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Abstract：In this work, we study the odd Lindley Burr XII model initially 

introduced by Silva et al. [29]. This model has the advantage of being capable 

of modeling various shapes of aging and failure criteria. Some of its statistical 

structural properties including ordinary and incomplete moments, quantile and 

generating function and order statistics are derived. The odd Lindley Burr XII 

density can be expressed as a simple linear mixture of BurrXII densities. 

Useful characterizations are presented. The maximum likelihood method is 

used to estimate the model parameters. Simulation results to assess the 

performance of the maximum likelihood estimators are discussed. We prove 

empirically the importance and flexibility of the new model in modeling 

various types of data. Bayesian estimation is performed by obtaining the 

posterior marginal distributions as well as using the simulation method of 

Markov Chain Monte Carlo (MCMC) by the Metropolis-Hastings algorithm in 

each step of Gibbs algorithm. The trace plots and estimated conditional 

posterior distributions are also presented. 
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1 Introduction 

Closely resembling the Pearson system of distributions [9, 10], Burr [5] presented a 

system that incorporates twelve types of cdfs (cumulative distribution function) which yield 

an assortment of density shapes. This system is obtained by considering cdfs satisfying a 

differential equation which has a solution, given by 𝐺(𝑦) = {1 + exp[−∫𝛹(𝑦)𝑑𝑦]}−1, 

where 𝛹(𝑦) is chosen such that 𝐺(𝑦) , is a cdf on the real line. Twelve choices for 𝛹(𝑦) 

made by Burr [5], resulted in twelve distributions which might be useful for fitting data. 

The principal goal in choosing one of these forms of distributions is to facilitate the 

mathematical analysis to which it is subjected, while attaining a reasonable approximation. 

Some standard theoretical models are limiting forms of Burr distributions. Burr [5, 6], 

Hatke [16], Burr and Cislak [7] and Rodriguez [26] paid special attention to one of these 

forms, Type XII, whose distribution function 𝐺(𝑥) is given by 

𝐺(𝑥; 𝛼, 𝛽) = 1 − (1 + 𝑥𝛼)−𝛽 , 𝑥 > 0,                 (1) 

both α and β are positive shape parameters. Location and scale parameters can easily be 

introduced to make Eq(1) a four parameter distribution. The cdf and the reliability function 

of the Burr-XII (BXII) model can be written in a closed form. The corresponding 

probability density function (pdf) of (1) is given by 

𝑔(𝑥; 𝛼, 𝛽) = 𝛼𝛽𝑥𝛼−1, 𝑥 > 0.                       (2) 

The BXII model originally proposed by Burr [5] has many applications in different areas 

including acceptance sampling plans, reliability and failure time modeling. Tadikamalla [33] 

studied the BXII model and its related models, namely: Pareto type II (Lomax), log-logistic, 

compound Weibull gamma and Weibull exponential distributions. Shao et al. [28] extended 

the three- parameter BXII distribution and used it to model extreme events with 

applications to flood frequency. Zimmer et al. [38] proposed a new three-parameter Burr 

XII distribution. This distribution, having Weibull and logistic as sub-models, is a very 

popular distribution for modeling lifetime data and phenomenon with monotone failure 

rates. Shao [27] studied the maximum likelihood estimation for the three-parameter BXII 

model. Soliman [32] studied the estimation of parameters of life from progressively 

censored data using Burr-XII model. Wu et al. [34] discussed the estimation problems for 

BXII model on the basis of progressive type II censoring under random removals, where the 

number of units removed at each failure time has a discrete uniform distribution. Latterly, 



Mustafa Ç ağatay Korkmaz,Haitham M. Yousof, Mahdi Rasekhi,G. G. Hamedani    329 

Silva et al. [30] proposed a new location–scale regression model based on BXII model and 

introduced the log-Burr XII regression models with censored data. Silva et al. [31] proposed 

a residual for the log-Burr XII regression distribution whose empirical model is close to 

normal. Korkmaz and Erişoğlu [18] studied on the Burr XII-geometric distribution. Ramos 

et al. [25] introduced a new five-parameter Burr XII negative binomial model, which has as 

special cases some important lifetime models discussed in the literature, such as Burr XII, 

Weibull, the log-logistic and Pareto type II models. Afify at al. [1] studied the Weibull Burr 

XII distribution. Nasir et al. [20] and Nasir et al. [21] introduced new generalized Burr 

families of distributions. For the recent extensions of the Burr XII see [3], [8], [35], [36] 

and [37]. 

The goal of this article is to study the Odd Lindley-BXII (OLBXII) model first 

introduced by Silva et al. [29] using the odd Lindley-G (OL-G) family of distributions. The 

pdf and cdf of the OL-G family of distribution are given by 

f(𝑥; 𝑎, 𝜉) = [𝑎2/(1 + 𝑎)]𝑔(𝑥; 𝜉)�̅�(𝑥; 𝜉)−3𝑒𝑥𝑝[−𝑎𝐺(𝑥; 𝜉)/�̅�(𝑥; 𝜉)]﹐𝑥𝜖ℜ, (3) 

and 

F(𝑥; 𝑎, 𝜉) = 1 − [𝑎 + �̅�(𝑥; 𝜉)][(1 + 𝑎)�̅�(𝑥; 𝜉)]−1𝑒𝑥𝑝[−𝑎𝐺(𝑥; 𝜉)/�̅�(𝑥; 𝜉)]﹐𝑥𝜖ℜ﹐ (4) 

respectively. To this end, we use Eq(1)-(3) to obtain the three-parameter OLBXII pdf (for 

 x > 0) 

f(𝑥; 𝑎, 𝛼, 𝛽) = [
𝑎2

(1 + 𝑎)
] αβ𝑒𝑎𝑥𝛼−1(1 + 𝑥𝛼)2𝛽−1𝑒−𝑎(1+𝑥

𝛼)𝛽 , 𝑥 ≥ 0 (5) 

The corresponding cdf of (4) is given by 

F(𝑥; 𝑎, 𝛼, 𝛽) = 1 − 𝑎 +
(1 + 𝑥𝛼)−𝛽

(1 + 𝑎)(1 + 𝑥𝛼)−𝛽
𝑒−𝑎[(1+𝑥

𝛼)𝛽−1], 𝑥 ≥ 0, (6) 

where a is the positive scale parameter, α, and β are positive shape parameters. Henceforth, 

we denote a random variable X having pdf (4) by X ～OLBXII(𝑎, 𝛼, 𝛽). The shapes of the 

density and hazard rate functions of the OLBXII can also be described analytically. Let 

𝑡1(𝑥) =
𝜕

𝜕𝑥
{log[𝑓(𝑥)]} , then 

𝑡1(𝑥) =
𝛼 − 1

𝑥
+
𝛼(2𝛽 − 1)𝑥𝛼−1

1 + 𝑥𝛼
− 𝑎𝛼𝛽𝑥𝛼−1(1 + 𝑥𝛼)𝛽−1 (7) 

It follows that for α ≤ 1 and β ≤
1

2
 , pdf is a decreasing function. Otherwise, the critical 

point(s) of the OLBXII pdf is (are) the root(s) of 
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0 = α + αβ𝑥𝛼−1[2𝑥 − 𝑎(1 + 𝑥𝛼)𝛽] − 𝑥𝛼 − 1 

Now let 𝑡2(𝑥) =
𝜕2

𝜕𝑥
2 {log[𝑓(𝑥)]} , then 

𝑡2(𝑥) = −
𝛼 − 1

𝑥2
+
𝛼𝑥𝛼−2(2𝛽 − 1)(𝛼 − 1 − 𝑥𝛼)

(1 + 𝑥𝛼)2
− 𝑎αβ𝑥𝛼−2(1 + 𝑥𝛼)𝛽−2(𝛼 − 1 − 𝑥𝛼 + αβ𝑥𝛼)﹒ 

If x = x0 is a root of Eq(7) then it is a local minimum point if t2(x) > 0, it is a local 

maximum point if t2(x) < 0 and it is an inflexion point if t2(x) = 0. The behavior of the 

pdf at the end points of the support is given as follows: 

lim
𝑥→0

𝑓(𝑥) = {

∞, 𝛼 < 1

𝑎2𝛽

𝑎 + 1
, 𝛼 = 1

0, 𝛼 > 1

  ﹐ 

and 

lim
𝑥→∞

𝑓(𝑥) = 0. 

The hrf is given by 

ℎ(𝑥) =
𝑎2𝛼𝛽𝑥𝛼−1(1 + 𝑥𝛼)2𝛽−1

1 + 𝑎(1 + 𝑥𝛼)𝛽
﹒ 

The critical points of the hrf ℎ(𝑥) are obtained from equation 

𝜕

𝜕𝑥
{log[ℎ(𝑥)]} =

𝛼 − 1

𝑥
+ 𝑥𝛼−1

𝛼(2𝛽 − 1)

1 + 𝑥𝛼
−
𝑎𝛼𝛽𝑥𝛼−1(1 + 𝑥𝛼)𝛽−1

1 + 𝑎(1 + 𝑥𝛼)𝛽
﹒ 

It follows that for 𝛼 ≤ 1 and 𝛽 ≤ 1/2 the hrf is a decreasing function. Otherwise, 

the critical point(s) of the OLBXII hrf is (are) the root(s) of the equation 

0 = (𝛼 − 1)(1 + 𝑥𝛼)[1 + 𝑎(1 + 𝑥𝛼)𝛽] + 𝛼(2𝛽 − 1)𝑥𝛼[1 + 𝑎(1 + 𝑥𝛼)𝛽]

− 𝑎𝛼𝛽𝑥𝛼(1 + 𝑥𝛼)𝛽 
(8) 

The second derivative of ℎ(𝑥), that is 𝑡3(𝑥) =
𝜕2

𝜕𝑥
2 {log[ℎ(𝑥)]}, is given by 

𝑡3(𝑥) = −
𝛼−1

𝑥2
+ 𝑥𝛼−1

𝛼(2𝛽−1)(𝛼−1−𝑥𝛼)𝑥𝛼−2

(1+𝑥𝛼)2
−

𝛼𝛽𝑥𝛼−2(1+𝑥𝛼)𝛽+𝛼−1−𝑥𝛼+𝛼𝛽𝑥𝛼

[1+𝑎(1+𝑥𝛼)𝛽]
2 ﹒ 

If x = x0 is a root of Eq(8) then it is a local minimum point if t3(x) > 0, it is a local 

maximum point if t3(x) < 0and it is an inflexion point if t3(x) = 0. The behavior of the 

hrf at the end points of the support is as follows 

lim
𝑥→0

ℎ(𝑥) =

{
 

 
∞,𝛼 < 1
𝑎2𝛽

𝑎 + 1
,𝛼 = 1

∞,𝛼 < 1
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and 

lim
𝑥→∞

ℎ(𝑥) {
0, 𝛼 ≤ 1 𝑎𝑛𝑑 𝛽 ≤ 0.5

∞﹐other cases.
   · 

Fig. 1 shows that the OLBXII distribution has various pdf shapes such as left-skewed, 

rightskewed and reversed-J. From Fig. 1 we also see that the shape parameters of the 

distribution effect its skewness and kurtosis. For example; for fixed a and β, the kurtosis 

increases while α increases. Also, same case is valid for fixed a and α while α increases. 

We will numerically obtain 

Figure 1: The pdf and hrf of the OLBXII distribution for selected parameter values 

 

the skewness and kurtosis values of the distribution in the next Section. Further, Fig. 2 

shows that the OLBXII model produces flexible hazard rate shapes such as increasing, 

decreasing, bathtub and upsidedown bathtub shaped depending on its selected parameters 

values. We can say that its shape parameters effective on its different hrf shapes. These plots 

indicate that the OLBXII model is very useful in fitting different data sets with various 

shapes. 

We give a physical interpretation of OLBXII model as follows. Let Z be a lifetime 

random variable having the BXII distribution. The odds ratio that an individual (or 

component) following the lifetime Z will die (failure) at time  x is
1−(1+xα)−β

(1+xα)−β
. Suppose 

that the variability of this odds of death is represented by the random variable X and 

assume that it follows the Lindley model with scale a. We can write 

Pr(𝑍 ≤ 𝑥) = Pr (𝑍 ≤
1 − (1 + xα)−β

(1 + xα)−β
) = 𝐹(𝑥; 𝑎, 𝛼, 𝛽)﹐ 
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which is given by (6). The pdf in (5) can be expressed as 

𝑓(𝑥) =∑𝑏𝑟𝑔(𝑥; 𝛼, 𝛽(𝑟 + 2))﹐

∞

𝑟=0

 (9) 

 

where 

𝑏𝑟 =
(−1)𝑟𝛼𝑟+2𝑒𝑎

𝑟! (1 + 𝑎)(𝑟 + 2)
 

and g(𝑥; 𝑎, 𝛼, 𝛽(𝑟 + 2)) is the BXII density with parameters 𝛼  and 𝛽(𝑟 + 2) , (for 

more detail about the last two equations see Silva et al. [29]). Similarly, 

𝐹(𝑥) =∑𝑏𝑟𝐺(𝑥; 𝛼, 𝛽(𝑟 + 2))﹐

∞

𝑟=0

 (10) 

where 𝐺(𝑥; 𝛼, 𝛽(𝑟 + 2)) is the BXII cdf with parameters 𝛼 and 𝛽(𝑟 + 2)﹒ Quantile 

functions (QF) are in widespread use in statistics and often find representations in terms of 

lookup tables for key percentiles. The QF say,𝑥𝑢 = 𝑄(𝑢) = 𝐹
−1(𝑢) , of X is a solution of 

the non-linear equation 

0 = a[(1 + 𝑥𝑢
𝛼 − 1)] + log {

(1 − 𝑢)(1 − 𝑎)(1 − 𝑥𝑢
𝛼)−𝛽

1 + (1 + 𝑥𝑢
𝛼)−𝛽

}﹐0 < 𝑢 < 1﹒ 

Also, these equations can be used for random number generation. Hence, if U is a uniform 

random variable on (0﹐1)﹐𝑋 = 𝑄(𝑢) follows the OLBXII distribution. From Silva et al. 

[29], we can write the following equation for QF of the OLBXII distribution 

Ｑ(𝑢) = [(−𝑎 [1 +𝑊 ((𝑎 + 1)(𝑢 − 1)𝑒−(𝑎+1))]
−
1
𝛽
− 1)]

1
𝛼

， 

where W (•) is Lambert function. 

The rest of paper is outlined as follows. In Section 2, we derive some mathematical 

properties of the new distribution. In Section 3, some characterizations results are provided. 

In Section 4 we introduce the classical estimation. Bayesian estimation is performed in 

section 5. In Section 6, we provide the applications to real data sets based on classical 

approach and Bayesian approach to illustrate the importance of the new distribution. Finally, 

some concluding remarks are presented in Section 7. 
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2 Properties 

2.1 General statistical properties 

From Eq(9), the 𝑛𝑡ℎ ordinary moment of X is given by 𝜇𝑛
′ = 𝐸(𝑋𝑛) =

∑ 𝑏𝑟 ∫ 𝑥𝑛𝑔(𝑥; 𝛼, 𝛽(𝑟 + 2))𝑑𝑥.
∞

0
∞
𝑟=0  For n < αβ, we obtain 

𝜇𝑛
′ = 𝐸(𝑋𝑛) =∑𝑏𝑟𝛽(𝑟 + 2)𝐵 (𝛽(𝑟 + 2) −

𝑛

𝛼
﹐
𝑛

𝛼
+ 1)﹒

∞

𝑟=0

 (11) 

Setting 𝑛 = 1 in Eq(11), we have the mean of X. The s𝑡ℎ central moment (𝑀𝑠) and 

cumulants(𝜅𝑠) of X, are, respectively, given by Ms = 𝐸(𝑋 − 𝜇1
′ )𝑠 =

∑ (−1)𝑖(𝑠
𝑖
)(𝜇1

′ )𝑠𝜇𝑠−𝑖
′𝑠

𝑖=1  and 𝜅𝑠 = 𝜇𝑠
′ − ∑ (𝑠−1

𝑖−1
)𝑠−1

𝑖=0 𝜅𝑟𝜇𝑠−𝑟
′  where 𝜅1 = 𝜇

1

′ . The skewness 

and kurtosis measures can be calculated from the ordinary moments using well-known 

relationships. We give numerically the moments such as E(𝑋), variance Var(𝑋), skewness 

√𝛽1 and kurtosis 𝛽2. 

From Table 1, we see that the model can be left skewed and right skewed. Also, these 

results are consistent with Fig 1. The shape parameters effect skewness and kurtosis. 

The moment generating function (mgf) of X, say𝑀𝑋(𝑡) = 𝐸[exp(𝑡𝑋)], can be obtained 

from (9) as 𝑀𝑋(𝑡) = ∑ 𝑏𝑟𝑀𝑟+1(𝑡)
∞
𝑟=0 ﹐where 𝑀𝑟+1(𝑡) is the mgf of the BXII distribution 

with parameters α, 𝛽(𝑟 + 2).Paranaiba et al﹒[22] provided a simple representation for the 

mgf of the three-parameter BXII distribution. In a similar manner, we provide another 

representation for the mgf, say 𝑀𝑋(𝑡),of the BXII(α, 𝛽) model. For t < 0﹐we can write 

𝑀𝑋(𝑡) = 𝛼𝛽 ∫ 𝑒𝑥𝑝(𝑦𝑡)𝑦𝛼−1(1 + 𝑦𝛼)−𝛽−1𝑑𝑦.
∞

0
 Next, we require the Meijer G-function 

defined by 

𝐺𝑝,𝑞
𝑚,𝑛 (𝑥|

𝑎1 ﹐⋯﹐ 𝑎𝑝

𝑏1 ﹐⋯﹐ 𝑏𝑞
) =

1

2𝜋𝑖
∫

∏ Γ(𝑏𝑗 + 𝑡)
𝑚
𝑗=1 ∏ Γ(1 − 𝑎𝑗 − 𝑡)

𝑚
𝑗=1

∏ Γ(𝑎𝑗 + 𝑡)
𝑝
𝑗=𝑛+1

∏ Γ(1 − 𝑏𝑗 − 𝑡)
𝑝
𝑗=𝑚+1

𝑥−𝑡𝑑𝑡﹐

𝐿

 

where i = √−1 and L denotes an integration path (Gradshteyn and Ryzhik [15], Section 

9.3).The Meijer G-function includes as particular cases many integrals with elementary and 

special functions (see [23]). 
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Table 1: Some special moments values for selected parameters values of OLBXII 

𝑎﹐𝛼﹐𝛽 𝐸(𝑋) 𝑉𝑎𝑟(𝑋) √𝛽1 𝛽2 

0.5, 1, 0.5 25.3333 1416.8890 4.2064 35.9143 

0.5, 1, 1 3.3333 7.5555 1.5123 6.3427 

0.5, 1, 2 0.9890 0.3771 0.6864 3.2654 

1, 1, 0.5 7.0000 99.0000 4.0222 33.0894 

1, 0.5, 1 4.0000 56.0000 5.1161 51.5510 

1, 1, 1 1.5000 1.7500 1.6198 6.7959 

2, 0.5, 1 2.1666 8.1389 3.6468 27.6014 

0.5, 2, 0.5 4.1494 8.1160 1.3910 5.9208 

0.5, 2, 2.5 0.8051 0.0724 −0.2739 2.7216 

0.5, 2, 5 0.5255 0.0258 −0.4907 2.9038 

0.5, 2, 10 0.3577 0.0109 −0.6001 3.0430 

2, 2, 11 0.1905 0.0063 0.0008 2.3929 

0.05, 5, 2 1.3525 0.0183 −0.8871 4.8687 

0.05, 5, 5 1.0072 0.0921 −0.2019 2.9039 

0.05, 5, 0.5 4.1185 1.465143 0.2019 2.8900 

10, 10, 10 0.6027  0.0049  −0.7406  3.7142  

Suppose that 𝛼 = 𝑚/𝛽 , where 𝑚  and 𝛽  are positive integers. This condition is not 

restrictive since every positive real number can be approximated by a rational number. Then, 

we have the following results, which holds for 𝑚 and 𝛽 positive integers,𝜇 > −1 and 

𝑝 > 0 (see [24], p. 21), 

𝐼 (𝑝, 𝜇,
𝑚

𝛽
, 𝑉) = ∫ exp(−𝑝𝑥)𝑥𝜇 (1 + 𝑥

𝑚
𝛽 )

𝑉

𝑑𝑥
∞

0

= 𝑉𝐺𝛽+𝑚,𝛽
𝛽,𝛽+𝑚

(
𝑚𝑚

𝑝𝑚
|
△ (𝑚,−𝜇),△ (𝛽, 𝑉 + 1)

△ (𝛽, 0)
) 

where 

𝑉 = 𝛽−𝑣𝑚𝜇+
1
2 [(2𝜋)

𝑚−1
2 Γ(−𝑣)𝑝𝜇+1]⁄ ﹐ 

and 

△ (𝛽, 𝑎) = 𝑎 𝛽⁄ ﹐ (𝑎 + 1) 𝛽⁄ ﹐⋯﹐ (𝑎 + 𝛽) 𝛽⁄ ﹒ 

We can write (for 𝑡 < 0) 

𝑀𝑋(𝑡) = 𝑚𝐼 (−𝑡,
𝑚

𝛽
− 1,

𝑚

𝛽
, −𝛽(𝑟 + 1))﹒ 
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Hence, the mgf of X can be expressed as 

𝑀𝑋(𝑡) = 𝑚∑𝑏𝑟𝐼 (−𝑡﹐
𝑚

𝛽(𝑟 + 2)
− 1﹐

𝑚

𝛽(𝑟 + 2)
﹐− {[𝛽(𝑟 + 2)] + 1})﹒

∞

𝑟=0

 

The 𝓏th incomplete moment, say φ𝓏(t) = ∑ 𝑏𝑟 ∫ 𝑥𝓏𝑔(𝑥; 𝛼, 𝛽(𝑟 + 2))𝑑𝑥
𝑡

𝑜
∞
𝑟=0 , and then 

using the lower incomplete gamma function, we obtain(for 𝓏 < 𝛼𝛽) 

φ𝓏(𝑡) = ∑𝑏𝑟𝛽(𝑟 + 2)𝐵 (𝑡
𝛼; 𝛽(𝑟 + 2) −

𝓏

𝛼
﹐
𝓏

𝛼
+ 1)﹒

∞

𝑟=0

 

The first incomplete moment of X, denoted by φ1(t) , is simply determined from the 

above equation by setting 𝓏 = 1.The first incomplete moment has important applications 

related  to the Bonferroni and Lorenz curves and the mean residual life and the mean 

waiting time. Furthermore, the amount of scatter in a population is evidently measured to 

some extent by the totality of deviations from the mean and median. The mean deviations, 

about the mean and about the median of X, depend on φ1(t). 

2.2 Order statistics and their moments 

Let 𝑋1﹐⋯﹐𝑋𝑛 be a random sample of size n from the OLBXII distribution and let 

𝑋1:𝑛 , 𝑋2:𝑛 ,⋯﹐𝑋𝑛:𝑛 be the corresponding order statistics.Then, the pdf of the i𝑡ℎ order 

statistic 𝑋𝑖:𝑛, say fi:n(x),is given by 

𝑓𝑖:𝑛(𝑥) =
1

𝐵(𝑖,𝑛−𝑖+1)
𝑓(𝑥)𝐹(𝑥)𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖﹒ (12) 

By inserting (5) and (6) in equation (12), we obtain 

𝑓𝑖:𝑛(𝑥) = ∑ 𝑡𝑤𝑔(𝑥; 𝛼, 𝛽(𝑤 + 1))﹐

∞

𝑤=0

 (13) 

where 

𝑡𝑤 = ∑ ∑ ∑
𝑎𝑗+𝑚+2(−1)𝑘+𝑚+𝑤 (𝑗+𝑚+𝑝

𝑗+𝑚
) (𝑗+𝑚+𝑝+1

𝑤
) (𝑘+𝑛−1

𝑗
) (𝑖−1

𝑘
)

B(𝑖, 𝑛 − 𝑖 + 1)𝑚! (1 + 𝑎)𝑗+1(𝑤 + 1)
﹐

𝑖−1

𝑘=0

𝑘+𝑛−𝑖

𝑗=0

∞

𝑚,𝑝=0

 

and 𝑔(𝑥; 𝛼, 𝛽(𝑤 + 1))  denotes the BXII density function with parameters α  and 

β(w + 1). Thus, the density function of the OLBXII order statistics is a linear mixture of 

two-parameter BXII densities. Based on (13), we can obtain some structural properties of 

𝑋𝑖:𝑛 from those of BXII. The 𝑝𝑡ℎ moment of 𝑋𝑖:𝑛 is given by 

𝐸(𝑋𝑖:𝑛
𝑝
) = ∑ 𝑡𝑤

∞

𝑤=0

𝛽(𝑤 + 1)𝐵 (𝛽(𝑤 + 1) −
𝑝

𝛼
,
𝑝

𝛼
+ 1) (14) 

The L-moments are analogous to the ordinary moments and can be estimated by 
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employing the linear combinations of the order statistics. Then, using the moments in 

equation Eq(14), we can derive explicit expressions for the L-moments of X as infinite 

weighted linear combinations of the means of suitable OLBXII distributions. They are 

defined by (𝑠 ≥ 1) 

𝜆𝑠 =
1

𝑠
∑(−1)𝑑 (

𝑠 − 1

𝑑
)

𝓏−1

𝑑=0

𝐸(𝑋𝑠−𝑑:𝑠)﹐s ≥ 1﹒ 

Eq(13) and (14) are the main result of this subsection. 

3 Characterizations 

This section deals with the characterizations of OLBXII distribution. The first 

characterization is based on a simple relationship between two truncated moments. It should 

be mentioned that for this characterization the cdf need not have a closed form. This 

characterization result employs a theorem due to Glanzel [13], see Theorem 1 of Appendix 

A. Note that the result holds also when the interval 𝐻 is not closed. As shown in Glanzel 

[14], this characterization is stable in the sense of weak convergence. The second 

characterization is based on the hazard function. 

Proposition 1. Let X：Ω → (0,∞) be a continuous random variable and let q1(x) =

(1 + xα)−β and q2(x) = q1(x)
−a(1+xα)β for x > 0. The random variable X belongs to 

OLBXII family (5) if and only if the function η defined in Theorem 1 has the form 

η(𝑥) =
1

2
𝑒−𝑎(1+𝑥

𝛼)𝛽﹐𝑥 > 0﹒ 

Proof. Let X be a random variable with pdf Eq(5), then 

(1 − 𝐹(𝑥))𝐸[𝑞1(𝑥)|𝑋 ≥ 𝑥] =
𝑎𝑒𝑎

1 + 𝑎
𝑒−𝑎(1+𝑥

𝛼)𝛽﹐𝑥 > 0﹐ 

and 

(1 − 𝐹(𝑥))𝐸[𝑞2(𝑥)|𝑋 ≥ 𝑥] =
𝑎𝑒𝑎

2(1 + 𝑎)
𝑒−2𝑎(1+𝑥

𝛼)𝛽﹐𝑥 > 0﹐ 

and finally 

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥) = −
1

2
𝑞1(𝑥)𝑒

−𝑎(1+𝑥𝛼)𝛽 < 0    𝑓𝑜𝑟    𝑥 > 0﹒ 
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Conversely, if 𝜂 is given as above, then 

𝑠′(𝑥) =
𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
= 𝑎𝛼𝛽𝑥𝛼−1(1 + xα)β−1﹐ 𝑥 > 0﹐ 

and hence 

𝑠(𝑥) = 𝑎(1 + xα)β﹐𝑥 > 0﹒ 

Now, in view of Theorem1, X has density (5). 

Remark 1. The condition 𝐄[𝑞2(𝑥)|𝑋 ≥ 𝑥] = 𝐄[𝑞1(𝑥)|𝑋 ≥ 𝑥]𝜂(𝑥), 𝑥𝜖𝐻 , of Theorem 1 

can be replaced with 𝐄[𝑞2(𝑥)|𝑋 ≥ 𝑥] = 𝜂(𝑥)  , xϵH  , by taking 𝑞1(𝑥) = 1 . This, 

however, limits the domain of applicability of this theorem. That being said, in some cases 

the latter condition is more appropriate. 

Corollary 1. Let 𝑋：Ω → (0,∞) be a continuous random variable and let 𝑞1(𝑥) be as 

in Proposition 1. The pdf of X is Eq(5) if and only if there exist functions q2 and η 

defined in Theorem1 satisfying the differential equation 

𝜂′(𝑥)𝑞1(𝑥)

𝜂(𝑥)𝑞1(𝑥) − 𝑞2(𝑥)
= 𝑎𝛼𝛽𝑥𝛼−1(1 + 𝑥𝛼)𝛽−1﹐ 𝑥 > 0﹒ 

The general solution of the differential equation in Corollary 1 is 

𝜂(𝑥) = 𝑒𝑎(1+x
α)β [−∫𝑎𝛼𝛽𝑥𝛼−1(1 + 𝑥𝛼)𝛽−1𝑒−𝑎(1+x

α)β(𝑞1(𝑥))
−1
𝑞2(𝑥)𝑑𝑥 + 𝐷﹐]﹐ 

where 𝐷 is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 1 with =
1

2
 . However, it should be also mentioned that 

there are other triplets (𝑞1, 𝑞2, 𝜂) satisfying the conditions of Theorem1. 

It is known that the hazard function, ℎ𝐹 , of a twice differentiable distribution function, 

𝐹 , satisfies the first order differential equation 

𝑓′(𝑥)

𝑓′(𝑥)
=
ℎ′𝐹(𝑥)

ℎ𝐹(𝑥)
− ℎ𝐹(𝑥)﹒ 

For many univariate continuous distributions, this is the only characterization available in 

terms of the hazard function. The following proposition establish a non-trivial 

characterization of OLBXII distribution, in terms of the hazard function, which is not of the 

above trivial form given. 

Proposition 2. Let 𝑋：Ω → (0,∞) be a continuous random variable. The pdf of X is 

Eq(5) if and only if its hazard function ℎ𝐹(𝑥) satisfies the differential equation 
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ℎ′𝐹(𝑥) − (𝛼 − 1)𝑥
−1ℎ𝐹(𝑥) = 𝑎

2𝛼𝛽𝑥𝛼−1
𝑑

𝑑𝑥
{
(1 + 𝑥𝛼)2𝛽−1

𝑎 + (1 + 𝑥𝛼)−𝛽
}﹑ 

or 

ℎ𝐹(𝑥) =
𝑎2𝛼𝛽𝑥𝛼−1(1 + 𝑥𝛼)2𝛽−1

𝑎 + (1 + 𝑥𝛼)−𝛽
﹐ 𝑥 > 0﹐ 

which is the hazard function of the OLBXII distribution. 

4 Classical inference 

In subsection 4.1, we introduce a procedure for maximum likelihood estimation of the 

parameters of the OLBXII model. Subsection 4.2 assesses the performance of the maximum 

likelihood estimators (MLEs) by means of a simulation study. 

4.1 Maximum likelihood estimation 

We consider the estimation of the unknown parameters of the OLBXII model from 

complete samples only by maximum likelihood method. The MLEs of the parameters of the 

OLBXII (𝑎, 𝛼, 𝛽) model is now discussed. Let 𝑥1﹐⋯﹐𝑥𝑛 be a random sample of this 

distribution with parameter vector 𝛩 = (𝑎, 𝛼, 𝛽)⊺ ;. The log-likelihood function for 𝜃 , 

sayℓ = ℓ(𝛩), is given by 

ℓ = ℓ(𝛩) = 2𝑛 log(𝑎)

+ 𝑛 log(𝛼) + 𝑛 log(𝛽)

− 𝑛 log(1 + 𝑎) + (𝛼 − 1)∑log 𝑥𝑖 +

𝑛

𝑖=1

(2𝛽

− 1)∑log(1 + 𝑥𝑖
𝛼) +∑{−𝑎[(1 + 𝑥𝛼)𝛽 − 1]}﹒

𝑛

𝑖=1

𝑛

𝑖=1

 

(15) 

The last equation can be maximized either by using different programs like R (optim 

function),SAS (PROC NLMIXED) or by solving the nonlinear likelihood equations 

obtained by differentiating Eq(15). The score vector elements, 𝑈(𝛩) =
𝜕ℓ

𝜕𝜃
= (

𝜕ℓ

𝜕𝑎
,
𝜕ℓ

𝜕𝛼
,
𝜕ℓ

𝜕𝛽
)
⊺
, 

are given in Appendix B. We can obtain the estimates of the unknown parameters by  

setting the score vector to zero, 𝑈(�̂�) = 0. Solving these equations simultaneously gives 

the MLEs �̂�, �̂� and �̂�. For the OLBXII distribution, all the second order derivatives exist. 

The interval estimation of the model parameters requires the 3 × 3 observed information 
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matrix 𝐽(𝛩) = {𝐽𝑖𝑗}  for 𝑖, 𝑗 = 𝑎, 𝛼, 𝛽 . The multivariate normal 𝑁3 (0, 𝐽(�̂�)
−1
) 

distribution, under standard regularity conditions, can be used to provide approximate 

confidence intervals for the unknown parameters, where 𝐽(�̂�)  is the total observed 

information matrix evaluated at �̂�. Then, approximate 100(1 − 𝛿)% confidence intervals 

for 𝑎, 𝛼 and 𝛽 can be determined by: 

�̂� ± 𝓏𝛿 2⁄ √𝑗�̂�𝛼  , �̂� ± 𝓏𝛿 2⁄ √𝑗�̂�𝛼  and �̂� ± 𝓏𝛿 2⁄ √𝑗�̂�𝛽  where 𝓏𝛿 2⁄  is the upper 𝛿𝑡ℎ 

percentile of the standard normal model. 

4.2 Simulation Study 

To see the performance of the maximum likelihood estimates, we generate 1,000 samples 

of sizes 50,100 and 200 from the OLBXII(𝑎, 𝛼, 𝛽)  distribution. The results of the 

simulation are reported in Table 2. We observe that the estimates approach true values as 

the sample size increases, implying the consistency of the estimators. Also, we observe, 

from Table 2, that the estimators are quite stable and get closer to the true values as the 

sample sizes increases. 

Table 2: Empirical means and standard deviations (given in parentheses) 

 for different values of the OLBXII parameters. 

Parameters n = 50 n = 100 n = 200 

𝑎, 𝛼, 𝛽 �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� 

0.5,1,0.5 
0.4895 1.3408 0.5558 0.5075 1.0943 0.5343 0.4965 1.0348 0.5210 

 (0.2255) (1.3223) (0.4057) (0.1617) (0.4043) (0.2470) (0.1042) (0.2324) (0.1591) 

1,1,0.5 1.1411 1.0379 0.5957 0.9471 1.0584 0.5743 1.0327 1.0380 0.5023 

 (1.1268) (0.2999) (0.3580) (0.3327) (0.2147) (0.2330) (0.2487) (0.1469) (0.1378) 

0.5,0.5,1 0.5536 0.5426 1.1543 0.5464 0.5307 1.0230 0.4852 0.4936 1.0105 

 (0.3093) (0.2257) (0.5526) (0.2027) (0.1361) (0.3995) (0.1555) (0.1323) (0.3462) 

1,1,1 1.1352 1.0505 1.1770 1.0511 0.9720 1.1689 1.0329 0.9877 1.1639 

 (0.8053) (0.3173) (0.8296) (0.5975) (0.2391) (0.7183) (0.4570) (0.2141) (0.6576) 

2,2,1 2.7232 1.9897 1.3704 2.2061 1.9766 1.1525 2.1048 2.0089 1.0221 

 (5.4551) (0.4939) (0.8492) (1.2370) (0.3561) (0.6187) (1.2042) (0.2761) (0.3799) 
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Parameters n = 50 n = 100 n = 200 

𝑎, 𝛼, 𝛽 �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� �̂� 

1,1,2 1.4087 1.0598 2.1014 1.3770 1.0297 2.0538 1.2795 1.0343 2.0291 

 2.2545) (0.3292) (1.1300) (1.0820) (0.2848) (1.0529) (0.8505) (0.2224) (0.8014) 

2,1,1 2.9015 0.9626 1.3016 2.5855 1.0161 1.0829 2.4898 0.9974 1.0390 

 (4.8353) (0.2782) (0.9465) (2.7291) (0.2136) (0.7615) (1.5767) (0.1454) (0.4689) 

1,2,2 1.8506 2.1086 2.0742 1.3295 2.0601 2.0477 1.2236 2.0136 2.0559 

 (3.3035) (0.5680) (1.0002) (1.0219) (0.5114) (0.9913) (0.8246) (0.4305) (0.8213) 

1,2,1 1.3858 2.0978 1.1575 1.0620 1.9818 1.1472 1.0221 1.9906 1.1293 

 (1.1533) (0.6109) (0.7697) (0.4878) (0.4128) (0.6558) (0.4043) (0.3569) (0.6097) 

1,2,0.5 1.0383 2.2615 0.5417 1.0081 1.9997 0.5378 0.9988 2.0041 0.5023 

 (0.4813) (0.7124) (0.2973) (0.3218) (0.4426) (0.1854) (0.2535) (0.3108) (0.1451) 

0.5,2,1 0.5302 2.1699 1.1839 0.5226 2.0983 1.1693 0.4854 1.9920 1.1545 

 (0.3391) (1.0044) (0.6191) (0.2556) (0.6931) (0.5723) (0.1858) (0.5425) (0.5439) 

3,2,1 4.0529 1.9193 1.2982 3.1181 1.9614 1.1660 2.9511 1.9728 1.0753 

 (6.1738) (0.4424) (1.0506) (5.4403) (0.3451) (0.8699) (4.2879) (0.2430) (0.5721) 

1,2,3 1.4683 2.2275 2.7639 1.2230 2.0817 3.0944 1.0225 1.9654 3.0469 

 (4.2676) (0.6452) (1.2344) (2.0516) (0.5492) (1.1112) (0.6664) (0.4567) (1.1519) 

 

5 Bayesian Estimation 

The goal of this section is to introduce a way to generate data from joint posterior 

distribution of OLBXII parameters. A regular procedure is the simulation method of 

MCMC by the Metropolis- Hastings algorithm in each step of Gibbs algorithm. Since prior 

information about parameters in the history of data does not exist, weakly informative prior 

distributions for the parameters a, α and β are selected. Also, independance assumption is 

considered for the elements of the parameter vector. Thus, the joint prior distribution of the 

unknown parameters will have the following pdf 

𝜋(a, α, β) = 𝜋(a, ) × 𝜋(α) × 𝜋(β) = Γ(𝑐1, 𝑏1) × Γ(𝑐2, 𝑏2) × Γ(𝑐3, 𝑏3), (16) 
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where 𝛤(𝑐𝑖, 𝑏𝑖)  denotes a gamma distribution with mean
𝑐𝑖

𝑏𝑖
 and variance 

𝑐𝑖

𝑏𝑖
2 . All 

hyper-parameters are known. The joint posterior distribution for parameters (𝑎, 𝛼, 𝛽) is 

obtained by the product of the likelihood function (15) and the prior distribution (16) as 

follow 

 

𝜋(a, α, β|𝑥) = (
𝑎2𝛼𝛽

1 + 𝑎
)

𝑛

(∏𝑥𝑖

𝑛

𝑖=1

)

𝛼−1

(∏(1 + 𝑥𝑖
𝛼)

𝑛

𝑖=1

)

2𝛽−1

× exp(−𝑎∑[(1 + 𝑥𝑖
𝛼)𝛽 − 1]

𝑛

𝑖=1

)𝜋(a, α, β) 

(17) 

The integration of the joint posterior density is not easy since, the joint posterior density is 

analytically intractable. Thus, the full conditional distributions of the unknown parameters 

are given by 

𝜋(𝑎|, 𝑥, 𝛼, 𝛽) ∝
𝑎2𝑛+𝑐1−1

(1 + 𝑎)𝑛
exp (−𝑎 {(∑[(1 + 𝑥𝑖

𝛼)𝛽 − 1]

𝑛

𝑖=1

) + 𝑏1})﹐ 

𝜋(𝛼|, 𝑥, 𝑎, 𝛽) ∝ 𝛼𝑛+𝑐2−1exp(−𝛼(𝑏2 −∑log(𝑥𝑖)

𝑛

𝑖=1

))

× (∏(1 + 𝑥𝑖
𝛼)

𝑛

𝑖=1

)

2𝛽−1

exp(−𝑎∑[(1 + 𝑥𝑖
𝛼)𝛽 − 1]

𝑛

𝑖=1

)﹐ 

and 

𝜋(𝛽|, 𝑥, 𝑎, 𝛼) ∝ 𝛽𝑛+𝑐3−1𝑒𝑥𝑝(−𝛽(𝑏3 − 2∑𝑙𝑜𝑔(1 + 𝑥𝑖
𝛼)

𝑛

𝑖=1

))

× 𝑒𝑥𝑝(−𝑎∑[(1 + 𝑥𝑖
𝛼)𝛽 − 1]

𝑛

𝑖=1

)﹒ 

Since the full conditional distributions for (𝑎, 𝛼, 𝛽) do not have explicit expressions, 

the Metropolis-Hastings algorithm is required in each step of Gibbs algorithm. 
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6 Applications 

6.1 Using classical approach 

In this subsection, we show the fitting of the OLBXII distribution to two real uncensored 

data sets. For these data sets, we also compare the OLBXII distribution with BXII 

distribution and Marshall-Olkin Burr XII (MOBXII) distribution [2] under ℓ̂ value, Akaike 

information criteria (AIC), Bayesian information criteria (BIC), Kolmogorov-Smirnov 

(K-S), Anderson-Darling (A*) and Cramer-Von Moses (W*) goodness-of-fit statistics. The 

corresponding density of MOBXII model is 𝑓𝑀𝑂𝐵𝑋𝐼𝐼(𝑥) = 𝑎𝛼𝛽𝑥
𝛼−1(1 + 𝑥𝛼)𝛽−1[1 −

(1 − 𝑎)(1 + 𝑥𝛼)−𝛽]
−2

 for 𝑥, a, α, β > 0. All the computations were performed by using 

the maxLik procedure in R statistical software. 

The first real data set gives the survival times, in weeks, of 33 patients suffering from 

acute Myelogeneous Leukaemia. These data have been analyzed by Feigl and Zelen [11] 

and Mead [19]. The data are: 65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 

65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43. Table 2 lists the results of this data 

analysis. 

Based on the values in Table 3, the OLBXII model provides adequate fits as compared to 

MOBXII and BXII models in application with small values for AIC, BIC, A*, W* statistics 

and big value for ℓ̂. Based on the data set, the new OLBXII model is much better than the 

MOBXII and BXII models. 

The estimated variance-covariance matrix (inverse of the observed Fisher information 

matrix) is given by 

𝐽(�̂�)
−1
= (

0.0625 0.5960 −0.0120
0.5960 139.3457 −1.9558
−0.0120 −1.9558 0.0277

)﹒ 
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Table 3：MLEs, ℓ̂ values (standard errors in parentheses) for OLBXII, MOBXII and BXII models 

and the statistics AIC, BIC, K-S, A* and W* based on Myelogeneous Leukaemia data 

 ([∙]{∙} and(∙) denote their p-values) 

Model �̂� �̂� �̂� ℓ̂ AIC BIC K-S A* W* 

OLBXII 0.6237 5.3979 0.0743 -149.7538 305.5075 309.9970 0.1294 0.5889 0.0885 

 (0.2500) (11.8044) (0.1664)    [0.6384] {0.6572} (0.6476) 

MOBXI 11.2992 4.6824 0.1996 -151.7895 309.5791 310.4066 0.1270 0.6765 0.1001 

 (6.4851) (4.4505) (0.1965)    [0.6623] {0.5775} (0.5869) 

BXII  25.7207 0.0141 -158.6288 321.2576 324.2506 0.2376 2.6918 0.4938 

Hence, the 90% confidence intervals for 𝑎 , 𝛼  and 𝛽  parameters are given by 

[0.2125,1.0349], [ −7.6120, 31.2209] and [ −0.1995, 0.3481] respectively. 

To illustrate the performance of our newly proposed distribution further, we introduce an- 

other example of Average Annual Percent Change in Private Health Insurance Premiums 

(All Benefits: Health Services and Supplies), Calendar Years 1969-2007 (SOURCE: 

Centers for Medi- care & Medicaid Services, Office of the Actuary, National Health 

Statistics Group). These data have  been analyzed by Kibria and Shakil [17].  The data 

are:14.4, 14.0, 15.4, 9.4, 11.7, 15.0, 24.9, 20.7, 12.5, 14.9, 12.6, 16.7, 13.8, 11.0, 12.9, 10.1, 

1.9, 8.5, 16.5, 15.3, 13.3, 9.8, 8.4, 7.9, 3.7, 5.1, 4.6, 4.4, 5.4, 6.1, 8.0, 10.0, 11.2, 10.1, 6.4, 

6.7, 5.7, 5.8. Table 3 lists the results of this data analysis. 

 

Table 4：MLEs, ℓ̂ values (standard errors in parentheses) for OLBXII, MOBXII and BXII models 

and the statistics AIC, BIC, K-S, A* and W* based on Average Annual Percent  

([∙]{∙} and(∙) denote their p-values) 

Model �̂� �̂� �̂� ℓ̂ AIC BIC K-S A* W* 

OLBXII 0.0469 11.3551 0.1366 -112.5248 231.0497 235.9624 0.0762 0.2366 0.0363 

 (0.0238) (3.0446) (0.0403)    [0.9801] {0.9769} (0.9531) 

MOBXI 137.1441 220.7813 0.0103 -118.4854 242.97083 247.8836 0.1494 1.6766 0.2800 

 (8.6207) (2.9062) (0.0005)    [0.3634] f0.1396g (0.1540) 

BXII  10.6930 0.0416 -154.0969 312.1938 315.4689 0.4299 10.3760 2.1648 

  (5.1426) (0.0211)    [0.000002] f0.00002g (0.000003) 
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Based on the values in Table 4, the OLBXII model provides adequate fits as compared to 

MOBXII and BXII models in application with small values for AIC, BIC and with big 

values for log-likelihood. Based on the data set, the new OLBXII model is much better than 

the MOBXII and BXII models. 

The estimated variance-covariance matrix is given by 

𝐽(�̂�)
−1
= (

0.0006 0.00003 −0.0004
0.0003 9.2675 −0.1115
−0.0004 −0.1115 0.0016

)﹒ 

Hence, the 90% confidence intervals for 𝑎, 𝛼 and 𝛽 parameters are given by [0.0066, 

0.0872], [6.3477, 16.3625] and [0.0708, 0.2024] respectively. 

Figure 2 and Figure 3 display the probability-probability (P-P) plots for the application 

models. It is evident from these plots that the OLBXII distribution provides superior fit to 

both data set.  

 

   

(a) OLBXII (b) MOBXI (c) BXII 

Figure 2: P-P plots for the Myelogeneous Leukaemia data 

 

   

(a) OLBXII (b) MOBXI (c) BXII 

Figure 3: P-P plots for the Average Annual Percent data 
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6.2 Using Bayesian approach 

In this subsection, a real data set about vinyl chloride data obtained from clean upgradient 

monitoring wells in mg/L that is presented by Bhaumik et al.[4] is used. This data set is 5.1, 

1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 

1.0, 0.2, 0.1,0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2. The independent priors for this real data 

are 

𝑎~Γ(0.01,0.01), 𝛼~Γ(0.01,0.01)𝑎𝑛𝑑 𝛽~Γ(0.01,0.01)﹒ 

By using full conditional distributions, a random sample of each parameters with size 

700,000 is generated based on Metropolis-Hastings with in Gibbs algorithm. Burning time 

for removing the effect of the initial values is 10,000 and to avoid correlation problems, a 

spacing of size 1000 is considered. Thus a sample of size 690 from each parameters is 

obtained. High autocorrelations within chain indicate slow mixing and slow convergence. 

The autocorrelation plots for these samples are presented in Fig. 4. We show that the 

correlation are very small in each sample. The trace plots for these samples are presented in 

Fig.5. Also, Geweke [12] 𝚭 test is used  for testing convergence of each sample to 

stationary assumption. Geweke method divides each chain into 2 windows containing the 

first 10% and the last 50% of the iterates. If the whole chain is stationary, the means of the 

values early and late in the sequence should be similar. The convergence diagnostic 𝚭 is 

the difference between the 2 means divided by the asymptotic standard error of their 

difference. Thus by considering 5% for the level test, if the absolute value of 𝚭 is bigger 

than 0.975th quantile of normal distribution (1.955), the difference is significant. These 

values are calculated in Table 5. The histogram of simulated samples from each parameters 

is shown in Fig. 6. It is worth mentioning that the 𝚭 statistics of this part is obtained 

by ”coda” R package. In Table 5, we report posterior summaries for the parameters of the 

OLBXII distribution. Here, SD represents the standard deviation from the posterior 

distributions of the parameters and HPD represents the 95% highest posterior density (HPD) 

intervals. 

Table 5: Mean, SD, HPD (95%) and Z Score for all parameters 

Parameter Mean SD HPD (95%) Z Score 

𝑎 16.450 30.780 (0.029, 81.050) 0.788 

𝛼 1.373 0.309 (0.783, 2.032) 1.918 

𝛽 0.306 0.338 (0.002,0.944)  −1.833 
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Figure 4: Auto correlation function for parameters: 𝑎, 𝛼 and 𝛽 

 

   

Figure 5: Trace plot for sample of posterior distributions of parameters: 𝑎, 𝛼 and 𝛽. 
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7 Conclusions 

In this article, we study the Odd Lindley Burr XII (OLBXII) distribution which extends 

the Burr XII (BXII) model. We derive explicit expressions for some of its statistical and 

mathematical quantities including the ordinary moments, generating function, incomplete 

moments and order statistics. Some useful characterizations are presented. Maximum 

likelihood method is used to estimate the model parameters. Simulation results to assess the 

performance of the maximum likelihood estimators are discussed in case of uncensored 

data. We demonstrate empirically 

 

α 

 

β 

 

𝑎 

Figure 6: Histogram plot for sample of posterior distributions of parameters: 𝑎, 𝛼 and 𝛽 

 

the importance and flexibility of the new model in modeling various types of real data sets. 

Bayesian estimation is performed by obtaining the posterior marginal distributions of model 

parameters. We use the simulation method of MCMC by the Metropolis-Hastings alogrithm 

in each step of Gibbs algorithm. The trace plots and estimated conditional posterior models 

of all parameters are introduced. We hope that the proposed model will attract wider 

applications in the areas such as engineering, economics (income inequality), survival and 

lifetime data, hydrology, meteorology and others. 
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Appendix A 

Theorem 1. Let (𝛺, ℱ, 𝑷) be a given probability space and let 𝐻 = [𝑑, 𝑒] be an interval 

for some 𝑑 < 𝑒(𝑑 = −∞, 𝑒 = ∞might as well be allowed) . Let 𝑋 ∶ Ω → H  be a 

continuous random variable with the distribution function F and let 𝑞1 and 𝑞2 be two real 

functions defined on H such that 

E[𝑞2(𝑋)|𝑋 ≥ 𝑥] = E[𝑞1(𝑋)|𝑋 ≥ 𝑥]𝜂(𝑥)﹐𝑥 ∈ 𝐻﹐ 

is defined with some real function 𝜂. Assume that 𝑞1𝑞2 ∈ 𝐶
1(𝐻)﹐𝜂 ∈ 𝐶2(𝐻) and F is 

twice continuously differentiable and strictly monotone function on the set H. Finally, 

assume that the equation 𝜂𝑞1 = 𝑞2 has no real solution in the interior of H. Then F is 

uniquely determined by the functions 𝑞1, 𝑞2 and 𝜂, particularly 

𝐹(𝑥) = ∫ 𝐶 |
𝜂′(𝑢)

𝜂(𝑢)𝑞1(𝑢) − 𝑞2(𝑢)
| exp(−𝑠(𝑢))𝑑𝑢﹐

𝑥

𝑎

 

where the function 𝑠 is a solution of the differential equation s′ =
𝜂′𝑞1

𝜂𝑞1−𝑞2
 and C is the 

normalization constant, such that ∫ 𝑑𝐹 = 1
𝐻

﹒ 
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Appendix B 

𝜕ℓ

𝜕𝑎
=
2𝑛

𝑎
−

𝑛

(1 + 𝑎)
−∑[(1 + 𝑥𝑖

𝛼)𝛽 − 1]

𝑛

𝑖=1

﹐ 

𝜕ℓ

𝜕𝛼
=
𝑛

𝛼
+∑log(1 + 𝑥𝑖

𝛼) + (2𝛽 − 1)

𝑛

𝑖=1

∑
𝑥𝑖
𝛼 log 𝑥𝑖

(1 + 𝑥𝑖
𝛼)
− 𝑎𝛽

𝑛

𝑖=1

∑
𝑥𝑖
𝛼 log 𝑥𝑖

(1 + 𝑥𝑖
𝛼)
1−𝛽

𝑛

𝑖=1

﹐ 

and 

𝜕ℓ

𝜕𝛽
=
𝑛

𝛽
+ 2∑log(1 + 𝑥𝑖

𝛼) − 𝑎

𝑛

𝑖=1

∑
log(1 + 𝑥𝑖

𝛼)

(1 + 𝑥𝑖
𝛼)

−𝛽
﹒

𝑛

𝑖=1

 


