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Abstract: Getting a machine to understand the meaning of language is a 

largely important goal to a wide variety of fields, from advertising to enter- 

tainment. In this work, we focus on Youtube comments from the top two- 

hundred trending videos as a source of user text data. Previous Sentiment 

Analysis Models focus on using hand-labelled data or predetermined 

lexicon-s.Our goal is to train a model to label comment sentiment with 

emoticons by training on other user-generated comments containing 

emoticons. Naive Bayes and Recurrent Neural Network models are both 

investigated and im- plemented in this study, and the validation accuracies 

for Naive Bayes model and Recurrent Neural Network model are found to 

be .548 and .812. 
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1. Introduction 

Sentiment analysis is a branch of natural language processing that involves trying to 

understand the underlying sentiment and emotion behind language. For example,“Have a 

great day” has a positive sentiment, and “Have  a bad day” has   a negative sentiment. 

Current state of the art techniques for modelling sentiment  in language involve using 

machine learning and deep neural networks to classify the sentiment of language. For 

example, SemEval is a yearly contest for trying to classify tweets as Positive, Negative, or 

Neutral. Its findings advance the field of sentiment analysis and machine learning 

(Rosenthal, Noura, and Preslav 2017). 
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1.1 Objectives 

Our focus is on another major social platform, Youtube, which garners hundreds of 

thousands of comments and other user generated statistics. User data yields important 

results in the fields of social sciences. In particular we are in- terested in the top trending 

Youtube videos,and aim to identify sentiment of commenters by suggesting what emoticon 

a user might use with their comments. We suggest emoticons give insight into the 

sentiment of the user, and the emoticons pictographic nature gives us a better language to 

indicate  emotion.  Using the subset of comments with emoticons we engineered a 

labelled dataset of com- ments and emoticons. Our models take advantage of this  

labelling to model the emoticon lexicon. This is further used to suggest what emoticons 

might ac- company a comment (Hogenboom 2013). Using this dataset and the models we 

have create, we hope to answer whether or not we can accurately predict what emoticon a 

user might use. 

 

1.2 Literature Review 

Sentiment Analysis drives many industries and being able to correctly identify 

sentiment in a Youtube comment would allow automated systems to moderate comments 

or correctly recommend media or advertisements to users. In general, there are two 

methods that Natural Language Processing researchers use for Sentiment Analysis; 

Lexicon based and Machine Learning based. Sentiment Analysis is a fairly robust field, 

and has consistently seen interest since its conception. This field has increased 

exponentially with the surge in data seen with the rise of the internet, in many cases the 

amount of data is intractable. Social platforms such as Youtube, by themselves generate 

more data than any one hu- man could analyze. Therefore a system of Natural Language 

Processing (NLP) is required to deal with the sheer volume of data. 

Natural Language Processing can be considered a subset of cognitive science or 

computer science. The concept of natural language processing originally came about in the 

mid-20th century. The initial motivation was language translation (Salas-Za ŕate 2017).   

Natural Language Processing naturally lends itself to the field of Artificial Intelligence, as 

there is a strong desire for agents that can understand human language; for example, a chat 

bot. Sentiment Analysis did not pull much attention until the early 2000s. The natural 

language processing systems that were developed at first were only applicable to narrow 

subject areas, such as answering questions with information from a database about moon 

rocks, or answering questions from a manual on airplane maintenance (Liu 2012). The 
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explosion of social data quickly created a necessity to autonomously understand language 

sentiment. Especially with the ubiquitous nature of social media in recent years, the field 

of sentiment analysis has become more and more applicable to many fields. It has been 

one of the most active areas of research in the field of natural language processing since 

the turn of the century (Pozzi 2017). 

There are many commercial applications. It may have significant effects for the fields 

of management, political science, economics, and other social sciences, among others (Liu 

2012). Sentiment analysis, also known as opinion mining, refers to the process of creating 

automatic tools or systems which can derive subjective information from text in natural 

(human) languages, as opposed to computer codes. The subjective information most 

commonly desired by researchers are opinions and sentiments, hence the name sentiment 

analysis. Sentiment analysis, while originally only practiced by computer scientists, has 

become widely used by the management scientists and the social sciences. Microsoft, 

Google, Hewlett-Packard, IBM, and others have created their own systems for sentiment 

analysis. 

Before the turn of the century, there were previous developments in what would later 

become the field of sentiment analysis. Naive Bayes classifier pro- vided a way to model 

the affective tone of an entire document based on the “semantic differential scores” of each 

of the words in the document. The semantic meanings and scores were derived from a 1965 

study by Heise. According to Lee and Pang (2002) marked an explosion of research in 

sentiment analysis. This increase in the study of this topic was partially attributed to the 

increasing popularity of machine learning models, and the availability of training sets with 

which machine learning models could be trained. Turney (2002) used an algorithm based 

on parts-of-speech tagging and semantic orientation in order to classify online reviews as 

recommended or not recommended. Anderson and McMaster (1982) used machine 

learning techniques such as Support Vector Ma- chines and Naive Bayes in order to 

classify the sentiment of movie reviews. Dave, Lawrence, and Pennock (2003) classified 

polarity of web reviews based on several n-gram methods. It was not as accurate when 

applied to individual sentences because it was developed with the purpose of classifying 

reviews which normally contained multiple sentences. Hu and Liu (2004) used a method 

that could predict the sentimental orientation of opinion words and therefore the opinion 

orientation of a sentence. It was an unsupervised method and did not require a corpus,  and 

was  loosely based off the work of Dave, Lawrence and Pennock. It returned the 

sentiments at the sentence level instead of at the entire review at once. Then it combined 

the sentence-level sentiments to give a summary of the entire review. Moraes, Valiati, and 

Neto (2013) showed the effectiveness of machine learning processes as opposed to 



358   Can emoticons be used to predict sentiment? 

lexicon-based models. They empirically compared the Support Vector Machines and 

Artificial Neural Network machine learning methods for sentiment analysis and found that 

the Artificial Neural Networks performed better. In 2015, Wang, Liu, Sun, Wang.B, and 

Wang.X. showed the effectiveness of Long short-term memory recurrent neural networks 

for sentiment analysis by predicting the sentiments of tweets. 

 

1.3 Sentiment Lexicon 

The lexicon method splits input text into many individual words or phrases called 

tokens. Then, it creates a table of these tokens and records the number of times each token 

shows up in the text. The resulting tally is called a “Bag of Words” model. Once this 

process is done, another tool called “Sentiment Lexicon” is used for computing the 

classification of the bag of tokens we mentioned above. The Sentiment Lexicon has the 

sentiment values, which can be just positive or negative numbers or some other value-

representations, like vectors, that are pre-recorded for each token. This can be done either 

manually or by some machine learning techniques. Once we have the input text tokenized 

and a suit- able Sentiment Lexicon, the final task is to design a function to compute the   

final sentiment. The simplest way to compute the final sentiment is to sum the sentiment 

values of each token together. The lexicon method is a traditional way to deal with natural 

language processing problems, and it has a good theoretical basis.  Many people are still 

using and studying this method in spite of its origins in the 1960s. However, it does have 

some drawbacks such as ignoring the importance of integrality and continuity of the text.  

We know that the meaning of a sentence highly depends on the order of words and context; 

these should not be ignored if we want a real intelligent sentiment processing system 

(Tbboada 2011). 

 

1.4 Machine Learning 

In the Machine Learning technique of sentiment analysis the classification algorithm 

uses a training set to learn a model based on features in the set. This makes a more nuanced 

classification possible and can help with ambiguous words or interpretations that vary by 

context. A method of feature extraction must be chosen. Some of these methods include 

n-grams, which are sets of words that contain n words each. Others use parts-of-speech 

information, emotional, affective, or semantic data. One of the disadvantages of the 

machine learning method is that it requires a large set of labelled data to be used as the 
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training set. It is simpler to use the lexicon-based method unless a suitable training set is 

available (Salas-Za ŕate 2017). 

We will need to classify the sentiments of the emoticons manually in order to prepare 

them for use in our analysis. Once that is done, we can compile our training set using the 

comments in the data that already contain emoticons, using the sentiments of each 

emoticon. Then our model will be able to classify and assign an emoticon to each comment 

in the data set that does not already contain one. Recurrent Neural Networks(RNNs) have 

had a great deal of success in the Natural Language Processing Realm. The reason is that 

text data is highly sequential, for example, the word “day” does not mean much unless you 

know the words that came before it; i.e “Have a great day.” RNNs have pushed the state 

of the art of previous architectures in short-length text data (Lee and Dernoncourt 2016). 

Given previous attempts to model sentiment have not thoroughly explored emoticons, 

we hope to answer the question of whether or not we can accurately recommend emoticons 

that might accompany a piece of text. Once we have answered this, further research can 

make attempts to analyze sentiment with emoticons on a machine. 

 

2. Methodology 

2.1 Data 

To get our data, we used the Data Science Competition Website Kaggle. On this 

website, people share datasets, competitions, and tutorials. We found a dataset containing 

comments from the top 200 trending Youtube videos. The author of this dataset obtained 

the data through Youtube’s publicly available API, which allows developers to easily 

query for data on Youtube. The data itself contains profanity, nonsensical text, and in 

general is noisy. The data itself could be generated by bots, and we do no vetting to 

determine whether a comment actually comes form a human. The noisiness of the data 

might prevent us from training a successful model; however, we assume that the large 

amount of data will help our models perform well in spite of the low quality of data. 

In order to answer the question of whether or not a model could recommend emoticons, 

we created 2 models that attempt to perform this recommendation. We also created a 

simple dummy model for purposes of comparison. We have roughly three-hundred 

thousand comments with emoticons, and use that to boos- trap a dataset of comments with 

labels. More data is desirable, but this is a fairly large corpus for initial research. 

In total, there are 691, 388 rows in the dataset. A large proportion of them contain 

emoticons, (more than 200, 000), so there is a quite a bit of data, and it would be fairly 
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straightforward to access the Youtube API and get more if needed. This means I have as 

much data as I could possibly want, and more if needed. As for features, I will only use 

the text, likes, reply threads, and so on will be ignored in this phase of the project. On 

average, each text is 15 words long. Figure 1 shows some examples of how the data looks. 

 

 

Figure 1: Example unprocessed data 

 

2.2 Evaluation Metrics 

The models will be evaluated using a holdout set of data, in which each will 

recommend five emoticons that might accompany a text. If at least one recommendation 

is an emoticons that occurs in the validation comments, then I will consider it to be 

a ”correct” guess. Accuracy is then the number of correct guesses divided by total guesses. 

Keras calls this accuracy ”top k categorical accuracy”, and will be implemented for our 

models. Mathematically, this would look something like this where matching x ∈ 

Comments and y ∈ Labels and score(x) = 1 if any p ∈ argmaxk=5(predict labels(x)) is in 

y, else score(x) = 0. predict labels(x) would return the probabilities of each output class 

occurring. Then the accuracy of the model would be 
ΣN(score(xi))

𝑁
 where xi∈ Comments 

and N =| Comments |. 

One consideration is that the distribution of emoticons occurring in the corpus of data 

is highly skewed; this would be good reason to suggest F1 scores and might be better for 

future analysis. However, we chose this evaluation metric because it more closely 

resembles the question we are asking. The important thing to note is that the distribution 

is indeed skewed(see Figure 2). 
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Figure 2: Distribution of a subset of Emoticons 

 

2.3 Analysis Plan 

In order to compare the performance of our model, we created a holdout set of data 

meant for only validation of accuracy. We also defined what a prediction would be for 

each model, each model would output its top five highest predictions. If any of those 

predictions are in the output validation set, then we considered it an accurate prediction. 

Then in order to analyze the dataset, we will compute the prediction accuracy of each 

model and compare those scores. One might also consider looking at the training accuracy 

of each model; however, these scores are not directly comparable, so we ignore them 

except for the purposes of optimizing the model. 

 

2.4 Approach 

In our approach, we had to make a few crucial assumptions and simplifications to 

contextualize our problem. Firstly, our dataset involved input data with multiple output 

classifications. For example, a users can add hundreds of the same emoticon or many 

different emoticons. As a preprocessing step, we narrowed down these classes to the 

unique emoticons that show up in a comment, and unrolled the data set to have a single 

label. Table 1, displays how each comment gets unrolled into multiple data points with 

single labels. 
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I loved this video! x x y 

I loved this video! 

I loved this video! 

x 

y 

Table 1: Unrolling of data labels 

The other assumption exists only for our Naive Bayes Model, and it is that all words 

in the comments are independent. This assumption is difficult to back up, and it is not clear 

whether there is mutual dependence or mutual exclusivity between words. However, our 

Recurrent Neural Network does not have this limitation because it can model the entire 

sequence. 

 

2.5 Preprocessing 

One of the most important steps is the preprocessing stage. This is done before all 

models are trained. We first separate the data into comments with emoticons and comments 

without emoticons. We then make all comments lowercase and afterwards normalize our 

comments on both by creating a dictionary of punctuation to tokens, and a dictionary of 

word counts over all comments that use thes ordering of each word as its embedding. Table 

2 shows an example of how the dictionaries are used to tokenize a comment. A similar 

process is used to encode the emoticons, we use a dictionary to encode them as integers. 

Preprocessing the comments in this way gives us a normalized integer sequence, which 

deals with comments that might have different capitalizations of words. 

 

2.6 Dummy Model 

For purposes of comparison, we created a very simple model that always predicts that 

a comment would use the emoticon with the largest prior probability. The motivation 

behind this, is that it gives us a baseline score to beat. If we can do significantly better than 

this, then we know that the models have potential. 

 

2.7 Naive Bayes Model 

Our second model uses Bayesian Statistics that creates tables of posterior proba- 

bilities for each class given a word using Bayes rule. Naive Bayes is a conditional 

probability model, and given some instance to be classified, represented by a vector of 

features: 

x = (𝑥1, … , 𝑥𝑛) 

We then compute the probability of each output class using conditional probability 
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p(𝐶𝑘|𝑥1, … , 𝑥𝑛) 

 

Table 2: Tokenization Process 

Since n, can be large making this model less tractable we need to reformulate our 

model using Bayes Rule. In plain english, 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑝𝑟𝑖𝑜𝑟 ∙ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 

And symbolically, 

p(𝐶𝑘|𝑥) =
𝑝(𝐶𝑘)𝑝(𝑥|𝐶𝑘)

𝑝(𝑥)
 

In practice, the numerator is the most import part as the denominator does not depend 

on effectively making it a constant. The numerator is equivalent to the joint probability 

model meaning we can replace the numerator with, 

p(𝐶𝑘 , 𝑥1, … , 𝑥𝑛) 

We can then rewrite the numerator using the chain rule for repeated applications  of 

conditional probability, derivation is in appendix 1. Then we add the naive as- sumption 

of conditional independence, allowing use to further simplify our model 
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Figure 3: Naive Bayes Model 

to: 

p(𝐶𝑘 , 𝑥1, … , 𝑥𝑛) =
1

𝑍
𝑝(𝐶𝑘)∏𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

 

Where Z is: 

Z = p(x) = ∑𝑝(𝐶𝑘)
𝑘

𝑝(𝑥|𝐶𝑘) 

Which is the scaling factor dependent on the instance. The derivation is in appendix 2. 

In order to make a classifier, we would generally take the argmax of the simplified model 

without Z, but in our case we take the top five arguments as our program is recommending 

multiple emoticons that might be appropriate to the definition of Naive Bayes classifier . 

We implement this model in python and the model follows figure 3. 

Another problem is that we have to deal with words that never show up in our corpus 

of texts. In order to deal with this, we smooth the probabilities. To do this, we make any 

word or class that doesn’t show up have a very small probability that is close, but not zero. 

Otherwise, the probability would zero out when words are not in the corpus. 

 

2.8 Recurrent Neural Network 

Our third and final model, is a recurrent neural network and our architecture is as 

follows in table 3. 
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Input 

Embedding Layer 

LSTM Layer 

LSTM Layer 

LSTM Layer 

Fully-Connected Layer 

Output layer 

Table 3: RNN Architecture 

Recurrent Neural networks are a class of neural networks that form a directed cycle, 

allowing them to take time into account, or a notion of memory. This allows for the RNN 

to be suited to predicted arbitrary sequences by taking advantage of their memories. 

The label data also undergoes another transformation before the RNN begins the 

learning process. Since the emoticons are encoded using an ordinal number, the integer 

representation does not quite make sense as one emoticon is not greater than another. To 

rectify this, we represent this integer as a one-hot vector, essentially we take a fixed-length 

vector that is the size of the total number of output classes. Then the integer is used as an 

index of the “hot” class. Table 4 gives a small example of encoding a small class space. 

 

Table 4: One-Hot Encoding 

One of the major features of this model is the stacked LSTM layers. This architecture 

allows us to better model hierarchical elements of language. This means each layer will 

represent progressively complex parts of the hierarchy. One might imagine this in terms 

of the composition of the human face. For example, the most basic element is an edge. 

Then a more complex step would be individual elements of the face such as a nose or 

mouth. Then the most complex part would be the entire face, and the composition of its 

requisite parts. 
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The LSTM itself is able to remember previous contexts in sentences, meaning we 

could potentially get more performance via our model becoming better at modelling 

context.Our RNN had a much longer time to run, and in order to train the model, we 

decided to use more power hardware in the form of a GPU. The Neural Network was then 

trained on a GPU using Floyd Hub, a platform for running deep learning projects. The 

expense was roughly 14 dollars, as a we subscribed to the Data Science plan which gave 

us 10 hours of gpu time which we used for experimentation on multiple occasions. The 

price was remarkably cheap compared to other platforms such as Amazon. Usage of 

FloydHub is remarkably simply, and resembles version control programs such as git. One 

simply uploads their code to the website using command line tools, and are given an 

interface to interact with their instance. This service was worthwhile to learn because it 

abstracted away elements such as infrastructure, version control, and storage and we could 

focus on the problem. 

In addition to our baseline architecture,  we  also preform dropout on each lay-    er, 

which helps prevent against training bias because the network probabilistic “drops” some 

of the weight which forces the network to build redundancies. For the training metric, we  

implemented the top k categorical accuracy metric listed  in the evaluation metrics. For 

the objective function we found that categorical cross entropy work best which typically 

works well in multi-class, single-label s- cenarios.Using TFLearn, a deep learning library 

for Python, we implemented the architecture we decided on with relative ease. TFLearn 

builds on top of Tensor- Flow, abstracting away many of the more intimate computational 

components,  and allowing the programming to think about the layers and interactions 

between layers rather than how to build a well known type of layer or cell. 

 

2.9 Implementation 

2.9.1 rogramming Language Libraries 

•Python 3 

•TFLearn a deep learning library featuring a higher-level API for Tensor- Flow. 

•TensorFlow a deep learning library 

As mentioned throughout the text, the models where implemented using the listed 

libraries. We did our coding on the website FloydHub via iPython Notebooks, which 

abstracted away much of the setup. We split our code up into three notebooks, one for 

preprocessing, Bayesian Model, and RNN. We ran into very few problems implementing 

our solution; however, some are outlined below. 
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2.9.2 Problems 

•Bayes Smoothing We ran into a small hitch with the Bayesian when dealing with 

querying prior probabilities when certain values did not exist in the data. However, we 

used a technique to ”smooth” the values by assigning a small probability to these values. 

•Skin Tone Modifters There are emoticons that exist that modify other emoticons, i.e. 

allowing one to change the skin tone of the smiley face. We found that these confounded 

our predictions, and removed them as possible predictions. 

•Finding loss, activation, and metrics We had to experiment many times to find the 

best loss, activation, and metric functions for our RNN. This process may be simple trial-

and-error as we experienced. 

 

2.10 Reftnement 

Originally, our RNN model did not preform as well as we had hoped; however, a few 

optimization to our model vastly impacted our performance. The first model we used was 

a multi-class, multi-label classifier which performed very poorly. Our RNN had 

performance at .508 which left much to be desired. We believe the reason for this is that 

instead of one-hot encoded vector, we had many-hot encoded. This means that the label 

space would be of order 2# of emoticons. Since this space is extremely large, the model would 

have trouble representing any reasonable portion of this. For this reason, we needed to 

unroll data points to preform multi-class, single-label classification. After adjusting our 

loss function, metric function, and activation function we ended up with much better 

performance. We believe this to be because of the reduction in potential labels to just   # 

of emoticons. In addition, hyper parameters were adjusted, such as, learning rate and batch 

size to find out what setting worked best. The best we found was a learning rate of .001 

and a batch size of 128. 

 

3. Results 

In order to validate the models, we created a holdout set of labelled data that none of 

the models got to use for training or testing. The accuracy of each model using top k 

categorical accuracy is in tables 5 and 6. 
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Model Accuracy 

Dummy 

Naive Bayes 

RNN 

.527 

.859 

.702 

Table 5: Training Accuracy Results 

 

Model Accuracy 

Dummy 

Naive Bayes 

RNN 

.527 

.548 

.812 

Table 6: Validation Accuracy Results 

Table 6 gives us a measurement of how well our recommendation engine gives us 

accurate emoticons to represent our text. Our results do not promote strong confidence in 

our Naive Bayes Model’s ability to recommend emoticons; however, there are some 

potential improvements to the model such as n-gram modelling. Notably, the Bayesian 

Model preforms decently on the training data, but generalizes quite poorly and shows signs 

of over-fitting. The RNN on the other hand, surprisingly preforms slightly worse on 

training, but preforms much better on the validation set. For whatever reason this 

phenomenon occurs, it is clear that the model generalizes much better. 

 

3.1 Visualization of Model Functionality 

We have a model that could be incorporated into a wide variety of applications; for 

example, a browser plugin that predicts what emoticons you might put with a comment 

and assist the user similar to an auto-complete feature. One issue to consider might be the 

nature of Youtube comments themselves, which might pre- vent the generalization of this 

model to other applications. However, the models do show that this sort of functionality is 

possible. For example, we have pulled some examples from the data and run them through 

our models to produces the tables below, and the comments themselves seem to be quite 

different than more formal forms of language. 
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Table 7: Example data and predictions 

While the machine learning back-end may not be the most sophisticated, the model 

does a good job in practice of giving recommendations, and we think the model would be 

good enough to use for applications to be built on top of. 

 

3.2 Limitations 

One limitation of our models is that words that do not show up in the Youtube 

Comment corpus cause issues, as our models have trouble predicting outputs for words 

that it has never seen. One way to fix this, might be to mine for more Comment data. Some 

drawbacks of the Naive Bayes Model is that we may not be able to model longer term 

trends in comments, however with the short length of the comments, this may be a non 

issue. We also are limited in our choice of language modelling because we are on the word 

level. We would likely see large improvement by expanding our level of modelling to some 

type of n-gram. The RNN has limitations in multi-class classification, and this may be 

hindering its ability to learning. Another limitation might be that the training time is cost 

prohibitive. The model would likely continue to learn and perform better with more 
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training time and data, meaning ultimately a higher cost for the model. The naive bayes is 

easy to program with fast run time, and no need to train for hours upon hours. 

Another major consideration is that an RNN might be a bad fit. We originally though 

long term sequential modelling would be important, but it turns out the average comment 

length is 15 words long. It may be the case that sense the length of texts are so short, that 

we might have to thoroughly rethink what our strategy would be if this sequential 

modelling is unimportant. 

 

3.3 Future Work 

In order to eliminate the assumption of independence in the Bayesian model, we can 

add complexity by changing at what level we model the data. To do such we would need 

to employ a skip-gram or n-gram model that contain larger parts of the sequence data. One 

might also explore alternative Bayesian Models such as Hidden Markov Models. The same 

improvements to the data modelling using n-grams would likely improve the quality of the 

RNN results. The RNN model likely has a great deal of room for improvement, one might 

experiment with hyperparameter tuning or modifying the architecture. There are even more 

powerful models such as CRNNs and GANs that push the state of the art in deep learning. 

These models would be worth exploring; however, we pushed our newfound deep learning 

knowledge as far as we could in the time allotted. 

Another important consideration is the unrolling of the data. Future work should 

further explore how to deal with multi-class classification, which would likely involve 

writing new validation and loss functions for the neural network model. However, the 

Naive Bayes Model does not suffer from this limitation. 

Future work might also try and further connect the emoticons and sentiment. We 

hypothesize that emoticons will naturally lend themselves to a easily convert into 

sentiment classes. However, our current models predict only what emoticon might be used, 

and the user of the model would have to infer what sentiment the emoticon might convey 

depending on context. 

One might also find more optimizations by adding further preprocessing steps, for 

example, eliminating common english words that add very little information. 
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3.4 Reflection 

Looking back at the process, here are the steps we took to get to the current models 

• Literature Review We made sure to have a rough idea of what people in this field 

have tried, and what the state of the art is. 

• Deciding on a Model After reviewing the field, we made a decision on what models 

we wanted to implement which set the tone for preprocessing and implementation. 

• FloydHub Next we setup our programming environment with cloud computing in 

mind.  It’s important to setup an environment such as FloydHub or AWS to minimize 

training time on a fast gpu. At this step we also made sure to download all the libraries we 

would need 

• Preprocessing a large majority of time was spent trying to learn how to deal with 

the data, and exploring the data itself. We had to go through multiple iterations of 

embedding and tokenization to find the method that made sense. 

• Model Implementation After preprocessing our data, this step was fairly 

straightforward. Most of the time at this step is dealing with edge cases, or optimization of 

models rather than the actual implementation. 

• Reftnement Refinement may have been the hardest part because we had to make 

inferences about why our model was not performing up to our desires. It’s hard to say what 

the potential of each model was, so we kept iterating until we had something that seemed 

substantial. 

3.5 Conclusion 

Overall, there are many areas for potential improvement, and our work serves as a 

baseline for recommending emoticons. However, we have begun to answer our original 

question, it seems plausible the emoticons can be assigned with accuracy to comments as 

noisy as Youtube comments, making it easy for a casual observer to understand the 

sentiment of a text. 
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Appendix 

1. Chain rule for repeated applications of conditional probability. 

p(𝐶𝑘, 𝑥1, … , 𝑥𝑛) = 𝑝(𝑥1, … , 𝑥𝑛, 𝐶𝑘) 

= 𝑝(𝑥1|𝑥2… , 𝑥𝑛, 𝐶𝑘)𝑝(𝑥2… , 𝑥𝑛, 𝐶𝑘) 

= 𝑝(𝑥1|𝑥2… , 𝑥𝑛, 𝐶𝑘)𝑝(𝑥2|𝑥3… , 𝑥𝑛, 𝐶𝑘)𝑝(𝑥3… , 𝑥𝑛, 𝐶𝑘) 

          =…. 

= 𝑝(𝑥1|𝑥2… , 𝑥𝑛 , 𝐶𝑘)𝑝(𝑥2|𝑥3… , 𝑥𝑛, 𝐶𝑘)…𝑝(𝑥𝑛−1|𝑥𝑛, 𝐶𝑘)𝑝(𝑥𝑛|𝐶𝑘)p(𝐶𝑘) 

 

2. Naive Assumption of conditional independence to simplify model. This the joint 

model can be derived via: 

p(𝑋𝑘|𝑥1, … , 𝑥𝑛) = p(𝐶𝑘, 𝑥1, … , 𝑥𝑛) 

= p(𝐶𝑘)𝑝(𝑥1|𝐶𝑘)𝑝(𝑥2|𝐶𝑘)𝑝(𝑥3|𝐶𝑘)… 

= p(𝐶𝑘)∏𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1
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