ω22,1 and 

by (IV) the weights can be derived. The following values show the comparative results between 
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SVD method and Global criterion, solved by (IV) and (V): 

Table2: Comparison of calculated CSW by SVD and Global criterion 

 
 
 
 
 
 
 
 

 

It must be noted, α and β are the whole common weights but CSW for each DMU will be 

derived by multiplication of α (or β) in Δ22,1 (or Ω22,1 ) which are located at the Appendix 

respectively (degrees of importance) for example, CSW for DMU3, DMU20 and DMU21, is 

illustrated in table3. 

 

Table3: CSW of 3 selected DMUs, calculated by table2 and degrees of importance according to Δ22,1 and Ω22,1 
 
4-Results 

The main difference between this criterion with the others is the difference between the 

common weights for each DMU, because in this method first a whole weight is derived and this 

quantity will be multiplied by each individual degree of importance which is found in the first run. 

The other result can be the differences between input efficient weights among output efficient 

weights which will be derived from the observations (DMUs). For example according to matrix 

𝑉22×5 (column=2) which is located in the Appendix, the efficiency weights of “Global Effects” 

are zero for all of 22 DMUs and for this reason 𝛽𝑔 =0 but by SVD method, the biggest whole 

weight is for this input (i.e. β=0.368120608). Also by global criterion, the efficient common weight 

of the output: “Resource Recovery” is 𝛼𝑔 =0.0022605 and by SVD, the whole weight is 𝛼 

=3726.1483, how these variations can be explained? 𝛼 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 is very high, because, 

not only the coefficient of variation of the weights of "Resource Recovery" is very high, (it is 

calculated 1.477 or 147.7 percent) but also the coefficient of variation of this output is high with 

respect to the others, therefore a big common weight for this output is not unexpected by SVD 

method.  

 The Coefficients of Variation (CV) of 3 outputs and 5 inputs in the above example are 

compared as follows: 

CVTechnical_Feasibility=0.215815 ,  CVEmployees = 0.281607,  CVResource_Recovery = 0.447905 

CVCost=0.165932,  CVGlobal_Effects=0.78758296, CVHealth Effects=0.244442, 

CVAcidification_Releases=0.015834, CVSurface_water_Releases=0.191632.  

In the first of view, it is clear that variation of Resource Recovery” and “Global Effects” are 

high.  

In the above example, hDMU can be the 23th observation (DMU) with spectral inputs (outputs) 

that are linear combinations of the other DMUs’ inputs (outputs), the linear input coefficient set 

α  β 𝜶𝒈 𝜷𝒈 

   1.0255  0.050969483 12.2867450 0.226332 

  2.4488  0.368120608 2.5031091 0.000000 

3726.1483  0.000044326 0.0022605 0.030266 

   0.003909605   0.019912 

   0.003167122   0.000000 

𝜶𝝎𝑫𝑴𝑼 𝜷𝜹𝑫𝑴𝑼 DMU 𝜶𝝎𝑫𝑴𝑼 𝜷𝜹𝑫𝑴𝑼 DMU 𝜶𝝎𝑫𝑴𝑼 𝜷𝜹𝑫𝑴𝑼 DMU 

0 0.000294  

 

21 

0.0005 0.005772  

 

20    

  0.00126 0.004137          

 

    3      

  

  

0 0.002124 0.0012 0.041689  

0.0030098 

0.030061428 

0000005 0.0000002 1.8499 0.000005 4.5798089 0.0000036 

 0.00002  0.000443   0.000319266 

 0.000018  0.000359   0.000258633 
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are listed in the Δ22,1 and the linear output coefficient set are listed in the Ω22 1. According to these 

vectors we have: 

 
Table4: Derived information of hDMU 

DMU  Inputs  Outputs  

     Surface    

hDMU   Health Acidification water Technical  Resource 

 
Cost 

Global 

Effects 
Effects releases releases feasibility Employees 

recovery 

23 2142  1,704,610,000 1366   3812 1443  30.30   65 109,121 

 
If coefficient of variation of inputs (outputs) are calculated for 23 DMUs we will have the 

following changes: 

CVTechnical_Feasibility= 0.631566597,  CVEmployees = 0.638053649,  CVResource_Recovery = 0. 676458116 

CVCost=0.398746406,  CVGlobal_Effects=0.439340704,  CVHealth Effects=0.410481699,  

CVAcidification_Releases=0. 412512120, CVSurface_water_Releases=0. 413231790. 

It can be observed the biggest output CV is for resource_recovery and the biggest input CV is 

for global_effects also the differences between CVs for inputs and outputs are less than the first 

case (22 DMUs) . 

 

 5-Conclusions 

As pointed before, SVD method can be useful when there are uncoordinated changes between 

outputs or inputs and also between the eigenvalues of matrices V or U which are defined in section2. 

In addition when SVD is applied we can classify the results by the following sentences briefly: 

1- CSW for each DMU will be defined and found by multiplication of two values:  

- The whole CSW which is found by (IV).  

- Degree of importance of each DMU (i.e. Δ22,1 and Ω22,1 )  

2- For n observations when the variation of an output (input) with respect to the others is 

high, we can expect the common weight of that output (input) will be bigger than the others. 

3- For n observations, if the variation of corresponding individual relative output (input) 

efficient weights with respect to the others is high then we can expect the similar common weight 

is high also if both items 1 and 2 occur simultaneously and the weights will be increasingly 

exacerbated. 

4- Definition of hDMU as defined before, can close the changes between the outputs 

(inputs) for peer n+1 DMUs, on the other hand inputs (outputs) of hDMU have the whole 

information of inputs (outputs) of the other DMUs therefore, solving a CCR model on hDMU like 

(IV) can give us a whole CSW.  
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7-Appendix : SAS output 

𝑉22×5 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.0015244 0.000000 0.000000 0.000000 0.000000
0.0012723 0.000000 0.000000 0.000000 0.000000
0.0010965 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000804 0.000620 0.000000
0.000000 0.000000 0.000419 0.000645 0.000192
0.0016819 0.000000 0.001187 0.000526 0.000584
0.0009644 0.000000 0.000736 0.000000 0.000283
0.000000 0.000000 0.000000 0.000814 0.000000
0.0088217 0.000000 0.001312 0.000000 0.000000
0.000000 0.000000 0.003427 0.000000 0.000512
0.0011838 0.000000 0.000591 0.000000 0.000000
0.000000 0.000000 0.000831 0.000559 0.000000
0.000000 0.000000 0.000000 0.000816 0.000000
0.000000 0.000000 0.000000 0.000117 0.000000
0.000000 0.000000 0.001075 0.000477 0.000000
0.000000 0.000000 0.000000 0.000816 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.0017271 0.000000 0.000000 0.000000 0.000000
0.0007972 0.000000 0.001052 0.000000 0.000000
0.000000 0.000000 0.000000 0.000808 0.000000
0.000000 0.000000 0.000525 0.000000 0.000000]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑈22×3 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0.0240850 0.027287 0.000000
0.0005388 0.028918 0.000000
0.000000 0.025000 0.000000
0.000000 0.000000 0.000000
0.0533370 0.014155 0.000001
0.0516180 0.000874 0.000006
0.0421770 0.009635 0.000009
0.0385250 0.023595 0.000000
0.0520170 0.005583 0.000003
0.0464640 0.020203 0.000000
0.000000 0.045205 0.000001
0.000000 0.000000 0.000014
0.0354420 0.023420 0.000000
0.0501940 0.014626 0.000000
0.0521440 0.005596 0.000003
0.0583810 0.006214 0.000000
0.0397590 0.018923 0.000000
0.0521440 0.005596 0.000003
0.0491197 0.000000 0.000011
0.0196100 0.0026797 0.000000
0.000000 0.000000 0.000013
0.0610400 0.000000 0.000004]
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𝑮22,3
𝑈  

0.1572948 0.2748323 -0.019356 

0.041127 0.3780334 0.0522484 

0.0332139 0.3284327 0.0465259 

0 0 0 

0.2868582 0.0007231 -0.085278 

0.2605745 -0.167783 0.113525 

0.224767 -0.0199 0.2884307 

0.22496 0.1761803 -0.068278 

0.2688359 -0.107306 -0.009981 

0.2603521 0.104047 -0.09771 

0.0600574 0.593872 0.1278307 

3.8963E-9 -1.107E-8 0.6118369 

0.2092335 0.1845883 -0.059626 

0.2716883 0.0178262 -0.118951 

0.2694914 -0.107576 -0.010327 

0.3016574 -0.121118 -0.158448 

0.2249546 0.1105172 -0.080566 

0.2694914 -0.107576 -0.010327 

0.2468578 -0.170589 0.337687 

0.1341541 0.2839363 -0.007236 

3.618E-9 -1.028E-8 0.5681343 

0.3067649 -0.211987 -0.002945 

Diagonal  

of 𝑫3,3
𝑈  

𝑨3,3
𝑈   Δ22,1 Ω22,1 

0.1923714 0.9667888 -0.255576 -0.000067 0.1135297 0.005821 

0.0735911 0.2555764 0.9667888 0.0000426 0.0947546 0.001522 

0.0000229 0.0000535 -0.000058 1 0.0816619 0.0012291 

        0 0 

        0.0456048 0.0106158 

        0.0273743 0.0096431 

        0.1937893 0.008318 

        0.1114471 0.0083251 

        0.0058133 0.0099488 

        0.7241905 0.0096349 

        0.1790042 0.0022225 

        0.1184316 1.442E-10 

        0.0465519 0.0077431 

        0.0058276 0.0100544 

        0.0008356 0.0099731 

        0.0584628 0.0111634 

        0.0058276 0.0083249 

        0 0.0099731 

        0.1286258 0.0091355 

        0.1132497 0.0049646 

        0.0057705 1.48E-10 

        0.0268879 0.0113524 
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𝑮22,5
𝑉  

 Diagonal 

of 𝑫5,5
𝑉  

 

𝑨5,5
𝑉  

0.1528774 -0.075948 0.0154964 0.0318113 -0.059085 0.0097532 0.978 -0.207 0.02 0.01 0 

0.1275951 -0.063388 0.0129336 0.0265505 0.1604281 0.0041494 0 0 0 0 1 

0.1099646 -0.054629 0.0111465 0.0228818 -0.48417 0.0019736 0.207 0.953 -0.166 -0.146 0 

0 0 0 0 0 0.0005676 0.0150 0.165 0.986 -0.023 0 

0.0179863 0.2093829 0.2419042 -0.231581 0.3152317 0 0.019 0.147 -0.002 0.989 0 

0.010244 0.1287336 0.2866942 0.2007516 -0.394415 
 

0.1957693 0.2304624 0.1792544 0.7267092 0.1123499   

0.1128616 0.1310139 -0.0525 0.3244082 -0.063817   

0.0012524 0.0324376 0.4066081 -0.033193 -0.187663   

0.9124952 -0.138146 -0.020957 -0.152555 0.0135223   

0.0736 0.8052709 -0.289416 0.0128347 0.0550301   

0.1312397 0.0767723 -0.037802 -0.126942 0.0398742   

0.0184644 0.2131539 0.2091568 -0.236021 0.1136622   

0.0012555 0.0325173 0.4076071 -0.033274 0.2199776   

0.00018 0.0046624 0.0584437 -0.004771 -0.033157   

0.0235073 0.2659322 0.147621 -0.295286 -0.541548   

0.0012555 0.0325173 0.4076071 -0.033274 0.2199776   

0 0 0 0 0   

0.1732055 -0.086046 0.0175569 0.0360413 0.0639817   

0.1022348 0.2019234 -0.080606 -0.253298 0.0155999   

0.0012432 0.0321985 0.403611 -0.032948 -0.009564   

0.0111219 0.1205907 -0.044271 -0.13471 0.1272904   


