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In this paper, we introduce some new families of generalized Pareto distributions using 

the T-R{Y} framework. These families of distributions are named T-Pareto{Y} families, 

and they arise from the quantile functions of exponential, log-logistic, logistic, extreme 

value, Cauchy and Weibull distributions. The shapes of these T-Pareto families can be 

unimodal or bimodal, skewed to the left or skewed to the right with heavy tail. Some 

general properties of the T-Pareto{Y} family are investigated and these include the 

moments, modes, mean deviations from the mean and from the median, and Shannon 

entropy. Several new generalized Pareto distributions are also discussed. Four real data 

sets from engineering, biomedical and social science are analyzed to demonstrate the 

flexibility and usefulness of the T-Pareto{Y} families of distributions.  
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1. Introduction 

The Pareto distribution is named after the well-known Italian-born Swiss sociologist and economist 

Vilfredo Pareto (1848-1923). Pareto [1] defined Pareto’s Law, which can be stated as ,aN Ax  

where N  represents the number of persons having income x  in a population. Pareto distribution is 

commonly used in modelling heavy tailed distributions, including but not limited to income, insurance 

and city size populations. 

In the literature, many applications of Pareto distribution can be found in different fields such as 

social studies, economics, and physics. Modelling observable environmental extreme events such as 

earthquakes and forest fires areas using Pareto distribution was discussed by Burroughs and Tebbens 

[2]. For detailed review of Pareto distribution and related topics, one may refer to Arnold [3] and the 

references therein. 

The Pareto distribution is useful for fitting data that is skewed to the right. However, the real world 

data are much more complex, which may be skewed to the left or bimodal. To add more flexibility to 

the Pareto distribution, various generalizations were developed prior to the 1990s {e.g., Pickands [4], 

Johnson et al. [5] and the references therein.} During the recent decades, several new generalized Pareto 

distributions have been developed owing to the development of new methodologies for generating new 

families of distributions. Examples include the exponentiated Pareto distribution by Gupta et al. [6], 

the beta-Pareto distribution by Akinsete et al. [7] and the beta generalized Pareto distribution by 

Mahmoudi [8]. Sarabia and Prieto [9] proposed Pareto positive stable distribution to study city size 

data. Recently, Gómez-Déniz and Calderín-Ojeda [10, 11] developed the ArcTan Pareto distribution 

and successfully applied it to model insurance data and population size data. 
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 The probability density function (PDF) of Pareto distribution is given by 

𝑓(𝑥) =
𝛼𝜃𝛼

𝑥𝛼+1  , 𝑥 ≥ 𝜃                                                            (1) 

where 𝛼 > 0 is a shape parameter and 𝜃 > 0 is a location parameter. The cumulative distribution 

function (CDF) corresponding to Equation (1) is 

𝐹(𝑥) = 1 − (𝜃/𝑥)𝛼                                                            (2) 

Several generalizations of Equation (1) can be found in Johnson et al. [5].  Eugene et al. [12] defined 

the beta-generated family of distributions. The CDF of a beta-generated random variable X is given by 

𝐺(𝑥) =  ∫ 𝑏(𝑡)𝑑𝑡
𝐹(𝑥)

0

, 

where 𝑏(𝑡) is the PDF of the beta distribution, which is used as a generator to obtain the beta-

generated family of distributions and 𝐹(𝑥) is the CDF of any random variable.  

Replacing beta random variable by any random variable with support (0, 1), a new family of 

distributions can be developed. For example, the Kum-F family proposed by Jones [13] is obtained by 

replacing the beta distribution with the Kumaraswamy distribution. The Kumaraswamy-Pareto 

distribution was studied in detail by Bourguignon et al. [14]. The use of a generator with support 

between 0 and 1 was extended to the use of any generator distribution with support (−∞, ∞) by 

Alzaatreh et al. [15], who defined the T-X family as follows: Let  𝑟(𝑡)be the PDF of a continuous 

random variable T where𝑇𝜖[𝑎, 𝑏]  −∞ ≤ 𝑎 < 𝑏 ≤ ∞  and define 𝑊(𝐹(𝑥)) to be a monotonic and 

absolutely continuous function of the CDF 𝐹(𝑥) of any random variable X. 

The CDF of the T-X family of distributions is defined as 

𝐺(𝑥) =  ∫ 𝑟(𝑡)𝑑𝑡
𝑊(𝐹(𝑥))

𝑎

= 𝑅{𝑊(𝐹(𝑥))} 

where ( )R t  is the CDF of the random variable T. It is easy to see that beta-generated and Kum-

generated families are special cases of T-X family. Alzaatreh et al. [15] provided a list of ( ( ))W F x  

for three different supports of T in (0, 1), (0, ∞) and (−∞, ∞). 

Aljarrah et al. [16] refined the T-X family method by defining the 𝑊(𝐹(𝑥)) to be 𝑄𝑌(𝐹(𝑥)), the 

quantile function of any random variable Y, and defined the T-R{Y} framework (see also Alzaatreh et 

al. [17]) as follows: Let T, R and Y be random variables with respective CDFs   

𝐹𝑇(𝑥) = 𝑃(𝑇 ≤ 𝑥), 𝐹𝑅(𝑥) = 𝑃(𝑅 ≤ 𝑥),and𝐹𝑌(𝑥) = 𝑃(𝑌 ≤ 𝑥), . The PDFs are 𝑓𝑇(𝑥), 𝑓𝑅(𝑥),and 

𝑓𝑌(𝑥), respectively. Define the quantile function as 𝑄𝑍(𝑝) = 𝑖𝑛𝑓{𝑧: 𝐹𝑍(𝑧) ≥ 𝑝}, 0 < 𝑝 < 1 Then, the 

corresponding quantile functions for the random variables T, R and Y are 𝑄𝑇(𝑝), 𝑄𝑅(𝑝)and 𝑄𝑌(𝑝) The 

CDF and the PDF of the random variable X are respectively defined as 

𝐹𝑋(𝑥) =  ∫ 𝑓𝑇(𝑡)𝑑𝑡
𝑄𝑌(𝐹(𝑥))

𝑎
=  𝐹𝑇 (𝑄𝑌(𝐹𝑅(𝑥))),                                       (3) 

𝑓𝑋(𝑥) =  𝑓𝑅(𝑥) ×
𝑓𝑇(𝑄𝑌(𝐹𝑅(𝑥)))

𝑓𝑌(𝑄𝑌(𝐹𝑅(𝑥)))
,                                                     (4) 

It is interesting to note that given a random variable R, T-R{Y} results in a generalized R distribution 

for any non-uniform T and Y random variables. Thus, one can apply the T-R{Y} methodology to 

generate different families of generalized R distributions. Note that for a given random variable T, T-

R{Y} does not generate families of generalized T distributions using different R or Y random variables. 

This can be seen by the fact that the support of R is the same as that of T-R{Y}; while the support of T 

can be different from that of T-R{Y}. 
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 Many new generalized families of distributions using the T-R{Y} framework have been studied 

(e.g., Mansoor et al. [18], Yousof et al. [19], Aldeni et al. [20]). Some members of T-X family with 

𝑊(𝐹(𝑥)) = −𝑙𝑜𝑔 (1 − 𝐹(𝑥)) include the gamma-Pareto distribution studied by Alzaatreh et al. [21] 

and the Weibull-Pareto distribution studied by Alzaatreh et al. [22]. Alzaatreh et al. [17] investigated 

the family of generalized normal distributions and Almheidat et al. [23] investigated the family of 

generalized Weibull distributions. Using the quantile functions of different Y random variables, we 

develop several new generalizations of Pareto distribution, the T-Pareto{Y} family. Many existing 

generalizations of Pareto distribution are special cases of the T-Pareto{Y} family. 

The outline of this paper is as follows: Section 2 introduces different generalizations of the Pareto 

distribution. Section 3 investigates some general properties of the proposed families. Section 4 defines 

some new members of the proposed families and some of their properties are discussed. Section 5 

presents a simulation study to investigate the properties of the maximum likelihood estimators for a 

generalized Pareto distribution, namely, normal-Pareto {Cauchy}. Four data sets from engineering, 

biomedical and social science are applied in Section 6 to illustrate the flexibility and usefulness of the 

T-Pareto distributions. Section 7 gives a brief summary. 

2. Some T-Pareto families of distributions 

Applying different random variables T or Y, the resulting distribution of T-Pareto{Y} family is a 

generalized Pareto distribution. In this section we define the following six families of generalized 

Pareto (GP) distributions; T-Pareto{Y} using quantile functions of exponential, log-logistic, Weibull, 

logistic, Cauchy, and extreme value random variables. The corresponding quantile functions are listed 

in Table 1. There are other possible random variables Y with closed-form quantile functions that can 

be used to generate the T-Pareto{Y} families. For practical purpose we focus on these six in Table 1 so 

that the resulting new families of distributions have at most five parameters. 

Table 1. Some quantile functions of Y and the domains of T 

Random variable Y The quantile function 𝑄𝑌(𝑝) Domain of T 

i Exponential −log (1 − p) (0, ∞) 

ii Log-logistic [p/(1 − p)]1/β, β > 0 (0, ∞) 

iii Weibull λ(−log (1 − p))1/k,λ, k > 0 (0, ∞) 

iv Logistic λ log[p/(1 − p)] ,λ > 0 (−∞, ∞) 

v Cauchy tan(π(p − 0.5)) (−∞, ∞) 

vi Extreme value log (−log (1 − p)) (−∞, ∞) 

 

The CDF and PDF for each of these families can be derived by using the corresponding quantile 

function in Equations (3) and (4) respectively. The hazard function is obtained by using the definition  

ℎ𝑋(𝑥) =  𝑓𝑋(𝑥)/(1 − 𝐹𝑋(𝑥)). The generalized Pareto families of distributions are now derived: 

i. T-Pareto{exponential}: The CDF, PDF and hazard function of T-Pareto{exponential} are 

respectively given by 

𝐹𝑋(𝑥) =  𝐹𝑇{− 𝑙𝑜𝑔(1 − 𝐹𝑅(𝑥))} = 𝐹𝑇(𝐻𝑅(𝑥)),                                       (5) 

𝑓𝑋(𝑥) =  
𝑓𝑅(𝑥)

1−𝐹𝑅(𝑥)
𝑓𝑇{− log(1 − 𝐹𝑅(𝑥))} =  ℎ𝑅(𝑥)𝑓𝑇(𝐻𝑅(𝑥)),and                          (6) 

ℎ𝑋(𝑥) =  ℎ𝑅(𝑥)ℎ𝑇(𝐻𝑅(𝑥)) 
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where  𝑓𝑅(𝑥)and 𝐹𝑅(𝑥)are PDF and CDF of Pareto random variable given in Equations (1) and (2), 

and ℎ𝑇(𝑥) , ℎ𝑅(𝑥) , and 𝐻𝑅(𝑥)  are the hazard function of the T random variable, the hazard and 

cumulative hazard functions for the Pareto distribution, respectively. It is noticed that the T-

Pareto{exponential} defined above is a function of hazard and cumulative hazard functions. Thus, this 

family of GP can be considered as GP arising from hazard function. 

ii. T-Pareto{log-logistic}: The CDF, PDF and hazard function of T-Pareto{log-logistic} are 

respectively given by 

𝐹𝑋(𝑥) =  𝐹𝑇{[𝐹𝑅(𝑥)/(1 − 𝐹𝑅(𝑥))]1/𝛽},                                          (7) 

𝑓𝑋(𝑥) =  
𝑓𝑅(𝑥)

𝛽𝐹𝑅
(𝛽−1)/𝛽(𝑥)(1−𝐹𝑅(𝑥))(𝛽+1)/𝛽

𝑓𝑇{[𝐹𝑅(𝑥)/(1 − 𝐹𝑅(𝑥))]1/𝛽},and 

ℎ𝑋(𝑥) =  
ℎ𝑅(𝑥)ℎ𝑇{[𝐹𝑅(𝑥)/(1 − 𝐹𝑅(𝑥))]1/𝛽}

𝛽𝐹𝑅
(𝛽−1)/𝛽(𝑥)(1 − 𝐹𝑅(𝑥))1/𝛽

 

The Weibull-Pareto{log-logistic} distribution defined and studied by Aljarrah et al. [24] is a 

member of this family. 

iii. T-Pareto{Weibull}: The CDF, PDF and hazard function of T-Pareto{Weibull} are respectively 

given by 

𝐹𝑋(𝑥) =   𝐹𝑇{𝜆[−log (1 − 𝐹𝑅(𝑥))]1/𝑘},                                          (8) 

𝑓𝑋(𝑥) =  
𝜆𝑓𝑅(𝑥)[−log (1−𝐹𝑅(𝑥))](1−𝑘)/𝑘

𝑘(1−𝐹𝑅(𝑥))
𝑓𝑇{𝜆[−log (1 − 𝐹𝑅(𝑥))]1/𝑘},and 

ℎ𝑋(𝑥) = (𝜆/𝑘)ℎ𝑅(𝑥)(𝐻𝑅(𝑥))(1−𝑘)/𝑘ℎ𝑇{𝜆[𝐻𝑅(𝑥)]1/𝑘}. 

This family of GP can be considered as GP arising from hazard function. The T-Pareto{exponential} 

is a special case of this family. 

iv. T-Pareto{logistic}: The CDF, PDF and hazard function of T-Pareto{logistic} are respectively 

given by 

𝐹𝑋(𝑥) =  𝐹𝑇{𝜆 𝑙𝑜𝑔[𝐹𝑅(𝑥)/(1 − 𝐹𝑅(𝑥))]},                                         (9) 

𝑓𝑋(𝑥) =  
𝜆𝑓𝑅(𝑥)

𝐹𝑅(𝑥)(1−𝐹𝑅(𝑥))
𝑓𝑇{𝜆 𝑙𝑜𝑔[𝐹𝑅(𝑥)/(1 − 𝐹𝑅(𝑥))]},and 

ℎ𝑋(𝑥) =  
𝜆

𝐹𝑅(𝑥)
ℎ𝑅(𝑥)ℎ𝑇{𝜆 𝑙𝑜𝑔[𝐹𝑅(𝑥)/(1 − 𝐹𝑅(𝑥))]}. 

 

v. T-Pareto{Cauchy}: The CDF, PDF and hazard function of T-Pareto{Cauchy} are respectively 

given by 

𝐹𝑋(𝑥) =  𝐹𝑇{𝑡𝑎𝑛[𝜋(𝐹𝑅(𝑥) − 0.5)]},                                         (10) 

𝑓𝑋(𝑥) = 𝜋𝑓𝑅(𝑥)𝑠𝑒𝑐2[𝜋(𝐹𝑅(𝑥) − 0.5)] 𝑓𝑇{𝑡𝑎𝑛[𝜋(𝐹𝑅(𝑥) − 0.5)]},and 

ℎ𝑋(𝑥) = 𝜋𝑓𝑅(𝑥)𝑠𝑒𝑐2[𝜋(𝐹𝑅(𝑥) − 0.5)] ℎ𝑇{𝑡𝑎𝑛[𝜋(𝐹𝑅(𝑥) − 0.5)]}. 
vi. T-Pareto{extreme value}: The CDF, PDF and hazard function of T-Pareto{extreme value} are 

respectively given by 

𝐹𝑋(𝑥) = 𝐹𝑇{𝑙𝑜𝑔[−𝑙𝑜𝑔(1 − 𝐹𝑅(𝑥))]},                                       (11) 

𝑓𝑋(𝑥) =  
𝑓𝑅(𝑥)

−[1−𝐹𝑅(𝑥)]log [1−𝐹𝑅(𝑥)]
𝑓𝑇{𝑙𝑜𝑔[−𝑙𝑜𝑔(1 − 𝐹𝑅(𝑥))]}, and 

ℎ𝑋(𝑥) =  
ℎ𝑅(𝑥)

𝐻𝑅(𝑥)
ℎ𝑇{𝑙𝑜𝑔[𝐻𝑅(𝑥)]}. 
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3. Some properties of the T-Pareto family of distributions 

In this section, some of the general properties of the T-Pareto family will be discussed. 

Lemma 1 (Transformation): Consider any random variable T with PDF ( )Tf x , then the random 

variable 

(i) X =  θ𝑒𝑇/𝛼has the T-Pareto{exponential} family of distribution in Equation (5). 

(ii) X =  θ(1 + 𝑇𝛽)1/𝛼 has the T-Pareto{log-logistic} family of distribution in Equation (7). 

(iii) X =  θ𝑒(𝑇/𝜆)𝑘/𝛼 has the T-Pareto{Weibull} family of distribution in Equation (8). 

(iv) 𝑋 =  𝜃(𝑒𝑇/𝜆 + 1)
1

𝛼⁄  has the distribution of T-Pareto{logistic} family of distribution in 

Equation (9). 

(v) 𝑋 =  𝜃(0.5 − (𝑎𝑟𝑐𝑡𝑎𝑛𝑇)/𝜋)
−1

𝛼⁄  has the T-Pareto{Cauchy} family of distribution in 

Equation (10). 

(vi) X =  θ𝑒
𝑒𝑇

𝛼⁄
 has the T-Pareto{extreme value} family of distribution in Equation (11). 

Proof: The result follows from Equations (5), (7), (8), (9), (10) and (11). 

The importance of Lemma 1 is that it shows the relationship between the random variable X and 

the random variable T, which allows us to generate random samples from X by using the random 

variable T. As an example, we can generate the random variable X that follows the T-

Pareto{exponential} distribution in Equation (5) by first simulating the random variable T from the 

PDF 𝑓𝑇(𝑥) and then computing X =  θ𝑒𝑇/𝛼, which has the CDF 𝐹𝑋(𝑥). 

Lemma 2 (Quantiles): Let 𝑄𝑋(𝑝),0 < 𝑝 < 1 denote a quantile function of the random variable X. 

Then the quantile functions for the (i) T-Pareto{exponential}, (ii) T-Pareto{log-logistic}, (iii) T-

Pareto{Weibull}, (iv) T-Pareto{logistic}, (v) T-Pareto{Cauchy} and (vi) T-Pareto{extreme value} 

distributions, are respectively, 

(i) 𝑄𝑋(𝑝) = 𝜃𝑒(𝑄𝑟(𝑝)/𝛼), 

(ii) 𝑄𝑋(𝑝) = 𝜃((𝑄𝑇(𝑝))
𝛽

+ 1)1/𝛼, 

(iii) 𝑄𝑋(𝑝) =  𝜃𝑒((𝑄𝑇(𝑝)/𝜆)𝑘/𝛼), 

(iv) 𝑄𝑋(𝑝) =  𝜃(𝑒(𝑄𝑟(𝑝)/𝜆) + 1)
1

𝛼⁄ , 

(v) 𝑄𝑋(𝑝) =  𝜃(0.5 − (𝑎𝑟𝑐𝑡𝑎𝑛𝑄𝑇(𝑝))/𝜋)
−1

𝛼⁄ , 

(vi) 𝑄𝑋(𝑝) = θ𝑒(𝑒𝑄𝑇(𝑝)
𝛼⁄ ). 

Proof: The result follows by using  𝐹𝑋(𝑄𝑋(𝑝)) = 𝑝 and then solving for 𝑄𝑋(𝑝) such that 𝐹𝑋(. ) is 

the CDF defined in Equations (5), (7), (8), (9), (10), and (11). 
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Theorem 1: Let �̅�𝑅(𝑥) = 1 − 𝐹𝑅(𝑥)be the survival function of the Pareto distribution. The mode(s) 

of the (i) T-Pareto{exponential}, (ii) T-Pareto{log-logistic}, (iii) T-Pareto{Weibull}, (iv) T-

Pareto{logistic}, (v) T-Pareto{Cauchy} and (vi) T-Pareto{extreme value} distributions, respectively, 

are the solutions of the equations 

(i) 
𝑓′

𝑇{−𝑙𝑜𝑔�̅�𝑅(𝑥)}

𝑓𝑇{−𝑙𝑜𝑔�̅�𝑅(𝑥)}
=

1

𝛼
 (12) 

(ii) 
𝑓′

𝑇{𝐹𝑅(𝑥)/�̅�𝑅(𝑥)}1/𝛽

𝑓𝑇{𝐹𝑅(𝑥)/�̅�𝑅(𝑥)}1/𝛽 = − {
1

𝛽
−

1

𝛼
+ (

1

𝛽
− 1)

�̅�𝑅(𝑥)

𝐹𝑅(𝑥)
}

𝛽�̅�𝑅

1
𝛽

𝐹𝑅

1−𝛽
𝛽

  ,  (13) 

(iii) 
𝑓′

𝑇{𝜆(−𝑙𝑜𝑔�̅�𝑅(𝑥))1/𝑘}

𝑓𝑇{𝜆(−𝑙𝑜𝑔�̅�𝑅(𝑥))1/𝑘}
=  

−[𝛼−1𝑙𝑜𝑔�̅�𝑅(𝑥)+𝑘−1−1]

(𝜆/𝑘)(−𝑙𝑜𝑔�̅�𝑅(𝑥))1/𝑘 ,  (14) 

(iv) 
𝑓′

𝑇{𝜆𝑙og (𝐹𝑅(𝑥)/�̅�𝑅(𝑥))}

𝑓𝑇{𝜆𝑙og (𝐹𝑅(𝑥)/�̅�𝑅(𝑥))}
=

(1/𝛼−1)𝐹𝑅(𝑥)+1

𝜆
  (15) 

(v) 
𝑓′

𝑇{tan (𝜋(𝐹𝑅(𝑥)−0.5))}

𝑓𝑇{tan (𝜋(𝐹𝑅(𝑥)−0.5))}
=

−2𝜋�̅�𝑅(𝑥) tan(𝜋(𝐹𝑅(𝑥)−0.5))+1+(1/𝛼)

𝜋�̅�𝑅(𝑥)𝑠𝑒𝑐2(𝜋(𝐹𝑅(𝑥)−0.5))
 (16) 

(vi) 
𝑓′

𝑇{𝑙og (−𝑙𝑜𝑔�̅�𝑅(𝑥))}

𝑓𝑇{𝑙og (−𝑙𝑜𝑔�̅�𝑅(𝑥))}
=

−𝑙𝑜𝑔�̅�𝑅(𝑥)

𝛼
+ 1  (17) 

Proof: We will give the proof of (i). Considering the fact that 𝑓𝑅
′(𝑥) =

𝑓𝑅
2(𝑥)

�̅�𝑅(𝑥)
(−1 −

1

𝛼
), the 

derivative of Equation (6) with respect to x , can be simplified to 𝑓𝑋
′(𝑥) =

𝑓𝑅
2(𝑥)

�̅�𝑅
2

(𝑥)
𝑘(𝑥), where k(x) =

−1

𝛼
𝑓𝑇(−𝑙𝑜𝑔�̅�𝑅(𝑥)) + 𝑓′

𝑇(−𝑙𝑜𝑔�̅�𝑅(𝑥)), By setting, 𝑓′
𝑋

(𝑥) = 0 .we obtain the mode of ( )Xf x  by 

solving the equation 𝑘(𝑥) = 0.Simplifying 𝑘(𝑥) = 0 gives the result in (12). The rest of the results in 

Theorem 1, Equations (13)-(17), can be derived using the same technique used for Equation (12). 

The results in Theorem 1 do not guarantee a unique mode for GP distributions; there could be more 

than one mode. For example, the normal-Pareto{Cauchy} given in Section 4 is a bimodal distribution 

for different values of its parameters. 

Theorem 2: The Shannon entropies for the (i) T-Pareto{exponential}, (ii) T-Pareto{log-logistic}, 

(iii) T-Pareto{Weibull}, (iv) T-Pareto{logistic}, (v) T-Pareto{Cauchy} and (vi) T-Pareto{extreme 

value} distributions, respectively, are given by 

(i) 𝜂𝑥 = 𝑙𝑜𝑔 (
𝜃

𝛼
) + (𝜇𝑇/𝛼) + 𝜂𝑇 (18) 

(ii) 𝜂𝑥 = 𝑙𝑜𝑔 (𝛽𝜃/𝛼) + ((1 − 𝛼)/𝛼)𝐸(𝑙𝑜𝑔 (1 + 𝑇𝛽)) − (1 − 𝛽)𝐸(𝑙𝑜𝑔𝑇) + 𝜂𝑇 (19) 

(iii) 𝜂𝑥 = 𝑙𝑜𝑔 (𝑘𝜃/𝛼𝜆𝑘) + 𝐸(𝑇𝑘)/𝛼𝜆𝑘 − (1 − 𝑘)𝐸(𝑙𝑜𝑔𝑇) + 𝜂𝑇 (20) 

(iv) 𝜂𝑥 = 𝑙𝑜𝑔 (𝜃/𝛼𝜆) + ((1 − 𝛼)/𝛼)𝐸(𝑙𝑜𝑔𝑒𝑇/𝜆 + 1) + 𝜇𝑇/𝜆 + 𝜂𝑇 ,  (21) 

(v) 𝜂𝑥 = 𝑙𝑜𝑔(𝜃/𝜋𝛼) − (𝛼 + 1)𝐸(log (0.5 − (arctan (𝑇)/𝜋)))/𝛼 − 𝐸(log (𝑇2 + 1)) + 𝜂𝑇 ,
 (22) 

(vi) 𝜂𝑥 = 𝑙𝑜𝑔(𝜃/𝛼) + E(𝑒𝑇)/α + 𝜇𝑇 + 𝜂𝑇 (23) 

Here, 𝜇𝑇 and 𝜂𝑇 are the mean and the Shannon entropy for the random variable T. 

Proof: We first prove the result in Equation (18) for the T-Pareto{exponential} family. By the 

definition of the Shannon entropy, 

𝜂𝑥 = 𝐸(− 𝑙𝑜𝑔[𝑓𝑋(𝑋)]) = −𝐸(𝑙𝑜𝑔𝑓𝑅(𝑋)) + 𝐸(𝑙𝑜𝑔(1 − 𝐹𝑅(𝑋))) + 𝐸 (−𝑙𝑜𝑔𝑓𝑇(𝑙𝑜𝑔(1 − 𝐹𝑅(𝑋)))). 
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Since the random variable 𝑇 = −𝑙𝑜𝑔(1 − 𝐹𝑅(𝑋)) for the T-Pareto{exponential} family, we have 

𝐸 (−𝑙𝑜𝑔𝑓𝑇(− 𝑙𝑜𝑔(1 − 𝐹𝑅(𝑋)))) = 𝐸(−𝑙𝑜𝑔𝑓𝑇(𝑇)) = 𝜂𝑇                          (24) 

Now, 𝑙𝑜𝑔(𝑓𝑅(𝑋)) = 𝑙𝑜𝑔𝛼 + 𝛼𝑙𝑜𝑔𝜃 − (𝛼 + 1)𝑙𝑜𝑔𝑥, which gives 

𝐸(− 𝑙𝑜𝑔(𝑓𝑅(𝑋))) = −𝑙𝑜𝑔𝛼 − 𝛼𝑙𝑜𝑔𝜃 + (𝛼 + 1)𝐸(𝑙𝑜𝑔(𝑋)). 

From Lemma 1(i), X = θ𝑒𝑇/𝛼follows the T-Pareto{exponential}, hence 

𝐸(− 𝑙𝑜𝑔(𝑓𝑅(𝑋))) = log (𝜃/𝛼) + ((𝛼 + 1)/𝛼)𝐸(𝑇)                                (25) 

Also, 𝐸(𝑙𝑜𝑔(1 − 𝐹𝑅(𝑋))) = 𝐸(𝛼log (𝜃/𝑋)) = −𝐸(𝑇)                                      (26) 

The result in Equation (18) follows from Equations (24) - (26). By the same procedure we can get 

the rest of the Shannon entropy formulas in Equations (19) - (23). 

 

Moments: 

Aljarrah et al. [16] proved that if 𝑓𝑅(𝑋) is the PDF of a non-negative random variable R, then the 

rth non-central moment of the random variable T-R{Y} satisfies E(𝑋𝑟) ≤ E(𝑅𝑟)E({�̅�𝑌(𝑇)}−1). Thus, 

in order for the rth non-central moment to exist, both the rth non-central moment of R and  E({�̅�𝑌(𝑇)}−1) 

has to be finite. By applying this upper bound, Theorem 3 provides the rth non-central moment for the 

(i) T-Pareto{exponential}, (ii) T-Pareto{log-logistic}, (iii) T-Pareto{Weibull}, (iv) T-Pareto{logistic}, 

(v) T-Pareto{Cauchy} and (vi) T-Pareto{extreme value} distributions. 

Theorem 3: The rth non-central moments for the (i) T-Pareto{exponential}, (ii) T-Pareto{log-

logistic}, (iii) T-Pareto{Weibull}, (iv) T-Pareto{logistic}, (v) T-Pareto{Cauchy} and (vi) T-

Pareto{extreme value} distributions, respectively, are given by 

(i) E(𝑋𝑟) = 𝜃𝑟𝑀𝑇(𝑟/𝛼) exists if 𝑀𝑇(𝑟/𝛼) exist     (27) 

(ii) E(𝑋𝑟) = 𝜃𝑟 ∫ (𝑢𝛽 + 1)𝑟/𝛼𝑓𝑇(𝑢)𝑑𝑢
∞

0
 exists if  E(𝑋𝑟𝛽/𝛼) exists. (28) 

(iii) E(𝑋𝑟) = 𝜃𝑟𝑀𝑇𝑘(𝑟/𝜆𝑘𝛼) exists if 𝑀𝑇𝑘(𝑟/𝜆𝑘𝛼) < ∞  (29) 

(iv) E(𝑋𝑟) = 𝜃𝑟 ∫ (𝑒𝑢/𝜆 + 1)𝑟/𝛼𝑓𝑇(𝑢)𝑑𝑢
∞

−∞
 exists if 𝑀𝑇(𝑟/𝜆𝛼) < ∞.   (30) 

(v) E(𝑋𝑟) = 𝜃𝑟(0.5)−𝑟/𝛼 ∑ (−1)𝑘(𝑟/𝛼+𝑘−1
𝑘

)(−2/𝜋)𝑘𝐸(𝑎𝑟𝑐𝑡𝑎𝑛𝑇)𝑘∞
𝑘=0     (31) 

exists if 𝐸(𝑎𝑟𝑐𝑡𝑎𝑛𝑇)𝑘 exists 

(vi) E(𝑋𝑟) = 𝜃𝑟𝑀𝑒𝑇(𝑟/𝛼) exists if𝑀𝑒𝑇(𝑟/𝛼) < ∞     (32) 

Where 𝑀𝑋(𝑧) = 𝐸(𝑒𝑧𝑋) , zϵ(−h, h), h > 0  is the moment generating function for a random 

variable X. 

Proof: We first show Equation (27). By using Lemma 1, the rth non-central moment for the T-

Pareto{exponential} distribution can be written as 

E(𝑋𝑟) = E(𝜃𝑒𝑇/𝛼)𝑟 = 𝜃𝑟𝑀𝑇(𝑟/𝛼). 
The same approach is used to find the results in Equations (29) to (32). The definition of the rth 

non-central moment or the generalized binomial expansion can be used to get the results for T-

Pareto{log-logistic}, T-Pareto{logistic}, and T-Pareto{Cauchy} families. 
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The deviation from the mean and from the median are used for measuring the dispersion and the 

spread from the center. The mean deviation from the mean   and the mean deviation from the median 

M  are denoted respectively as  𝐷(𝜇)and 𝐷(𝑀). 

Theorem 4: The 𝐷(𝜇) and 𝐷(𝑀) for the (i) T-Pareto{exponential}, (ii) T-Pareto{log-logistic}, (iii) 

T-Pareto{Weibull}, (iv) T-Pareto{logistic}, (v) T-Pareto{Cauchy} and (vi) T-Pareto{extreme value} 

distributions, respectively, are  

(i)                                𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2𝜃 ∑
1

𝛼𝑖𝑖!
𝑆𝑢(𝜇, 0, 𝑖),∞

𝑖=0     (33) 

𝐷(𝑀) = 𝜇 − 2𝜃 ∑
1

𝛼𝑖𝑖!
𝑆𝑢(𝑀, 0, 𝑖),∞

𝑖=0     (34) 

where 𝑆𝜉(𝑐, 𝑎, 𝑏) = ∫ 𝜉𝑏𝑓𝑇(𝑢)𝑑𝑢
𝑄𝑌(𝐹𝑅(𝑐))

𝑎
, and 𝑄𝑌(𝐹𝑅(𝑐)) = −𝑙𝑜𝑔 (1 − 𝐹𝑅(𝑐)) 

(ii)                                         𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2𝜃 ∑ (
1

𝛼
𝑖
) 𝑆𝑢𝛽(𝜇, 0, 𝑏),∞

𝑖=0  

𝐷(𝑀) = 𝜇 − 2𝜃 ∑ (1/𝛼
𝑖

)𝑆𝑢𝛽(𝑀, 0, 𝑏),∞
𝑖=0   

with 𝑏 = 𝑖,when |𝑢𝛽| < 1 and 𝑏 = (1/𝛼) − 𝑖 when |𝑢𝛽| > 1  

where𝑄𝑌(𝐹𝑅(𝑐)) = 𝐹𝑅(𝑐)/ (1 − 𝐹𝑅(𝑐))1/𝛽 

(iii)                                        𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2𝜃 ∑
1

𝜆𝑘𝑖𝛼𝑖𝑖!
𝑆𝑢𝑘(𝑀, 0, 𝑖),∞

𝑖=0   

𝐷(𝑀) = 𝜇 − 2𝜃 ∑
1

𝜆𝑘𝑖𝛼𝑖𝑖!
𝑆𝑢𝑘(𝑀, 0, 𝑖),∞

𝑖=0   

where 𝑄𝑌(𝐹𝑅(𝑐)) = 𝜆(−log (1 − 𝐹𝑅(𝑐)))1/𝑘. 

(iv)                                           𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2𝜃 ∑ (
1

𝛼
𝑖
) 𝑆

𝑒
𝑢
𝜆

(𝜇, −∞, 𝑏),∞
𝑖=0  

𝐷(𝑀) = 𝜇 − 2𝜃 ∑ (1/𝛼
𝑖

)𝑆
𝑒

𝑢
𝜆

(𝜇, −∞, 𝑏),∞
𝑖=0   

with 𝑏 = 𝑖 when |𝑒
𝑢

𝜆| < 1 and 𝑏 = (1/𝛼) − 𝑖 when |𝑒
𝑢

𝜆| > 1 

where 𝑄𝑌(𝐹𝑅(𝑐)) = 𝜆𝑙𝑜𝑔(𝐹𝑅(𝑐)/(1 − 𝐹𝑅(𝑐))). 

(v)                       𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2𝜃(0.5)−
1

𝛼 ∑ (
−

1

𝛼
𝑖

) (
−2

𝜋
)

𝑖
𝑆arctan(𝑢)(𝜇, −∞, 𝑖),∞

𝑖=0  

𝐷(𝑀) = 𝜇 − 2𝜃(0.5)−
1

𝛼 ∑ (
−

1

𝛼
𝑖

) (
−2

𝜋
)

𝑖
𝑆arctan(𝑢)(𝑀, −∞, 𝑖),∞

𝑖=0   

where 𝑄𝑌(𝐹𝑅(𝑐)) = 𝑡𝑎𝑛(𝜋(𝐹𝑅(𝑐) − 0.5)). 

(vi)                                             𝐷(𝜇) = 2𝜇𝐹𝑋(𝜇) − 2𝜃 ∑
1

𝛼𝑖𝑖!
𝑆𝑒𝑢(𝜇, −∞, 𝑖),∞

𝑖=0  

𝐷(𝑀) = 𝜇 − 2𝜃 ∑
1

𝛼𝑖𝑖!
𝑆𝑒𝑢(𝑀, −∞, 𝑖),

∞

𝑖=0

 

where 𝑄𝑌(𝐹𝑅(𝑐)) = 𝑙𝑜𝑔(−𝑙𝑜𝑔(1 − 𝐹𝑅(𝑐))). 
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Proof: By the definitions of 𝐷(𝜇) and 𝐷(𝑀) 

𝐷(𝜇) = 𝐸(|𝑋 − 𝜇|) = 2 ∫ (𝜇 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥
𝜇

−∞
= 2𝜇𝐹𝑋(𝜇) − 2 ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥

𝜇

−∞
 (35) 

𝐷(𝑀) = 𝐸(|𝑋 − 𝑀|) = 2 ∫ (𝑀 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥
𝑀

−∞
+ 𝐸(𝑋) − 𝑀 = 𝜇 − 2 ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥

𝑀

−∞
 (36) 

First, we will prove the results in Equations (33) and (34) for the T-Pareto{exponential} distribution. 

Take  𝐼𝑐 = ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
𝑐

−∞
.Using Equation (6) we can re-write  𝐼𝑐 as 

𝐼𝑐 = ∫ 𝑥
𝑓𝑅(𝑥)

1−𝐹𝑅(𝑥)
𝑓𝑇{−log (1 − 𝑓𝑅(𝑥))}𝑑𝑥

𝑐

−∞
                                       (37) 

Let  𝑢 =  −𝑙𝑜𝑔 (1 − 𝐹𝑅(𝑥))then Equation (37) can be written as 

𝐼𝑐 = ∫ 𝜃𝑒𝑢/𝛼𝑓𝑇 (u)𝑑𝑢
−𝑙𝑜𝑔 (1−𝐹𝑅(𝑐))

0

 

Using the series representation for the exponential function 𝑒𝑧 = ∑
𝑧𝑘

𝑘!
∞
𝑘=0 , 

𝐼𝑐 can be simplified to 𝐼𝑐 = 𝜃 ∑
1

𝛼𝑖𝑖!
∞
𝑖=0 ∫ 𝑢𝑖𝑓𝑇 (𝑢)𝑑𝑢

 𝑄𝑌(𝐹𝑅(𝑐))

0
= 𝜃 ∑

1

𝛼𝑖𝑖!
∞
𝑖=0 𝑆𝑢(𝑐, 0, 𝑖)                     (38) 

The expressions of 𝐷(𝜇) and 𝐷(𝑀)for T-Pareto{exponential} follow from using Equation (38) in 

Equations (35) and (36). Applying the same technique of showing Equations (33) and (34), one can 

show the results of 𝐷(𝜇) and 𝐷(𝑀) for (ii), (iii), (iv), (v), and (vi). 

4. Some new generalized Pareto distributions 

In this section, we will present four new GP distributions in the T-Pareto{Y} families. The four 

distributions are exponentiated exponential-Pareto{exponential}, Cauchy-Pareto{logistic}, normal-

Pareto{Cauchy}, and finally, log-logistic-Pareto{Weibull}. The additional parameters from the 

distributions of T and Y are often added to make the flexibility of characterizing the distribution shapes 

and tails in practical applications. 

4.1 The exponentiated exponential-Pareto{exponential} distribution 

 Let a random variable T  follow the exponentiated-exponential distribution with parameters λ 

and a. The PDF of T is  𝑓𝑇(𝑥) = 𝑎𝜆(1 − 𝑒−𝜆𝑥)𝑎−1𝑒−𝜆𝑥, 𝑥 > 0.Then the PDF of the exponentiated 

exponential-Pareto{exponential}(EE-P{E}}) distribution is given by 

𝑓𝑋(𝑥) =
𝛼𝜆𝑎

𝑥
(1 − (𝜃/𝑥)𝛼𝜆)𝑎−1(𝜃/𝑥)𝛼𝜆, 𝑥 ≥ 𝜃. 

On setting 𝑘 = 𝛼𝜆, we get  

𝑓𝑋(𝑥) =
𝑘𝑎

𝑥
(1 − (𝜃/𝑥)𝑘)𝑎−1(𝜃/𝑥)𝑘 , 𝑥 ≥ 𝜃 , 𝑘, 𝜃, 𝑎 > 0 

Plots of exponentiated exponential-Pareto{exponential} distribution with the location parameter 

𝜃 = 10 and for different values of the shape paramters k  and a are given in Figure 1. The graphs 

indicate that the distribution is either monotonically decreasing or right skewed. The paramter k is from 

the Pareto distribution, while the additional parameter a plays the role of charactering the shape to be 

reversed-J or monotonically decreasing as well as the heaviness of the tail. 
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Figure 1. The PDFs of EE-P{E} for 𝜃 = 10 and various values of k and a 

 

4.2 The Cauchy-Pareto{logistic} distribution  

 Let a random variable T follow the Cauchy distribution with parameters γ and μ. The PDF of 

T is 𝑓𝑇(𝑥) =
1

𝜋
(𝛾/((𝑥 − 𝜇)2 + 𝛾2)) . Then the PDF of the Cauchy-Pareto{logistic}(C-P{L}) 

distribution is given by 

𝑓𝑋(𝑥) =
(𝜆𝛼/𝜃)(𝑥/𝜃)𝛼−1

𝜋((𝑥/𝜃)𝛼 − 1)
(𝛾/((𝜆𝑙𝑜𝑔[(𝑥/𝜃)𝛼 − 1] − 𝜇)2 + 𝛾2)), 𝑥 ≥ 𝜃 , 𝛾, 𝛼, 𝜃 > 0 

Take 𝛾∗ = 𝛾/𝜆 and 𝜇∗ = 𝜇/𝜆. Then, , 

𝑓𝑋(𝑥) =
(𝛼/𝜃)(𝑥/𝜃)𝛼−1

𝜋((𝑥/𝜃)𝛼 − 1)
(𝛾∗/((𝜆𝑙𝑜𝑔[(𝑥/𝜃)𝛼 − 1] − 𝜇∗)2 + 𝛾∗2)), 𝑥 ≥ 𝜃, 𝜇∗ ∈ 𝑅, 𝛾∗, 𝛼, 𝜃 > 0. 

 

In Figure 2, various graphs of the C-P{L} when 𝜃 = 10, 𝜇∗ = 0 and various values of α and 𝛾∗ are 

provided. These plots indicate that the C-P{L} can be monotonically decreasing (reversed J-shape) or 

skewed to the right and it can be either unimodal or bimodal. 
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Figure 2. PDFs of C-P{L} for various values of 𝛼 𝑎𝑛𝑑 𝛾∗ 

4.3 The normal-Pareto{Cauchy} distribution 

 Let a random variable T follow the normal distribution with parameters μ and 𝜎2. The PDF of 

T is 𝑓𝑇(𝑥) =
1

√2𝜋𝜎
𝑒𝑥𝑝 (−(𝑥 − 𝜇)2/2𝜎2) .Then the PDF of the normal-Pareto{Cauchy}(N-P{C}) 

distribution is given by 

𝑓𝑋(𝑥) =
√𝜋(𝜃/𝑥)𝛼𝑠𝑒𝑐2(𝜋[0.5 − (𝜃/𝑥)𝛼])

√2𝜎𝑥
exp (−(tan (𝜋[0.5 − (𝜃/𝑥)𝛼]) − 𝜇)2/2𝜎2, 𝑥 ≥ 𝜃 

where 𝜎2, 𝛼, 𝜃 > 0. In Figure 3, various graphs of 𝑓𝑋(𝑥) when 𝜃 = 10 and for various values of α, 

σ and μ are provided. The figure shows that N-P{C} PDF can be right skewed, left skewed, unimodal 

and bimodal. For fixed σ and μ the peak increases as α increases. When α>1  and σ are both fixed, the 

shapes shift from right skewed, to bimodal, then, to left skewed, as μ increases. 

 

Figure 3. PDFs of N-P{C} for various values of 𝛼, 𝜎 and μ 
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4.4 Log-logistic-Pareto{Weibull} distribution 

 Let a random variable T follow the log-logistic distribution with parameter β The PDF of T is  

𝑓𝑇(𝑥) = 𝛽𝑥𝛽−1/(1 + 𝑥𝛽)2, 𝑥 > 0 .The quantile function of Weibull is given in Table 1 with 

parameters (𝜆, k). The PDF of the log-logistic-Pareto{Weibull}(LL-P{W}) distribution, when setting 

𝜆=1, is given by 

𝑓𝑋(𝑥) =
𝛼𝛽

𝑥𝑘

(−𝛼log (𝜃/𝑥))1/𝑘−1

(1 + (−𝛼log (𝜃/𝑥))𝛽/𝑘)2
, 𝑥 ≥ 𝜃 , 𝛽, 𝛼, 𝜃, 𝑘 > 0 

Note that the parameter 𝜆 is set to 1 since the resulting distribution has five parameters and 𝜆 is a 

scale parameter. 

In Figure 4, various graphs of the LL-P{W} PDF when 𝜃 = 10 and various values of α,k and β  are 

provided. These plots indicate that the LL-P{W} can be monotonically decreasing (reversed J-shape) 

or skewed to the right. Moreover, the peak increases as α or β  increases with the other parameter values 

fixed. 

 

Figure 4. PDFs of LL-P{W} for various values of α,k and β 

5. A simulation study of the properties of maximum likelihood estimators for N-P{C} distribution. 

Suppose X1, X2, …, Xn constitute a random sample from a normal-Pareto{Cauchy} distribution as 

defined in Sub-section 4.3, the likelihood function, L, for the normal-Pareto{Cauchy} distribution has 

the following form 

𝐿 = 𝐿(𝛼, 𝜃, 𝜇, 𝜎) = ∏{
√𝜋𝛼(𝜃/𝑥𝑖)

𝛼𝑠𝑒𝑐2(𝜋[0.5 − (𝜃/𝑥𝑖)𝛼])

√2𝜎𝑥𝑖

𝑒𝑥𝑝 (−{𝑡𝑎𝑛(𝜋[0.5 − (𝜃/𝑥𝑖)𝛼]) − 𝜇}2/2𝜎2)}

𝑛

𝑖=1

, 

for 𝑥𝑖 ≥ 𝜃. 

The corresponding log-likelihood function is 
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l(𝛼, 𝜃, 𝜇, 𝜎) = 𝑛𝑙𝑜𝑔
√𝜋𝛼𝜃𝛼

√2𝜎
− (𝛼 + 1) ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

+ ∑ log [𝑠𝑒𝑐2(𝜋[0.5 − (𝜃/𝑥𝑖)𝛼])]

𝑛

𝑖=1

 

− ∑ {𝑡𝑎𝑛𝜋[0.5 − (𝜃/𝑥𝑖)𝛼] − 𝜇}2/2𝜎2𝑛
𝑖=1                                                           (39) 

 

The maximum likelihood estimates for 𝛼, 𝜃, 𝜇 and 𝜎 are the values of 𝛼, 𝜃, 𝜇 and 𝜎 that make the 

log-likelihood as large as possible. Since 𝑥𝑖 ≥ 𝜃 the maximum likelihood estimator for the parameter 𝜃 

is the sample minimum given by  𝜃 = min (𝑥𝑖). On taking partial derivatives of the log-likelihood in 

(39) with respect to 𝛼, 𝜇 and 𝜎, and equating the derivatives to zero we get the likelihood equations of 

the normal-Pareto{Cauchy} distribution as follows: 

0 =
𝜕𝑙

𝜕𝛼
=

𝑛

𝛼
+ 𝑛𝑙𝑜𝑔𝜃 − ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛

𝑖=1

− ∑ 2𝜋(𝜃/𝑥𝑖)𝛼ln (𝜃/𝑥𝑖)tan (𝜋[0.5 − (𝜃/𝑥𝑖)
𝛼])

𝑛

𝑖=1

 

+ ∑
𝜋

𝜎2
𝑛
𝑖=1 (𝜃/𝑥𝑖)

𝛼ln (𝜃/𝑥𝑖)(tan (𝜋[0.5 − (𝜃/𝑥𝑖)
𝛼]) − 𝜇)𝑠𝑒𝑐2(𝜋[0.5 − (𝜃/𝑥𝑖)

𝛼]),             (40) 

0 =
𝜕𝑙

𝜕𝛼
= ∑

1

𝜎2
𝑛
𝑖=1 (tan (𝜋 [0.5 − (

𝜃

𝑥𝑖
)

𝛼

]) − 𝜇)                                        (41) 

0 =
𝜕𝑙

𝜕𝜎
=

−𝑛

𝜎
+ ∑

1

𝜎3
𝑛
𝑖=1 (tan (𝜋[0.5 − (𝜃/𝑥𝑖)

𝛼]) − 𝜇)2                            (42) 

By using 𝜃 = 𝑥(1) and using the moment estimates of 𝛼, 𝜇 and 𝜎 as the initial estimates, Equations 

(40)-(42) are solved iteratively, we obtain �̂�, �̂� and �̂�, the maximum likelihood estimates for 𝛼, 𝜇 and 

𝜎 respectively. To evaluate the performance of the MLE, a simulation study is conducted for different 

sample sizes (n = 100, 200, 500 and 1000) and different combinations of the parameters (𝛼 = 2, 4, 𝜇 = 

0, 0.8, 2, 3, 𝜎 = 1, 2 and θ =10). For each different parameter combination, 1000 simulations are 

conducted. The averages and standard deviations of the MLEs are presented in Table 2. 

 

Table 2: Average maximum likelihood estimates in N-P{C} distribution and their Monte Carlo standard deviations 

N Actual Values Average (Standard Deviation) of MLE 

 α μ σ               �̂�               �̂�               �̂�                �̂� 

100 2 0.0 1.0r 

2 2.0 1.0l 

4 0.8 1.0b 

4 3.0 2.0b 

10.2075 (0.2198)   2.1980 (0.3028)   0.0439 (0.1818)    1.1444 (0.2158) 

12.0280 (1.3837)   2.3646 (0.4302)   1.8543 (0.5991)    1.1529 (0.4089) 

10.2128 (0.2083)   4.4048 (0.6172)   0.8799 (0.2705)    1.1695 (0.2826) 

10.3407 (0.3407)   4.2297 (0.5111)   3.1138 (0.9394)    2.1770 (0.7321) 

200 2 0.0 1.0 

2 2.0 1.0 

4 0.8 1.0 

4 3.0 2.0 

10.1309 (0.1515)   2.1165 (0.2054)   0.0182 (0.1281)     1.0786 (0.1395) 

11.2779 (1.0180)   2.2108 (0.3015)   1.8756 (0.4114)    1.0662 (0.2709) 

10.1321 (0.1381)   4.2375 (0.4161)  0.8384 (0.1836)    1.0903 (0.1807) 

10.1744 (0.1788)   4.1194 (0.3389)  3.0515 (0.5940)    2.0782 (0.4585) 

500 2 0.0 1.0 

2 2.0 1.0 

4 0.8 1.0 

4 3.0 2.0 

10.0650 (0.0958)   2.0588 (0.1126)  0.0115 (0.0766)     1.0379 (0.0826) 

10.6309 (0.6274)   2.1049 (0.1781)  1.9445 (0.2457)    1.0342 (0.1592) 

10.0667 (0.0855)   4.1241 (0.2546)  0.8230 (0.1094)    1.0460 (0.1056) 

10.0806 (0.0876)   4.0694 (0.2010)  3.0509 (0.3523)    2.0546 (0.2705) 

1000 2 0.0 1.0 

2 2.0 1.0 

4 0.8 1.0 

4 3.0 2.0 

10.0382 (0.0660)   2.0326 (0.0880)   0.0052 (0.0548)    1.0233 (0.0576) 

10.3892 (0.3825)   2.0651 (0.1204)  1.9682 (0.1807)    1.0243 (0.1136) 

10.0406 (0.0577)   4.0745 (0.1747)  0.8135 (0.0799)    1.0295 (0.0732) 

10.0487 (0.0562)   4.0466 (0.1405)   3.0379 (0.2484)    2.0437 (0.1914) 

rUnimodal and skewed to the right, lUnimodal and skewed to the left, bDistribution is bimodal 

 

In Table 2, it is noticed that the bias of the MLE of θ is relatively large when the distribution is 

skewed to the left and the sample size is small. However, as n increases the bias reduces. As discussed 
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in Alzaatreh [22], the reason that the overestimate of θ is mainly due to the fact that the minimum 

observation in a sample is larger than the population minimum, especially when sample size is small. 

The results from the simulation indicate that the MLE is appropriate for estimating the parameters of 

the N-P{C} distribution. Simulations of different generalized Pareto distributions are also conducted. 

The results are similar. It is anticipated that MLE method is appropriate for estimating the parameters 

of T-Pareto{Y} families of distributions.  

 

6. Some applications of T-Pareto{Y} family of distributions 

As demonstrated in section 4, one can derive many different GP distributions, which can capture a 

wide range of distribution shapes. This section presents some applications of the normal-

Pareto{Cauchy} distribution using three real data sets and also presents an application of the Cauchy-

Pareto{logistic} distribution using the Australian city size data. The maximum likelihood estimation 

method is used to estimate the parameters of the fitted distributions (with the corresponding standard 

errors in parentheses). The likelihood equations are given in the Appendix. The maximized log-

likelihood value, the Bayesian Information Criterion (BIC) value, and the Kolmogorov-Smirnov (K-S) 

test statistic for the fitted distributions are reported in Tables 3, 4, 5 and 7 in order to compare the T-

Pareto{Y} distributions with other distributions. 

 

6.1 Strengths of 1.5 cm glass fibers data 

 This data set consists of the breaking strength of 63 glass fibers of length 1.5 cm, originally 

obtained by workers at the UK National Physical Laboratory [25]. The distribution of the data is skewed 

to the left (skewness = –0.922 and kurtosis = 1.103). Barreto-Souza et al. [26] applied the beta 

generalized exponential distribution (BGED) to fit the data and Alzaghal et al. [27] fitted the data using 

the exponentiated Weibull-exponential distribution (EWED). More recently, Almheidat et al. [23] 

fitted the data to the Lomax-Weibull{log-logistic} distribution (LWD). The results of N-P{C} in fitting 

this data set compared to the other distributions are presented in Table 3. 

  

Table 3. Estimates of the model parameters for the strength of 1.5cm glass fibers data 

Distribution BGED EWED LWD N-P{C} 

 

Parameter  

Estimates 

�̂� = 0.412 

(0.302) 

�̂� = 93.466 

(120.085) 

�̂� = 22.612 

(21.925) 

�̂� = 0.923 

(0.501) 

�̂� = 23.614 

(3.954) 

𝛾 = 7.249 

(0.994) 

�̂� = 0.003 

(0.003) 

�̂� = 1.191 

(0.723) 

�̂�=21.964 

(9.417) 

�̂�= 2.984 

(1.233) 

�̂� = 1.089 

(0.311) 

�̂� = 2.359 

(0.332) 

�̂�= 3.605 

(1.390) 

�̂�= 1.612 

(0.725) 

�̂� = 0.55 

K-S 

(p-value) 

0.167 

(0.059) 

0.137 

(0.195) 

0.101 

(0.537) 

0.092 

(0.675) 

Log Likelihood -15.599 -14.330 -11.991 -9.7 

BIC 47.8 41.1 35.2 31.8 
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Table 3 shows that the N-P{C} provides the best fit to this left skewed data set based on the 

different criteria presented. Figure 5 contains the histogram of the data and the PDFs of the fitted 

distributions.  

 

Figure 5. The fitted PDFs for the glass fibers data 

6.2 The fatigue life of 6061-T6 aluminum data 

 The second data set was analyzed by Alzaatreh et al. [21] and Mahmoudi [8]. The data is on 

the fatigue life of 6061-T6 aluminum coupons cut parallel with the direction of rolling and oscillated 

at 18 cycles per second. The data set consists of 101 observations with maximum stress per cycle 31,000 

psi. 

Mahmoudi [8] fitted the data to the five-parameter beta generalized Pareto, Weibull, beta-Pareto 

and the three-parameter generalized Pareto distributions. Alzaatreh et al. [21] showed that the fit of a 

three-parameter gamma-Pareto distribution was the best among the other distributions used by 

Mahmoudi [8] to fit the data. The result of fitting beta-Pareto, beta-generalized Pareto, and the gamma-

Pareto distributions from Mahmoudi [8] and Alzaatreh et al. [21] are reported in Table 4 along with the 

result of fitting the N-P{C} distribution to the data. The results in Table 4 indicate that the beta 

generalized Pareto, gamma-Pareto and the N-P{C} distributions fit the data well. Based on the K-S 

statistic, the two best fits are from the five-parameter beta generalized Pareto and the four-parameter 

N-P{C} distributions. This suggests that the N-P{C}, with one less parameter, is a better choice than 

the beta generalized Pareto distribution for fitting this right skewed data with long tail.  
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Table 4. Estimates of the fatigue life of 6061-T6 aluminum coupons data 

Distribution 

 

*Beta-Pareto *Beta-Generalized 

Pareto 

*Gamma-Pareto N-P{C} 

 

Parameter 

Estimates 

 

�̂� = 485.47 

�̂� = 162.06 

�̂�= 0.394 

�̂� =3.91 

�̂� = 12.112 

�̂� = 1.702 

�̂�= 40.564 

�̂�= 0.273 

�̂� = 54.837 

�̂� = 15.021 

�̂� = 0.0429 

�̂� = 70 

�̂� = 1.611 

(0.221) 

�̂�= 0.482 

(0.213) 

�̂� = 0.379 

(0.0612) 

�̂� = 70 

K-S 

(p-value) 

0.091 

(0.376) 

0.070 

(0.700) 

0.106 

(0.212) 

0.077 

(0.599) 

Log likelihood -458.65 -457.85 -448.53 -446.55 

BIC 910.6 907.0 905.9 906.8 

*The standard errors were not provided by Mahmoudi [8] and Alzaatreh et al. [21] 

 

Figure 6 displays the N-P{C}, gamma-Pareto and beta generalized Pareto fitted density functions 

along with the histogram for the fatigue life of 6061-T6 aluminum data. The plots in Figure 6 indicates 

that the N-P{C} provides a good fit to the data which is approximately symmetric, with a long right 

tail. 

 

Figure 6. The fitted PDFs for the fatigue life of 6061-T6 aluminum data 

 

6.3 The Airborne data 

 The airborne data represents the repair times in hours for an airborne communication 

transceiver. The data consist of 46 observations. The distribution of the data is highly skewed to the 

right (skewness = 2.99). Cordeiro et al. [28] fitted the data by using the beta generalized Raleigh (BGR), 

exponentiated generalized Rayleigh (EGR), and generalized Rayleigh distributions. Alzaghal et al. [27] 

fitted the exponentiated Weibull-exponential distribution (EWED) to the data and the distribution 

provided a better fit to the data than the other distributions. The results from Alzaghal et al. [27] and 

Cordeiro et al. [28] are provided in Table 5 in addition to the N-P{C} distribution. 

 The results from Table 5 show that the N-P{C} distribution provides the best fit to this highly 

right skewed data based on the different criteria presented. The plots in Figure 7 represent the fitted 

density functions of the N-P{C}, the EWED and the beta generalized Rayleigh distributions with the 

histogram of the Airborne data. 
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Table 5. Estimates of the model parameters for the airborne data 

Distribution 

 

Generalized 

Rayleigh 

Exponentiated 

Generalized 

Rayleigh 

Beta  

Generalized 

Rayleigh 

EWED N-P{C} 

 

Parameter 

Estimates 

 

�̂� = -0.703 

(0.049) 

�̂� = 0.008 

(0.003) 

�̂� = 5.712 

(2.400) 

�̂� = -0.946 

(0.024) 

�̂� = 0.007 

(0.002) 

â  = 10.482 

(0.476) 

�̂� = 20.761 

(0.228) 

�̂� = -0.893 

(0.022) 

�̂�=0.0000047 

(0.00001) 

�̂� = 0.498 

(0.133) 

𝛾 = 1.279 

(0.702) 

�̂� = 4.512 

(1.992) 

�̂� = 0.413 

(0.051) 

�̂�= 0.343 

(0.237) 

�̂� = 0.761 

(0.114) 

�̂� = 0.2 

K-S 

(p-value) 

0.176 

(0.116) 

0.179 

(0.105) 

0.122 

(0.500) 

0.091 

(0.838) 

0.072 

(0.973) 

Log 

Likelihood 

-217.10 -108.15 -99.55 -100.00 -96.5 

BIC 224.7 227.7 214.4 211.5 204.5 

 

 

Figure 7. The fitted PDFs for the airborne data 

 

6.4 The Australian city size data set 

 The Australian city size data set consists of estimates of the resident population size of 

significant urban areas of Australia for the following years: 1996, 2001, 2006, and 2011. The summary 

statistics of these population size data are given in Table 6. It is seen that the data are highly skewed to 

the right with skewness > 5.0. 
 

Table 6. Summary statistics of the Australian city size data (n = 101) 

 Mean Standard deviation Skewness Kurtosis 

1996 150874 513118 5.43 31.19 

2001 160552 544943 5.41 30.96 

2006 171447 578239 5.33 29.97 

2011 188584 636610 5.28 29.33 
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The dataset was downloaded from the website http://www.citypopulation.de/. Gómez-Déniz and 

Calderín-Ojeda [10] analyzed this data using the ArcTan Pareto (PAT) distribution and compared the 

results to the classical Pareto, the lognormal and Pareto Positive Stable (PPS) distributions for the years 

1991, 1996, 2001, 2006 and 2011. They found that only the PAT distribution adequately fits the data 

for each year; while PPS and PAT performs equally well for the years 1996, 2001, 2006 and 2011. 

Since the data for 1991 is no longer available on the website for comparison purpose, we fit the years 

1996, 2001, 2006 and 2011 and only compare with the PAT distribution. The C-P{L} distribution is 

applied to fit this population size data. Results from Table 7 show that the C-P{L} fits better than the 

PAT for the 1996 data using the BIC and the K-S criteria. For the year 2001, The C-P{L} fits better 

than PAT using the K-S and its p-value. For the years 2006 and 2011, the C-P{L} adequately fits the 

data but not better than the PAT distribution. This application shows that the C-P{L} is a good 

competitor to the PAT distribution for fitting the population size data.  

 

Table 7. Comparison between the estimates of the PAT and C-P{L} parameters for the Australian city size data 

 PAT C-P{L} 

Year 

�̂� = min (𝑥𝑖) 

Estimates 

(standard error) 

Goodness of fit 

BIC 

K-S(p-value) 

Estimates 

(standard error) 

Goodness of fit 

BIC 

K-S(p-value) 

1996 

�̂� = 4249 

�̂� = 6.301 

(1.832) 

�̂�= 1.116 

(0.129) 

 

2427.10 

0.113 (.145) 

�̂� = 0.420 

(0.022) 

�̂�= 0.438 

(0.0560) 

2402.6 

0.105 (.222) 

2001 

�̂� = 10035 

�̂� = 0.289 

(0.936) 

�̂�= 0.798 

(0.120) 

 

2379.53 

0.071(0.657) 

�̂� = 0.792 

(0.081) 

�̂�= 0.897 

(0.125) 

 

2381 

0.060 (0.861) 

2006 

�̂� = 10799 

�̂� = 0.295 

(0.887) 

�̂�= 0.805 

(0.120) 

 

2390.67 

0.061(0.823) 

�̂� = 0.848 

(0.092) 

�̂�= 0.925 

(0.125) 

 

2396.2 

0.079 (0.561) 

2011 

�̂� = 11318 

�̂� = 0.602 

(0.539) 

�̂�= 0.826 

(0.120) 

 

2412.61 

0.057(0.877) 

�̂� = 0.822 

(0.085) 

�̂�= 0.885 

(0.118) 

 

2415.1 

0.67 (0.710) 

 

7. Summary 

 In this article, a generalization of the two-parameter Pareto distribution to the T-Pareto{Y} 

family is defined and studied using the T-R{Y} framework presented by Aljarrah et al. [16]. Six new 

generalized Pareto families using the quantile functions of exponential, log-logistic, logistic, Cauchy, 

extreme value, and Weibull are presented. Various general properties of the new families including, 

moment, Shannon entropy, mean deviations from the mean and median are derived. 

 Four new distributions, exponentiated exponential-Pareto{exponential}, Cauchy-

Pareto{logistic}, normal-Pareto{Cauchy}, and log-logistic-Pareto{Weibull} distributions are defined. 

Four real data sets from engineering, biomedical and social science are fitted using the normal-

Pareto{Cauchy} distribution and the Cauchy-Pareto{logistic} to demonstrate the flexibility and 

potential applications of the proposed generalized Pareto family of distributions. The comparison with 

other existing generalized distributions indicates the T-Pareto family of distributions perform well for 

fitting real data sets that are skewed to left or skewed to right with heavy tail from different disciplines. 

http://www.citypopulation.de/
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