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Abstract: In this paper, we introduce a new four-parameter distribution called the 

transmuted Weibull power function (TWPF) distribution which extends the 

transmuted family proposed by Shaw and Buckley [1]. The hazard rate function of the 

TWPF distribution can be constant, increasing, decreasing, unimodal, upside down 

bathtub shaped or bathtub shape. Some mathematical properties are derived including 

quantile functions, expansion of density function, moments, moment generating 

function, residual life function, reversed residual life function, mean deviation, 

inequality measures. The estimation of the model parameters is carried out using the 

maximum likelihood method. The importance and flexibility of the proposed model 

are proved empirically using real data sets. 
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1. Introduction  

There are hundreds of continuous distributions in the statistical literature. These 

distributions have several applications in many applied fields such as reliability, life testing, 

biomedical sciences, economics, finance, environmental and engineering, among others. 

However, these applications have proven that the real data following the well-known models 

are more often the exception rather than the reality. In order to increase the flexibility of the 

well-known distributions, many authors have proposed different transformations of these 

models and used these extended forms in several areas. 

The power function (PF) distribution is a flexible model which can be obtained from the 

Pareto distribution by using a simple transformation Y = X−1. The probability density function 

(pdf) and the cumulative distribution function (cdf) of the PF distribution are, respectively, 

given by 
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                                      𝐹(𝑥; α, β) = (
𝑥

𝛼
)

𝛽

,                                                                                       (1.1) 

                                       𝑓(𝑥) =
𝛽𝑥𝛽−1

𝛼𝛽
 ,    0 < 𝑥 < 𝛼, 𝛽 > 0                                                       (1.2) 

where β is a shape parameter and α is a scale parameter.  

The Power function (PF) distribution has been used over the past decades for modelling 

data in engineering, reliability and biological studies. Meniconi and Barry [2] investigated 

the performance of the PF distribution on electrical component and obtained that the PF 

distribution is better than the Weibull, log-normal and exponential models to measure the 

reliability of electronic components. The need for extended forms of the PF distribution arises 

in many applied areas and hence, some generalizations of the PF distribution have been 

proposed. Among these distributions, we refer to the beta power function (BPF) by [3], 

Weibull power function (WPF) by [4], Kumaraswamy power function (KWPF) distribution 

by [5],  the modified power function distribution by [6], exponentiated power function 

distribution by [7], the exponentiated Kumaraswamy power function distribution by [8]. 

The pdf and cdf of the WPF distribution are, respectively, given by  

g(x, a, b, α, β) =
𝑎𝑏βαβ𝑥βb−1

(αβ − 𝑥β)𝑏+1
𝑒

−𝑎(
𝑥𝛽

αβ−𝑥β
)𝑏

, 0 < 𝑥 < 𝛼, 𝛼, 𝛽 > 0             (1.3) 

and 

G(x) = 1 − exp (−a {
𝑥𝛽

𝛼𝛽 − 𝑥𝛽
}𝑏)                                                                (1.4) 

where ‘α’ and ‘a’ are the scale parameters, ‘b’ and ‘β’ are the shape parameters. 

Many authors have been recenlty deal with the generalization of some well-known 

distributions using the transmuted family proposed by [1]. Aryal and Tsokos [9] defined the 

transmuted generalized extreme value distribution and then studied some mathematical 

characteristics of the transmuted Gumbel distribution. Aryal and Tsokos [10] also presented 

a new generalization of Weibull distribution called the transmuted Weibull distribution. Aryal 

[11] proposed and studied the various structural properties of the transmuted log-logistic 

distribution. Then, Khan and King [12] introduced the transmuted modified Weibull 

distribution which extends recent development on transmuted Weibull distribution by Aryal 

and Tsokos [10]. Elbatal [13] presented transmuted modified inverse Weibull distribution. 

Elbatal and Aryal [14] presented transmuted additive Weibull distribution. Recently, 

transmuted generalized Lindley distribution has been obtained by Elgarhy et al. [15], 

transmuted power function (TPF) has been introduced by Haq et al. [16] and transmuted 

Weibull Frehet  by Haq et al. [17], Elbatal and Elgarhy [18] introduced Transmuted quasi 

Lindley (TQL), and Elgarhy et al. [19] studied transmuted generalized quasi Lindley (TGQL). 

The aim of this paper is to define and study a new flexible lifetime model called the 

transmuted Weibull power function (TWPF) distribution. Using the transmuted family 

proposed by [1], we construct the four-parameter TWPF model and give some of its 

mathematical properties. In fact, the TWPF model can provide better fits than other existing 

models. 

The rest of the paper is organized as follows: In section 2 we demonstrate transmuted 
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probability density, hazard rate and reliability functions of TWPF distribution. In section 3 

we studied the statistical properties including quantile function, expansion of density function, 

moments, moment generating function, incomplete moments, conditional moments, residual 

life function, reversed residual life function, mean deviation, inequality measures. The 

distribution of order statistics is expressed in section 4. In section 5, we demonstrate the 

maximum likelihood estimates (MLEs) of the unknown parameters. Simulation study is 

carried out for TWPF distribution in Section 6.  Two illustrative applications based on real 

data sets are investigated in section 7. Finally, concluding remarks are presented in section 8. 

 

2. The TWPF Distribution 

Before defining the TWPF distribution, we explain a transmuted probability distribution. 

Let 𝑭𝟏and 𝑭𝟐 be the cdfs of two distributions with a common sample space. The general rank 

transmutation is defined by Shaw and Buckely [1] as 

𝐺𝑅12(𝑢) = 𝐹2(𝐹1
−1(𝑢)) and 𝐺𝑅21(𝑢) = 𝐹1(𝐹2

−1(𝑢)). 

Note that the inverse cdf, also known as quantile function, is defined as  

𝐹−1(𝑦) = 𝑖𝑛𝑓𝑥∈𝑅{𝐹(𝑥) ≥ 𝑦} for 𝑦 ∈ [0,1] 

The functions 𝑮𝑹𝟏𝟐(𝒖) and  𝑮𝑹𝟐𝟏(𝒖)  both map the unit interval 𝐈 = [𝟎, 𝟏] into itself.  

Under suitable assumptions these functions are mutual inverses and they satisfy  𝑮𝑹𝒊𝒋(𝟎) =

𝟎  and  𝑮𝑹𝒋𝒊(𝟎) = 𝟏  

A quadratic rank transmutation map (QRTM) is defined as 

𝐺𝑅12(𝑢) = 𝑢 + 𝜆𝜇(1 − 𝜇), |𝜆| ≤ 1                                          (2.1) 

from which it follows that the cdf’s satisfy the relationship 

𝐹2(𝑥) = (1 + 𝜆)𝐹1(𝑥) − 𝜆𝐹1(𝑥)2                                           (2.2) 

After differentiating (2.2), we have𝒇𝟐(𝒙) = 𝒇𝟏(𝒙)[(𝟏 + 𝝀) − 𝟐𝝀𝑭𝟏(𝒙)]where 𝒇𝟏(𝒙) 

and 𝒇𝟐(𝒙) are the corresponding pdfs’ associated with cdfs’ 𝑭𝟏(𝒙)and 𝑭𝟐(𝒙)  respectively. 

More information about the quadratic rank transmutation map can be found in Shaw and 

Buckley [1]. Note that we have the baseline distribution for 𝝀 = 𝟎. 

The following Lemma proves that the function 𝒇𝟐(𝒙) in given (2.3) satisfies the property 

of pdfs. 

Lemma: 𝒇𝟐(𝒙) given in (2.3) is a well-defined pdf. 

Proof. Rewriting 𝒇𝟐(𝒙) as 𝒇𝟐(𝒙) = 𝒇𝟏(𝒙)[𝟏 −  𝝀{𝑭𝟏(𝒙) − 𝟏}]  we observe that 𝒇𝟐(𝒙) 

is non-negative. We need to show that the integration of the support of the random variable 

is equal to one. Consider the case when the support of 𝒇𝟏(𝒙) is 1. In this case, we have 

∫ 𝑓2(𝑥) 𝑑𝑥 = ∫ 𝑓1(𝑥)[(1 + 𝜆) − 2𝜆𝐹1(𝑥)] 𝑑𝑥
∞

−∞

∞

−∞

 

= (1 + 𝜆) ∫ 𝑓1(𝑥) 𝑑𝑥 − 2𝜆 ∫ 𝐹1(𝑥)𝑓1(𝑥) 𝑑𝑥
∞

−∞

∞

−∞

 

= (1 + λ) − λ = 1 

Similarly, other cases where the support of the random variable is a part of the real line 

follows. Hence, 𝒇𝟐(𝒙) is a well-defined pdf and it is called as the transmuted probability 
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density of a random variable with base density  𝒇𝟏(𝒙). Note that when 𝝀 = 𝟎 , we have 

𝒇𝟐(𝒙) = 𝒇𝟏(𝒙). This proves the required result. 

Now, using (1.2) and (1.4), we obtain the cdf of TWPF distribution as 

               

 

𝐹𝑇𝑊𝑃𝐹(𝑥) = (1 − exp (−𝑎{
𝑥𝛽

𝛼𝛽 − 𝑥𝛽
}𝑏)){1 + 𝜆 − 𝜆 (1 − exp (−𝑎 {

𝑥𝛽

𝛼𝛽 − 𝑥𝛽
}𝑏))}   (2.4) 

where α and a are the scale parameters; b and β are the shape parameters and   is the 

transmuted parameter. Then, the pdf of the TWPF distribution is given by  

              
{𝑓𝑇𝑊𝑃𝐹(𝑥) =

𝑎𝑏𝛽𝛼𝛽𝑥𝛽𝑏−1

(𝛼𝛽 − 𝑥𝛽)𝑏+1
𝑒

−𝑎(
𝑥𝛽

𝛼𝛽−𝑥𝛽
)𝑏

[(1 + λ) − 2λ {1 − exp (−a {
𝑥𝛽

𝛼𝛽 − 𝑥𝛽
}𝑏)}] ,

0 < 𝑥 < 𝛼 

} (2.5) 

The reliability (survival) function of the TWPF distribution is given by 

𝑅𝑇𝑊𝑃𝐹(𝑥) = 1 − 𝐹𝑇𝑊𝑃𝐹(𝑥)

= 1 − (1 − exp (−𝑎 {
𝑥𝛽

𝛼𝛽 − 𝑥𝛽
}𝑏)){1 + 𝜆 − 𝜆(1 − exp (−𝑎 {

𝑥𝛽

𝛼𝛽 − 𝑥𝛽
}𝑏))} 

One of the characteristics in reliability analysis is the hazard rate function (hrf) defined 

by 

ℎ𝑇𝑊𝑃𝐹(𝑥) =
𝑓𝑇𝑊𝑃𝐹(𝑥)

1 − 𝐹𝑇𝑤𝑃𝐹(𝑥)

=
𝑎𝑏𝛽𝛼𝛽𝑥𝛽𝑏−1𝑒

−𝑎(
𝑥𝛽

𝛼𝛽−𝑥𝛽
)𝑏

[(1 + 𝜆) − 2𝜆{1 − exp (−𝑎 {
𝑥𝛽

𝛼𝛽−𝑥𝛽}𝑏)}]

(𝛼𝛽 − 𝑥𝛽)𝑏+1(1 − (1 − exp (−𝑎 {
𝑥𝛽

𝛼𝛽−𝑥𝛽}𝑏)) {1 + 𝜆 − 𝜆 (1 − exp {
𝑥𝛽

𝛼𝛽−𝑥𝛽}𝑏))})

 

It is important to note that the units for 
( )TWPFh x

 is the probability of failure per unit of 

time, distance or cycles. These failure rates are defined with different choices of parameters.  

Plots of the pdf and hrf of the TWPF distribution for some parameter values are displayed 

in Figure 1 (a) and (b), respectively. As seen from Figure 1(a), the density function can take 

various forms depending on the parameter values. Increasing, decreasing, unimodal, upside 

down bathtub shaped or bathtub shapes appear to be possible. It is evident that the TWPF 

distribution is very flexible. Furthermore, Figure 1(b) shows that the hrf of the TWPF 

distribution can have very flexible shapes, such as increasing, decreasing, upside-down 

bathtub, bathtub. This attractive flexibility makes the hrf of the TWPF useful and suitable for 

non-monotone empirical hazard behaviours’ which are more likely to be encountered or 

observed in real life situations. 
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Figure 1 (a): Plots of the pdf of TWPF distribution for selected values of the parameters (left). (b): Plots 

of the hrf of TWPF distribution for selected values of the parameters (right). 

 

3. Main Properties 

This section is devoted to main properties of the TWPF distribution, specifically quantile 

function, moments and moment generating function. 

3.1. Quantile Function 

The quantile 𝒙𝒒 of the TWPF distribution is obtained from (2.4) as  

𝑥𝑞 = 𝛼{ln [
(𝜆 − 1) + √(𝜆 − 1)2 − 4𝜆(𝜇 − 1)

2𝜆
]

−1

𝑎 }
1

𝑏𝛽(1

+ {ln[
(𝜆 − 1) + √(𝜆 − 1)2 − 4𝜆(𝜇 − 1)

2𝜆
]

−1

𝑎 }
1

𝑏)
−1

𝛽  

We simulate the TWPF distribution by solving the equation above where u has the 

uniform  distribution 𝑼(𝟎, 𝟏). 

 

3.2. A Useful Expansion 

Now, a representation for the density function of the TWPF distribution will be presented. 

Using the power series for the exponential function, we obtain  

                                               

 

exp(−ax) = ∑
(−1)𝑘𝑎𝑘𝑥𝑘

𝑘!
                                                                  (3.1)

∞

𝑘=0

 

Inserting the expansion (3.1) in (2.5), we have 
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𝑓(𝑥)

= (1 − 𝜆)𝑎𝑏
𝛽

𝛼
∑

(−1)𝑘((
𝑥

𝛼
)𝛽)𝑏𝑘+𝑘−1(1 − (

𝑥

𝛼
)𝛽)−(𝑏𝑘+𝑏+1)

𝑘!

∞

𝑘=0

+ 2𝑎𝜆𝑏
𝛽

𝛼
∑

(−2)𝑘((
𝑥

𝛼
)𝛽)𝑏𝑘+𝑏−1(1 − (

𝑥

𝛼
)𝛽)−(𝑏𝑘+𝑏+1)

𝑘!
                                            (3.2)

∞

𝑘=0

 

Now, using the generalized binomial theorem, we obtain 

(1 − z)−𝛽 = ∑ (
𝛽 + 𝑗 − 1

𝑗
)

∞

𝑗=0

𝑧𝑗                                                                     (3.3) 

where 𝛃 > 𝟎 is real non-integer. Then, by applying the binomial theorem (3.3) in (3.2) 

the pdf of the TWPF distribution becomes 

𝑓(𝑥) = (1 − 𝜆)𝑎𝑘+1𝑏
𝛽

𝛼
1

𝛽

∑
(−1)𝑘

𝑗!

𝛤(𝑏(𝑘 + 1) + 𝑗 + 1)

𝑘! 𝛤(𝑏(𝑘 + 1) + 1)
((

𝑥

𝛼
)𝛽)

𝑏(𝑘+1)+𝑗−
1

𝛽

∞

𝑗,𝑘=0

+ 2𝑎𝑘+1𝜆𝑏
𝛽

𝛼
1

𝛽

∑
(−2)𝑘𝛤(𝑏(𝑘 + 1) + 𝑗 + 1)

𝑗! 𝑘! 𝛤(𝑏(𝑘 + 1) + 1)
((

𝑥

𝛼
)𝛽)

𝑏(𝑘+1)+𝑗−
1

𝛽

∞

𝑗,𝑘=0

 

𝑓(𝑥) = (1 − 𝜆)𝑎𝑏
𝛽

𝛼
∑

(−1)𝑘𝛤(𝑏(𝑘 + 1) + 𝑗 + 1)

𝑗! 𝑘! 𝛤(𝑏(𝑘 + 1) + 1)
((

𝑥

𝛼
)𝛽)𝑏(𝑘+1)+𝑗−1

∞

𝑗,𝑘=0

+ 2𝑎𝜆𝑏
𝛽

𝛼
∑

(−2)𝑘𝛤(𝑏(𝑘 + 1) + 𝑗 + 1)

𝑗! 𝑘!)𝑘𝛤(𝑏(𝑘 + 1) + 1)
((

𝑥

𝛼
)𝛽)𝑏(𝑘+1)+𝑗−1

∞

𝑗,𝑘=0

 

and after simplification, the TWPF density can be expressed as 

𝑓(x) = ∑
(−1)𝑘𝑎𝑘+1𝑏𝛽𝛤(𝑏(𝑘 + 1) + 𝑗 + 1){1 − 𝜆 + 2𝑘+1𝜆}

𝑗! 𝑘! 𝛼
1

𝛽𝛤(𝑏(𝑘 + 1) + 1)

((
𝑥

𝛼
)𝛽)

𝑏(𝑘+1)+𝑗−
1

𝛽

∞

𝑗,𝑘=0

 

or equivalently, we can write 

                                        

 

f(x) = ∑ ∪𝑗,𝑘 (
𝑥

𝛼
)𝛽(𝑏(𝑘+1)+𝑗)−1

∞

𝑗,𝑘=0

                                                (3.4) 

          

 

where 

∪𝑗,𝑘=
(−1)𝑘𝑎𝑘+1𝑏𝛽𝛤(𝑏(𝑘 + 1) + 𝑗 + 1){1 − 𝜆 + 2𝑘+1𝜆}

𝑗! 𝑘! 𝛼
1

𝛽𝛤(𝑏(𝑘 + 1) + 1)

 

If  𝛃 is an integer, the index i in the previous sum stops at 𝛃 − 𝟏. 
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3.3. Moments 

This subsection concerns with the 𝝁𝒓
′  moment and moment generating function for the 

TWPF distribution. Moments are important in any statistical analysis, especially in 

applications. It can be used to study the most important features and characteristics of a 

distribution (e.g. tendency, dispersion, skewness, and kurtosis).  

If X has the pdf in (2.5), then its rth moment can be obtained through the following 

relation 

 𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟∞

−∞
𝑓(𝑥) 𝑑𝑥 

Substituting (3.4) in above relation, we get 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∑ 𝑈𝑗,𝑘 ∫ 𝑥𝑟(

𝑥

𝛼

𝛼

0

∞

𝑗,𝑘=0

)𝛽(𝑏(𝑘+1)+𝑗)−1 dx                (3.5) 

Then, we obtain 

𝜇𝑟
′ = ∑ ∪𝑗,𝑘

∞

𝑗,𝑘=0

𝛼𝑟+1

𝑟 + 𝛽(𝑏(𝑘 + 1) + 𝑗)
                                         (3.6) 

Based on the first four moments of the TWPF distribution, the measures of skewness 

𝐀(𝛗) and kurtosis 𝐤(𝛗) of the TWPF distribution can be obtained as 

A(φ) =
𝜇3

′ − 3𝜇1
′ 𝜇2

′ + 2𝜇1
′3

[𝜇2
′ − 𝜇1

′2]
3

2

, 

and  

k(φ) =
𝜇4

′ − 4𝜇1
′ 𝜇3

′ + 6𝜇1
′2𝜇2

′ − 3𝜇1
′4

[𝜇2
′ − 𝜇1

′2]2
. 

Using the relation between the non-central and central moments, we can obtain the nth 

central moment, denoted by nM
, of TWPF random variable as follows: 

𝑀𝑛 = 𝐸(𝑋 − 𝜇)𝑛 = ∑ (
𝑛

𝑟
) (−𝜇)𝑛−𝑟𝐸(𝑋𝑟)

𝑛

𝑟=0

 

Then, we can also write 

𝑀𝑛 = ∑ (
𝑛

𝑟
)

𝑛

𝑟=0

(−1)𝑛−𝑟(𝜇1
′ )𝑛−𝑟𝜇𝑟

′  

and the cumulants of the random variable X can be obtained as 

𝑘𝑛 = 𝜇𝑛
′ − ∑ (

𝑛 − 1

𝑟 − 1
)

𝑛−1

𝑟=0

𝑘1𝜇𝑛−𝑟
′  

where 𝒌𝟏 = 𝝁𝟏
′ , 𝒌𝟐 = 𝝁𝟐

′ − (𝝁𝟏
′ )𝟐, 𝒌𝟑 = 𝝁𝟑

′ − 𝟑𝝁𝟐
′ 𝝁𝟏

′ + (𝝁𝟏
′ )𝟑 etc. The skewness and 

kurtosis measures can be calculated from the ordinary moments using well-known 

relationships.  
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3.4. Moment Generating Function 

In this subsection, we derived the moment generating function of TWPF distribution. The 

moment generating function is given by the relation 

𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑋) = ∫ 𝑒𝑡𝑥𝑓(𝑥) 𝑑𝑥
∞

0

, 

then, we have 

𝑀𝑥(𝑡) = ∑ 𝑈𝑗,𝑘 ∫ (
𝑥

𝛼
)𝛽(𝑏(𝑘+1)+𝑗)−1𝑒𝑡𝑥 𝑑𝑥

𝛼

0

∞

𝑗,𝑘=0

 

The moment generating function of the TWPF distribution is obtained by 

𝑀𝑥(𝑡) = ∑ 𝑈𝑗,𝑘

𝛾(𝛽(𝑘 + 1) + 𝑗, 𝛼𝑡)

(𝛼𝑡)𝛽(𝑏(𝑘+1)+𝑗)−1
                                                (3.7)

∞

𝑗,𝑘=0

 

where 𝛄(𝐬, 𝐭) = ∫ 𝒙𝒔−𝟏𝒆−𝒙 𝒅𝒙
𝒕

𝟎
is the lower incomplete gamma function. 

Another formula for moment generating function can be given as 

𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!
𝐸(𝑋𝑟) = ∑ 𝑈𝑗,𝑘

𝑡𝑟

𝑟!

𝛼𝑟+1

𝑟 + 𝛽(𝑏(𝑘 + 1) + 𝑗)

∞

𝑗,𝑘,𝑟=0

∞

𝑟=0

 

 

3.5. Incomplete and Conditional Moments  

The main application of the first incomplete moment refers to the Bonferroni and Lorenz 

curves. These curves are very useful in economics, reliability, demography, insurance, and 

medicine. The incomplete moments, say 𝝋𝒔(𝒕) , is given by 

φ𝑠(𝑡) = ∫ 𝑥𝑠
𝑡

0

𝑓(𝑥) 𝑑𝑥. 

Using (2.5), 𝛗𝒔(𝒕)can be written as  

φ𝑠(𝑡) = ∑ 𝑈𝑗,𝑘 ∫ 𝑥𝑠(
𝑥

𝛼
)𝛽(𝑏(𝑘+1)+𝑗)−1 𝑑𝑥.

𝑡

0

∞

𝑗,𝑘=0

 

Then,  

φ𝑠(𝑡) = 𝑈𝑗,𝑘

𝑡𝑠+𝛽(𝑏(𝑘+1)+𝑗)

[𝑠 + 𝛽(𝑏(𝑘 + 1) + 𝑗)]𝛼𝛽(𝑏(𝑘+1)+𝑗)−1
 

 

Further, the conditional moments, say 𝝉𝒔(𝒕) , is given by 

𝜏𝑠(𝑡) = ∫ 𝑥𝑠𝑓(𝑥) 𝑑𝑥
𝛼

𝑡

 

Hence, by using pdf (2.5), we can write 
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𝜏𝑠(𝑡) = ∑ 𝑈𝑗,𝑘 ∫ 𝑥𝑠(
𝑥

𝛼
)𝛽(𝑏(𝑘+1)+𝑗)−1 𝑑𝑥

𝛼

𝑡

∞

𝑗,𝑘=0

 

Then, we have 

𝜏𝑠(𝑡) = ∑ 𝑈𝑗,𝑘

𝛼𝑠+𝛽(𝑏(𝑘+1)+𝑗) − 𝑡𝑠+𝛽(𝑏(𝑘+1)+𝑗)

[𝑠 + 𝛽(𝑏(𝑘 + 1) + 𝑗)]𝛼𝛽(𝑏(𝑘+1)+𝑗)−1

∞

𝑗,𝑘=0

 

Additionally, the mean deviation can be calculated by the following relation 

𝜹𝟏(𝑿) = 𝟐𝝁𝑭(𝝁) − 𝟐𝑻(𝝁) 𝐚𝐧𝐝 𝜹𝟐(𝑿) = 𝝁 − 𝟐𝑻(𝑴) where, 𝑻(𝒒) = ∫ 𝒙𝒇(𝒙) 𝒅𝒙.
𝒒

𝟎
 

 By using (3.4) we have the following equations: 

𝑇(𝜇) = ∫ 𝑥𝑓(𝑥) 𝑑𝑥 = ∑ 𝑈𝑗,𝑘

𝜇𝛽(𝑏(𝑘+1)+𝑗)+1

[𝛽(𝑏(𝑘 + 1) + 𝑗) + 1]𝛼𝛽(𝑏(𝑘+1)+𝑗)−1
,

∞

𝑗,𝑘=0

𝜇

0

 

𝑇(𝑀) = ∫ 𝑥𝑓(𝑥) 𝑑𝑥 = ∑ 𝑈𝑗,𝑘

𝑀𝛽(𝑏(𝑘+1)+𝑗)+1

[𝛽(𝑏(𝑘 + 1) + 𝑗) + 1]𝛼𝛽(𝑏(𝑘+1)+𝑗)−1
,

∞

𝑗,𝑘=0

𝑀

0

 

 

3.6. Residual Life Function 

Several functions are defined related to the residual life. The failure rate function, mean 

residual life function, and the left-censored mean function, also called vitality function. It is 

well known that these three functions uniquely determine
( )F x

, see [20-22]. Moreover, the 

nth  moment of the residual life, say 𝒎𝒏(𝒕) = 𝑬[(𝑿 − 𝒕)𝒏|𝑿 > 𝒕], 𝐧 = 𝟏, 𝟐, … .,uniquely 

determine 
( )F x

. The nth moment of the residual life of X is given by 

𝑚𝑛(𝑡) =
1

𝑅(𝑡)
∫ (𝑥 − 𝑡)𝑛𝑓(𝑥) 𝑑𝑥

𝛼

𝑡

 

Applying the binomial expansion of 
 

n
x t

 into the above formula, we get  

𝑚𝑛(𝑡) =
1

𝑅(𝑡)
∑ ∑ 𝑈𝑗,𝑘(−𝑡)𝑑 (

𝑛

𝑑
)

𝛼𝑛+𝛽(𝑏(𝑘+1)+𝑗) − 𝑡𝑛+𝛽(𝑏(𝑘+1)+𝑗)

[𝑛 + 𝛽(𝑏(𝑘 + 1) + 𝑗)]𝛼𝛽(𝑏(𝑘+1)+𝑗)−1
    (3.8)

𝑛

𝑑=0

∞

𝑗,𝑘=0

 

Another interesting function is the mean residual life (MRL) function or the life 

expectation at age x  defined by 𝒎𝟏(𝒕) = 𝑬[(𝑿 − 𝒕)|𝑿 > 𝒕], which represents the expected 

additional life length for a unit which is alive at age’ x ’. The MRL of the TWPF distribution 

can be obtained by setting 1n   in (3.8). 

Furthermore, the nth moment of the reversed residual life, 

say 𝑴𝒏(𝒕)𝑬[(𝑿 − 𝒕)𝒏|𝑿 ≤ 𝒕], 𝐟𝐨𝐫 𝐭 > 𝟎, 𝐧 = 𝟏, 𝟐, . .,uniquely determines F(X). Hence, the 

nth moment the reversed residual life of X is given by 

𝑀𝑛(𝑡) =
1

𝑅(𝑡)
∫ (𝑥 − 𝑡)𝑛𝑓(𝑥) 𝑑𝑥

𝑡

0
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Applying the binomial expansion of  (𝒙 − 𝒕)𝒏into the above formula, we get 

𝑀𝑛(𝑡) =
1

𝑅(𝑡)
∑ ∑ 𝑈𝑗,𝑘(−𝑡)𝑑 (

𝑛

𝑑
)

𝑡𝑛+𝛽(𝑏(𝑘+1)+𝑗)

[𝑛 + 𝛽(𝑏(𝑘 + 1) + 𝑗]𝛼𝛽(𝑏(𝑘+1)+𝑗)−1

∞

𝑗,𝑘=0

𝑛

𝑑=0

 

The mean inactivity time (MIT) or mean waiting time (MWT), also called the mean 

reversed residual life function, is defined by 𝑴𝟏(𝒕) = 𝑬[(𝑿 − 𝒕)|𝑿 ≤ 𝒕], and it represents 

the waiting time elapsed since the failure of an item on condition that this failure had occurred 

in (𝟎, 𝒙). 
 

3.7 Rényi and q-Entropies 

The entropy of a random variable X is a measure of variation of uncertainty and has 

been used in many fields such as physics, engineering, and economics. According to Rényi 

[23], the Rényi entropy is defined by 

𝐼𝛿(𝑋) =
1

1 − 𝛿
𝑙𝑜𝑔 ∫ 𝑓(𝑥)𝛿 𝑑𝑥, 𝛿 > 0 𝑎𝑛𝑑 𝛿 ≠ 1

∞

−∞

. 

By applying the binomial theory (3.3) in the pdf (3.4), then the pdf 
( )f x 

 can be 

expressed as follows   

f(x)𝛿 = ∑ 𝑊𝑖,𝑘,𝑗𝑥𝛿(𝑏𝛽−1)+𝛽(𝑗+𝑘),

∞

𝑖,𝑘,𝑗=0

 

Where 

𝑊𝑖,𝑘,𝑗 =
(𝑎𝑏𝛽)𝛿(−1)𝑘(1 − 𝜆)𝛿−𝑖(2𝜆)𝑖[(𝑖 + 𝛿)𝑎]𝑘

𝛼𝛽[𝑘+𝑏𝛿+𝑗]𝑘!
(

𝛿

𝑖
) (

𝛿(𝑏 + 1) + 𝑘 + 𝑗 − 1

𝑗
). 

Therefore, the Rényi entropy of the TWPF distribution is given by 

𝐼𝛿(𝑋) =
1

1 − 𝛿
log [ ∑ 𝑊𝑖,𝑘,𝑗 ∫ 𝑥𝛿(𝑏𝛽−1)+𝛽(𝑗+𝑘) 𝑑𝑥

𝛼

0

∞

𝑖,𝑘,𝑗=0

], 

then, 

𝐼𝛿(𝑋) =
1

1 − 𝛿
log [ ∑ 𝑊𝑖,𝑘,𝑗

𝛼𝛿(𝑏𝛽−1)+𝛽(𝑗+𝑘)+1

𝛿(𝑏𝛽 − 1) + 𝛽(𝑗 + 𝑘) + 1
].

∞

𝑖,𝑘,𝑗=0

 

The q-entropy is defined by 

𝐻𝑞(𝑋) =
1

1 − 𝛿
log (1 − ∫ 𝑓(𝑥)𝑞 𝑑𝑥), 𝑞 > 0 𝑎𝑛𝑑 𝑞 ≠ 1

∞

−∞

. 

Therefore, the q-entropy of the TWPF distribution is given by 

𝐻𝑞(𝑋) =
1

1 − 𝛿
log [1 − ∑ 𝑊𝑖,𝑘,𝑗

𝛼𝛿(𝑏𝛽−1)+𝛽(𝑗+𝑘)+1

𝛿(𝑏𝛽 − 1) + 𝛽(𝑗 + 𝑘) + 1

∞

𝑖,𝑘,𝑗=0

]. 
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When we replace q with, 𝜹 the index I stop at 𝜹 when 𝜹 is an integer. 

 

4.  Order statistics 

Order statistics have been extensively applied in many fields of statistics, such as 

reliability and life testing. Let 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be independent and identically distributed (i.i.d) 

random variables with their corresponding continuous distribution function F(x). 

 Let 𝑿(𝟏), 𝑿(𝟐), … , 𝑿(𝒏)the corresponding ordered random sample from a population of 

size n. 

David [24] defined the pdf of the 
thk order statistic as  

   

𝑓𝑋(𝑘)
(𝑥) =

𝑓(𝑥)

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑(−1)𝑣 (

𝑛 − 𝑘

𝑣
) 𝐹(𝑥)𝑣+𝑘−1,                      (4.1)

𝑛−𝑘

𝑣=0

 

 

where 𝑩(. , . ) stands for beta function.  

The pdf of the 𝐤𝒕𝒉order statistic for TWPF distribution is derived by substituting (2.4) 

and (3.4) in (4.1), replacing h with v+k-1, 

𝑓𝑋(𝑘)
(𝑥) =

1

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑ ∑ 𝜂∗(

𝑥

𝛼
)𝛽(𝑏(𝑘+1)+𝑗)−1

∞

𝑗,𝑘=0

𝑛−𝑘

𝑣=0

 

× ((1 − exp (−𝑎 {
𝑥𝛽

𝛼𝛽 − 𝑥𝛽
}𝑏)){1 + 𝜆 − 𝜆(1 − exp (−𝑎 {

𝑥𝛽

𝛼𝛽 − 𝑥𝛽
}𝑏))})𝑣+𝑘−1 

where  

𝜂∗ = (−1)𝑣 (
𝑛 − 𝑘

𝑣
) 𝑈𝑗,𝑘 

This section deals with the MLEs of the unknown parameters for the TWPF distribution 

on the basis of complete samples. Let  𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 be the observed values from the TWPF 

distribution. The log-likelihood function for parameter vector 𝛗 = (𝐚, 𝐛, 𝛃, 𝛌)𝑻is obtained as  

lnL(φ) = n lna + n lnb + n βlnα

+ (βb − 1) ∑ ln(𝑥𝑖) − (𝑏 + 1) ∑ ln(𝛼𝛽 − 𝑥𝑖
𝛽) − 𝑎 ∑(

𝑥𝑖
𝛽

𝛼𝛽 − 𝑥𝑖
𝛽

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

)𝑏

+ ∑ ln ((1 − 𝜆) + 2𝜆exp (−𝑎{
𝑥𝑖

𝛽

𝛼𝛽 − 𝑥𝑖
𝛽

𝑛

𝑖=1

}𝑏))                                              (5.1) 

The elements of the score function 𝐔(𝛗) = (𝑼𝒂, 𝑼𝒃, 𝑼𝜷, 𝑼𝝀)  are given by 

𝑈𝑎 =
𝑛

𝑎
− ∑(

𝑥𝑖
𝛽

𝛼𝛽 − 𝑥𝑖
𝛽

)𝑏 − 2𝜆 ∑
{

𝑥𝑖
𝛽

𝛼𝛽−𝑥𝑖
𝛽}𝑏exp (−𝑎{

𝑥𝑖
𝛽

𝛼𝛽−𝑥𝑖
𝛽}𝑏)

1 − 𝜆 + 2𝜆exp (−𝑎{
𝑥𝑖

𝛽

𝛼𝛽−𝑥𝑖
𝛽}𝑏)

,

𝑛

𝑖=1

𝑛

𝑖=1
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𝑈𝑏 =
𝑛

𝑏
+ 𝛽 ∑ ln(𝑥𝑖) − ∑ ln(𝛼𝛽 − 𝑥𝑖

𝛽) − 𝑎 ∑(
𝑥𝑖

𝛽

𝛼𝛽 − 𝑥𝑖
𝛽

)𝑏ln (
𝑥𝑖

𝛽

𝛼𝛽 − 𝑥𝑖
𝛽

)

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

−2aλ ∑
(

𝑥𝑖
𝛽

𝛼𝛽−𝑥𝑖
𝛽)𝑏ln (

𝑥𝑖
𝛽

𝛼𝛽−𝑥𝑖
𝛽)exp (−𝑎{

𝑥𝑖
𝛽

𝛼𝛽−𝑥𝑖
𝛽}𝑏)

1 − 𝜆 + 2𝜆exp (−𝑎{
𝑥𝑖

𝛽

𝛼𝛽−𝑥𝑖
𝛽}𝑏)

𝑛

𝑖=1

 

𝑈𝛽 =
𝑛

𝛽
+ 𝑛 𝑙𝑛𝛼 + 𝑏 ∑ ln(𝑥𝑖) − (𝑏 + 1) ∑

𝛼𝛽𝑙𝑛𝛼 − 𝑥𝑖
𝛽𝑙𝑛𝑥𝑖

𝛼𝛽 − 𝑥𝑖
𝛽

𝑛

𝑖=1

𝑛

𝑖=1

 

−𝑎𝑏𝛼𝛽 ∑
𝑥𝑖

𝑏𝛽(𝑙𝑛𝑥𝑖 − 𝑙𝑛𝛼)

(𝛼𝛽 − 𝑥𝑖
𝛽

)𝑏+1

𝑛

𝑖=1

− 2abλ𝛼𝛽 ∑

𝑥𝑖
𝑏𝛽(𝑙𝑛𝑥𝑖−𝑙𝑛𝛼)

(𝛼𝛽−𝑥𝑖
𝛽

)𝑏+1
exp (−𝑎{

𝑥𝑖
𝛽

𝛼𝛽−𝑥𝑖
𝛽}𝑏)

1 − 𝜆 + 2𝜆exp (−𝑎{
𝑥𝑖

𝛽

𝛼𝛽−𝑥𝑖
𝛽}𝑏)

𝑛

𝑖=1

 

and 

𝑈𝜆 = ∑
2exp (−𝑎 {

𝑥𝑖
𝛽

𝛼𝛽−𝑥𝑖
𝛽}𝑏) − 1

1 − 𝜆 + 2𝜆exp (−𝑎{
𝑥𝑖

𝛽

𝛼𝛽−𝑥𝑖
𝛽}𝑏)

𝑛

𝑖=1

 

Since 𝐱 ≤  𝛂, the MLE of 𝛂 is the last-order statistic 𝐱(𝐧). Setting 𝑼𝒂, 𝑼𝒃, 𝑼𝜷 and 𝑼𝝀 

equal to zero and solving these equations simultaneously yield the MLE �̂� = (�̂�, �̂�, �̂�, 𝝀)of 

𝛗 = (𝐚, 𝐛, 𝛃, 𝛌)𝑻 These equations cannot be solved analytically and statistical software can 

be used to solve them numerically using iterative methods.  

 

6. Simulation study 

In this section, an extensive numerical investigation will be carried out to evaluate the 

performance of MLE for TWPF model. Performance of estimators is evaluated through their 

biases, and mean square errors (MSEs) for different sample sizes. A numerical study is 

performed using Mathematica (9) software. Different sample sizes are considered through 

the experiments at size n = 100, 150 and 200. In addition, the different values of parameters   

, , , anda b    . 
The experiment will be repeated 1000 times. In each experiment, the estimates of the 

parameters will be obtained by maximum likelihood methods of estimation. The means, 

MSEs and biases for the different estimators will be reported from these experiments. 
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Table 1: The parameter estimation from TWPF distribution using MLE 

 

7. Application 

This section provides two applications to show how the TWPF distribution can be applied 

in practice. For this aim, the TWPF distribution is compared with other competitive 

distributions. In these applications, the model parameters are estimated by the method of 

maximum likelihood. The Akaike information criterion (AIC), Bayesian information 

criterion, Anderson-Darling (A*) and Cramer−von Mises (W*) statistics are computed to 

compare the fitted models. In general, the smaller the values of these statistics, the better the 

fit to the data. 

The plots of the fitted pdfs, cdfs of some distributions given below are displayed for 

visual comparison. The required computations are carried out in the R-language. The density 

functions of the compared distributions are given by  

• Beta Exponential (BE) distribution with the pdf 

𝑓(𝑥) =
𝜆

𝐵𝑒𝑡𝑎[𝑎, 𝑏]
𝑒−(𝜆𝑏𝑥)(1 − 𝑒−𝜆𝑥)𝑎−1 

• The gamma exponentiated exponential (GEE) distribution with the pdf  

𝑓(𝑥) =
𝜆𝑎𝛿

𝛤(𝛿)
𝑒−𝜆𝑥(1 − 𝑒−𝜆𝑥)𝛼−1(−𝑙𝑜𝑔 (1 − 𝑒−𝜆𝑥))𝛿−1 

n Par Parameters MLE Bias MSE Parameters MLE Bias MSE 

 a 2.0 2.0203 0.0203 0.0333 2.0 2.0177 0.0177 0.0325 

 b 2.0 2.0414 0.0414 0.0914 1.5 1.5451 0.0451 0.0564 

50 α 0.5 0.5827 0.0827 0.6697 0.5 0.5309 0.0309 0.0689 

 β 2.0 2.2117 0.2117 1.0595 2.0 2.1276 0.1276 0.4035 

 λ 0.5 0.5008 0.0008 0.0002 0.5 0.5006 0.0006 0.0002 

 a 2.0 2.0141 0.0141 0.0241 2.0 2.0104 0.0104 0.0235 

 b 2.0 2.0313 0.0313 0.0630 1.5 1.5220 0.0220 0.0329 

100 α 0.5 0.5704 0.0704 0.1708 0.5 0.5300 0.0300 0.0217 

 β 2.0 2.1375 0.1375 0.4572 2.0 2.0844 0.0844 0.2128 

 λ 0.5 0.5006 0.0006 0.0002 0.5 0.5004 0.0004 0.0002 

 a 2.0 2.0124 0.0124 0.0181 2.0 2.0058 0.0058 0.0163 

 b 2.0 2.0315 0.0315 0.0455 1.5 1.5147 0.0147 0.0219 

150 α 0.5 0.5336 0.0336 0.0341 0.5 0.5212 0.0212 0.0137 

 β 2.0 2.0926 0.0926 0.2563 2.0 2.0553 0.0553 0.1172 

 λ 0.5 0.5006 0.0005 0.0001 0.5 0.5001 0.0001 0.0001 
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• Weibull Fréchet (WFr) distribution with the pdf 

𝑓(𝑥) = 𝑎𝑏𝛽𝛼𝛽𝑥−𝛽−1𝑒𝑥𝑝 [−𝑏(
𝛼

𝑥
)𝛽](1 − [−𝑏(

𝛼

𝑥
)𝛽])−𝑏−1𝑒𝑥𝑝 [−𝑎(𝑒𝑥𝑝 [(

𝛼

𝑥
)𝛽] − 1)−𝑏] 

• Weibull power function (WPF) distribution with the pdf 

𝑓(𝑥) =
𝑎𝑏𝛽𝛼𝛽𝑥𝛽𝑏−1

(𝛼𝛽 − 𝑥𝛽)𝑏+1
𝑒

−𝑎(
𝑥𝛽

𝛼𝛽−𝑥𝛽
)𝑏

, 0 < 𝑥 < 𝛼, 𝑎, 𝑏, 𝛼, 𝛽 > 0 

 

The first data set represents the strengths of 1.5 cm glass fibers, measured at the National 

Physical Laboratory, England [25].  The data are as follows: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 

1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.0, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 

1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 

0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 

1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89. 

The second data consisting of 100 observations on breaking stress of carbon fibres 

Nichols and Padgett [26] are given below:  3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31, 3.15, 

2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 3.51, 1.84, 1.61, 1.57, 1.89, 2.74, 3.27, 2.41, 3.09, 2.43, 

2.53, 2.81, 3.31, 2.35, 2.77, 2.68, 4.91, 1.57, 2.00, 1.17, 2.17, 0.39, 2.79, 1.08, 2.88, 2.73, 

2.87, 3.19, 1.87, 2.95, 2.67, 4.20, 2.85, 2.55, 2.17, 2.97, 3.68, 0.81, 1.22, 5.08, 1.69, 3.68, 

4.70, 2.03, 2.82, 2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 3.33, 2.56, 2.59, 2.83, 1.36, 1.84, 5.56, 

1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56, 2.38, 

1.92, 0.98, 1.59, 1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65. 

The descriptive statistics are presented in Table 2 for both data sets.  

n Minimum Median Mean Maximum Variance Skewness Kurtosis 

63 0.550 1.590 1.507 2.240 0.105 -0.900 3.924 

100 0.390 2.675 2.611 5.560 1.016578 0.3925 3.1775 

Table 1: The parameter estimation from TWPF distribution using MLE 

The MLEs of unknown parameters of the distributions for the both data set are given in 

Tables 3 and 5. The numerical values of the statistics AIC, BIC, A*, W* are listed in Tables 

4 and 6.  

Distribution Estimates 

BE(a, b, λ) 17.443 870.58 0.0132 - - 

GEE(λ, α, δ) 0.4339 24.666 18.803 - - 

WFr(a, b, α, β) 1.4762 16.856 0.3865 0.2436 - 

WPF(α, β, a, b) 2.2400 3.2311 1.9916 1.2633 - 

TWPF(α, β, a, b, λ) 2.240 2.22202 0.5771 1.58054 0.7786 

Table 3: The MLEs for the first data set 
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Model 
Goodness of fit criteria 

AIC BIC -L A* W* 

BE(a, b, λ) 53.904 60.333 -23.952 3.1256 0.5703 

GEE(λ, α, δ) 55.019 61.448 -24.510 3.2248 0.5885 

WFr(a, b, α, β) 39.000 47.573 -15.207 1.3410 0.2326 

WPF(α, β, a, b) 25.699 33.081 -9.8490 0.8078 0.1593 

TWPF(α, β, a, b, λ) 23.300 31.809 -7.850 0.6085 0.1045 

Table 4: Some statistics for models fitted to the first data set 

 

Distribution Estimated Parameters 

BE (a, b, λ) 5.99635 191.696 0.0118252   

GEE(λ, α, δ) 0.27192 8.13102 6.17272   

WFr(α, β, a, b) 4.97914 0.241625 170.755 6.82992  

WPF(α, β, a, b) 5.56010 13.5877 6.0266060 0.2065125  

TWPF(α, β, b, a, λ) 5.56000 10.5680033 0.2879722 4.5781689 0.6952126 

Table 5: The MLEs for the second data set 

 

Distribution AIC BIC -L A* W* 

BE (a, b, λ) 291.056 298.871 -142.528 0.77823 0.15443 

GEE(λ, α, δ) 292.054 299.870 -143.027 0.85420 0.16904 

WFr(α, β, a, b) 289.599 300.019 -140.799 0.44782 0.07509 

WPF(α, β, a, b) 284.674 292.489 -139.337 0.47192 0.06761 

TWPF(α, β, a, b, λ) 278.585 288.965 -135.292 0.42123 0.07171 

Table 6: Some statistics for models fitted to the second data set 

 

Based on the Tables 4 and 6, we conclude that the new TWPF model provides adequate 

fits as compared to other models in both applications with small values for AIC, BIC, A*, 

W*. In the two applications, the proposed TWPF model is much better than the four models. 

The histograms of the two data sets and the estimated pdfs and cdfs of the proposed and 

competitive models are displayed in Figure 2. Figure 2 also supports the results in Tables 4 

and 6.  
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          (a) Estimated pdf for the first data set    

 

          (b) Estimated cdf for the first data set 

 

(c) Estimated pdf for the second data set   

 

(d) Estimated cdf for the second data set   

 

Figure 2: Plots of the estimated pdfs and cdfs of the models for both data sets. 
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Figure 3: PP plots of the TWPF and other fitted distributions for the first data set 

   

 

  

 

Figure 4: PP plots of the TWPF distribution and other fitted distributions for the second data set 
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In Figures 3 and 4, the probability-probability (P-P) plots of the TWPF distribution and 

other fitted distribution are also presented for both data set. As seen in Figures 3 and 4, both 

data sets fits well the TWPF distribution than the other fitted distributions. 

 

8. Concluding remarks  

In this paper, we propose and study the new distribution called as transformed Weibull 

power function (TWPF) distribution. We investigate some of its mathematical properties 

including an expansion for the density function and explicit expressions for the quantile 

function, ordinary and incomplete moments, moment generating function, entropies, 

reliability function and order statistics. The maximum likelihood method is employed to 

estimate the model parameters. We fit TWPF model to two real data sets to demonstrate the 

flexibility of it. We hope that the new distribution will attract wider application in areas such 

as engineering, survival and lifetime data, hydrology, economics, among others.  
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