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Abstract：In this paper, the problem of determining which treatments are 

statistically significant when compared with a zero-dose or placebo control 

in a dose-response study is considered. Nonparametric meth- ods developed 

for the commonly used multiple comparison problem whenever the 

Jonckheere trend test (JT) is appropriate is extended to the multiple 

comparisons to control problem. We present four closed testing methods, of 

which two use an AUC regression model approach for determining the 

treatment arms that are statistically different from the zero-dose control. A 

simulation study is performed to compare the proposed methods with two 

existing rank-based nonparametric mul- tiple comparison procedures. The 

method is further illustrated using a problem from a clinical setting. 
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1 Introduction 

Multiple comparison methods are used to determine individual group dif- ferences once a 

global test indicates overall group differences. A method for using the Jonckheere trend test 

statistic as applied in the AUC regression set- ting is presented in Buros et al. (2017b). Their 

method is extended to a problem associated with dose-response clinical studies for which one 

is interested in determining which dose arms are statistically different from a zero-dose or 

placebo control. A related problem is to determine the smallest dose for which there is a 

significant difference from the zero-dose control.This dose is referred to as the Minimum 

Effective Dose (MED) Ruberg (1989). The literature has several parametric (Dunnett (1955), 
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Williams (1971)) and non- parametric (Dunn (1964), Shirley (1977)) multiple comparison 

procedures to a control. Procedures for identifying the MED are based on multiple contrast 

methods Ruberg (1989) or stepwise procedures described in Jan and Shieh (2004) and 

Tamhane et al. (1996). 

An overview of the paper is as follows: a motivating example is given in Section 2, a brief 

discussion of AUC regression as used in Buros et al. (2017a) and Buros et al. (2017b) is 

given in Section 3, the multiple comparison procedure proposed by Buros et al. (2017b) is 

discussed in Section 4. Section 5 states the problems of interest and presents the proposed 

nonparametric zero-dose control comparison procedures. The results of a simulation study 

for comparing the performance of the four methods with existing methods is given in Section 

6. The proposed methods are illustrated using a real data example in Section 7. We conclude 

with a summary and discussion in Section 8 

2 Motivating Example 

The results of NCT00749190, a 12-week randomized double-blind Phase 2 clinical study, 

to investigate safety and efficacy of Empagliflozin as compared to a placebo for Type 2 

diabetes Mellitis (T2DM) patients, are presented in Ingelheim (2014). Empagliflozin is 

designed to inhibit the threshold level of sodium/glucose cotransporter 2 (SGLT2) of patients 

lowering the amount of glucose reabsorbed within the kidneys. The primary endpoint is the 

change from baseline of glycated haemoglobin (HbA1c) after 12 weeks of therapy. Patients 

are randomized into 5 dosage levels of Empagliflozin (1mg, 5mg, 10mg, 25mg, and 50mg) 

and a placebo group. The two objectives for this study are; determine which, if any, of the 

non-zero doses are significantly different from the zero-dose control while controlling the 

family-wise error rate at α, and determine the minimum effective dose (MED). 

3 AUC Regression 

The receiver operating curve is a graphical summary of the discriminatory ability of a 

binary classifier for continuous outcomes.  Let 𝑌𝐷and 𝑌�̅�denote the continuous responses 

from a diseased and non-diseased group, respectively. Suppose a subject is classified as 

diseased when 𝑌 > 𝑐 for a threshold c. The ROC curve is the plot of the true positive rate, 

𝑃𝑟(𝑌𝐷 > 𝑐), versus the false positive rate, 𝑃𝑟(𝑌�̅� > 𝑐) for all values of c. 

A widely used summary statistic for the ROC is the area under the ROC (AUC).In the case, 

when two groups are indistinguishable using Y, the AUC is 0.5.When the two populations 
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are completely separated, the AUC is 1. The AUC can be interpreted as 𝑃𝑟(𝑌𝐷 > 𝑌�̅�) which 

is the probability that the score of a randomly chosen diseased subject is greater than the 

score for a randomly chosen non-diseased subject Bamber (1975). 

The AUC can be estimated using the distribution functions of two groups using the 

relationship between the ROC and the survival functions given by 

𝑅𝑂𝐶𝑧𝑦(𝑡) = 𝑆𝑧 (𝑆𝑌
−1(𝑡)), (1) 

where 𝑆𝑔(·) = 1 − 𝐹𝑔(·) is the survival function for group g, g ∈ {Y, Z} and t ∈ [0, 1] Pepe 

et al. (2009). The AUC is defined as 

𝐴𝑈𝐶𝑍𝑌 = ∫ 𝑅𝑂𝐶𝑍𝑌(𝑡)𝑑𝑡
1

0

. (2) 

The AUC has been shown to be related to the commonly used Mann-Whitney rank sum 

statistic Bamber (1975). Suppose that 𝑥1, … , 𝑥𝑛  and 𝑦1, … , 𝑦𝑚  are independent random 

samples from the two populations. The Mann-Whitney statistic is given by 

U = ∑ ∑ 𝐼(𝑥𝑖 > 𝑦𝑖)

𝑚

𝑗=1

𝑛

𝑖=1

 (3) 

where 𝐼(𝑥𝑖 > 𝑦𝑖) = 1 if 𝑥𝑖 > 𝑦𝑖 , 𝐼(𝑥𝑖 = 𝑦𝑖) = 1/2 if 𝑥𝑖 = 𝑦𝑖 , and 𝐼(𝑥𝑖 > 𝑦𝑖) = 0 if 

𝑥𝑖 < 𝑦𝑖.The discrete form of  𝐼(𝑥𝑖 > 𝑦𝑖) in (3) is utilized as a generalized linear model by 

Dodd and Pepe (2003). Their semi-parametric regression model for the AUC enable one to 

have a covariate adjusted Mann-Whitney statistic. 

3.1 AUC Regression Model 

Let 𝑦1
𝐷 , … , 𝑦𝑛

𝐷  denote a random sample of n subjects from the treatment group and 

𝑦1
�̅� , … , 𝑦𝑚

�̅�  denote a random sample of m subjects control group.In the diagnostic testing 

literature the classifier (treatment) is said to be ineffective if 𝐻0: 𝐴𝑈𝐶 = 𝑃𝑟(𝑌𝑖
𝐷 > 𝑌𝑗

�̅�) =

0.5.In the case where there are no covariates, a function of the Mann-Whitney statistic in (3) 

is an unbiased nonparametric estimate of the AUC Bamber (1975) given by 

𝐴𝑈�̂� =
∑ ∑ 𝐼(𝑦𝑖

𝐷 > 𝑦𝑗
�̅�)𝑚

𝑗=1
𝑛
𝑖=1

𝑛𝑚
.  (4) 

 

Since the performance of a classifier is often dependent upon covariates, Dodd and Pepe 

(2003) proposed a semiparametric regression model for the AUC given by 𝑔 (𝐴𝑈𝐶) =
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𝑋𝑇𝛽 where g is a monotone link function and X is a vector of covariates. A logit or probit 

link function is used since 

𝐸[𝐼(𝑦𝑖
𝐷 > 𝑦𝑗

�̅�)|𝑋𝑖, 𝑋𝑗] = 𝐴𝑈𝐶(𝑋𝑖 , 𝑋𝑗).  

or 

𝐸[𝐼(𝑦𝑖
𝐷 > 𝑦𝑗

�̅�)| 𝑋 ] = 𝐴𝑈𝐶(𝑋).  

The parameter estimates for the generalized linear model are solutions to the score 

equations given by 

∑ ∑
(𝐼𝑖𝑗 − 𝐴𝑈𝐶𝑖𝑗)

𝑣𝑎𝑟(𝐼𝑖𝑗)
 
𝜕𝐴𝑈𝐶𝑖𝑗

𝜕𝛽
= 0,

𝑚

𝑗=1

𝑛

𝑖=1

 (5) 

where 𝐼𝑖𝑗 = 𝐼(𝑦𝑖
𝐷 > 𝑦𝑗

�̅�).Solutions to the score equations can be found using standard 

GLM software. The covariate-specific AUC can be expressed as 

𝐴𝑈𝐶𝑖𝑗(𝑋) = 𝑃𝑟(𝑦𝑖
𝐷 > 𝑦𝑗

�̅�|𝑋).  

Since the binary variables in (5) are correlated, the estimates for the regression coefficients, 

�̂�, are correct, but their tandard errors are not.Dodd and Pepe suggested using the bootstrap 

to estimate the standard errors. A modification to a method given by DeLong et al. (1988) 

to compute an estimate for the variance of the Mann-Whitney statistic and to estimate the 

variance of the parameters using the delta method was proposed by Zhang et al. (2011). 

The asymptotic one-sided (1 − 𝛼)100% confidence intervals for the covariate adjusted 

AUC Bamber (1975) is given as 

𝐴𝑈�̂� − 𝑍(𝛼)𝑠. 𝑒. (𝐴𝑈�̂�). (6) 

The estimate for the AUC is obtained from a AUC regression model Dodd and Pepe (2003) 

where the standard error for the AUC is calculated using a combination of Delong’s 

method and the delta method Zhang et al. (2011). 

3.2 Jonckheere-Terpstra Statistic 

The AUC regression model Dodd and Pepe (2003) with an analytic solution for the 

standard errors of the AUC and Mann-Whitney Zhang et al. (2011) to adjust the Jonckheere 

trend test for discrete covariates was utilized by Buros et al. (2017a). A discussion of the 

method is given below. 
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Suppose that one has sample data from 𝐾 + 1 > 2 populations where K is the number of 

active treatment arms and 0 denotes the zero-dose or non-active placebo arm. Let 𝑈𝑢𝑣, for 

𝑢 < 𝑣 and 𝑣 = 1, … , 𝐾 denote the Mann-Whitney statistic in (3) for the 𝑢𝑡ℎand 𝑣𝑡ℎ 

groups. The test of interest becomes 

𝐻0: 𝜃0 = 𝜃1 = ⋯ = 𝜃𝐾 𝑣. 𝑠 𝐻1: 𝜃0 ≤ 𝜃1 ≤ ⋯ ≤ 𝐾 (7) 

with at least one strict inequality. Jonckheere (1954) and Terpstra (1952) independently 

developed the test statistic for this hypothesis known as the Jonckheere-Terpstra statistic 

(JTS) given by 

V = ∑ ∑ 𝑈𝑢𝑣

𝐾

𝑢<𝑣
 . (8) 

The JTS is more powerful than the Kruskal-Wallis procedure when the alternative 

hypothesis is monotone Randles and Wolfe (1991). The limiting null distribution of V is 

normal with mean 

𝐸(𝑉|𝐻0𝑖𝑠 𝑡𝑟𝑢𝑒) =
𝑁2 − ∑ 𝑛𝑗

2𝐾
𝑗=0

4
  (9) 

and variance given by 

𝑉𝑎𝑟(𝑉|𝐻0 𝑖𝑠 𝑡𝑢𝑟𝑒) =
𝑁2(2𝑁 + 3) − ∑ 𝑛𝑗

2(2𝑛𝑗 + 3)𝐾
𝑗=0

72
. (10) 

The approach by Buros et al. (2017a) make use of an alternate method of calculating JTS 

introduced by Odeh (1971) as 

𝑉2 = ∑ 𝑈𝑠
∗

𝐾

𝑠=1

 (11) 

for 

𝑈𝑠
∗ = ∑ 𝑈𝑖𝑠

𝑠−1

𝑖=0

 (12) 

where 𝑈1
∗, 𝑈2

∗, … , 𝑈𝐾
∗  are independent Mann-Whitney statistics where 𝑈𝑠

∗  is the 

Mann-Whitney statistic for comparing the 𝑠𝑡ℎ group with a group formed by combining 

the first (𝑠 − 1) treatment groups with the control group for 𝑠 = 1, … , 𝐾.Note, 𝑈𝑠
∗ ≥ 0 

whenever the alternative hypothesis in (7) holds. 
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4 Multiple Comparisons with JTS 

A nonparametric multiple comparison procedure was developed by Buros et al. (2017b) 

based on AUC regression and the JT statistic in (11) to identify individual median 

differences whenever the global null hypothesis in (7) is rejected at the 𝛼 level. In which 

case, the problem of interest is to determine where the strict inequalities (breaks) are 

located while preserving the family-wise error (FWE) at 𝛼. Buros et al. (2017b) utilize the 

statistics, 𝑈1
∗, 𝑈2

∗, … , 𝑈𝐾
∗  , to define a multiple comparison procedure which can be 

described as follows. Suppose one can reject H0 in (7) at the α level when 

𝑃(𝑉 ≥ 𝑢2|𝐻0 𝑖𝑠 𝑡𝑢𝑟𝑒) = 𝑝 ≤ 𝛼. 

In which case, there is a strict inequality between the K treatment groups and the control. 

The objective is to find its location and to determine if there are any additional strict 

inequalities. The next step is, 

1. Compute 

P(W ≥ 𝑈𝑠
∗|𝐻0 is ture) = 𝑝𝑠 (13) 

for each s and W is asymptotic normal Mann and Whitney (1947) with mean 

μw =
𝑛𝑠 ∑ 𝑛𝑗

𝑠−1
𝑗=0

2
 (14) 

and variance 

𝜎𝑊
2 =

𝑛𝑠 ∑ 𝑛𝑗
𝑠−1
𝑗=0 (𝑛𝑠 ∑ 𝑛𝑗 + 1𝑠−1

𝑗=0 )

12
. (15) 

2. Let 𝑠1  be the smallest index such that 𝑝𝑠 ≤ 𝛼 . In which case, group 𝑠1  is the 

smallest index value for which a strict inequality holds when testing (7). If 𝑠1 < 𝐾 

then continue to the next step, otherwise the procedure has identified the single strict 

inequality between groups (𝐾 − 1) and K. 

3. Test the new hypothesis 

𝐻0: 𝜃𝑠1 = 𝜃𝑠1+1 = ⋯ = 𝜃𝐾 𝑣. 𝑠 𝐻1: 𝜃𝑠1 ≤ 𝜃𝑠1+1 ≤ ⋯ ≤ 𝜃𝐾 (16) 

at the 𝛼/2 level. Repeat steps (1) and (2) with (16) to identify the  index 𝑠2 > 𝑠1 as 

the smallest index value satisfying 𝑝𝑠 ≤ 𝛼/2. Note one must recompute 𝑈𝑠
∗ since the 

first 𝑠1 − 1 groups are no longer used in testing (16). 

4. Repeat the above step until one can no longer reject the new null hypothesis at the 𝛼/𝑚 

level for the 𝑚𝑡ℎcomparison. 
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− 
5. The breaks are located between groups 𝑠𝑖 and 𝑠𝑖 − 1 for i = 1, … M where M is the 

final comparison while controlling the FWE rate at 𝛼. 

5 Proposed Methods 

Suppose that the hypothesis of interest is given by (7). This paper considers the following 

problems: 

1. Determine the groups for which 𝜃0 < 𝜃𝑗. 

2. Determine the MED as defined in Ruberg (1989) by finding the smallest index j such 

that 𝜃0 < 𝜃𝑗 where < indicates statistical significance while controlling the FWE at 

𝛼. 

Several methods for addressing these problems are presented where each 

method is contained within a family of closed null hypotheses Tamhane et al. (1996), 

𝐻 = {𝐻0𝑖} for 

𝐻0𝑖: (𝜃0 = 𝜃1 = ⋯ 𝜃𝑖−1 = 𝜃𝑖) (17) 

where θi is the location parameter for treatment 𝑖 = 1, … , 𝐾 . This family of null 

hypotheses are said to be closed under intersection if 𝐻0𝑖 ∈ 𝐻 and 𝐻0𝑗 ∈ 𝐻 implies that 

𝐻0𝑖 ∩ 𝐻0𝑗 ∈ 𝐻 H Marcus et al. (1976). A closed testing scheme strongly controls the 

familywise error rate (FWE) Marcus et al. (1976), where the FWE is the probability of 

rejecting at least one true 𝐻0𝑖  Tamhane et al. (1996). Strong control of the FWE is 

defined as control of the FWE for any combination of true or false 𝐻0𝑖 Hochberg and 

Tamhane (1987). 

The four methods are described in the next section.The first method is a simple 

modification of the Mann-Whitney statistics used in computing the JTS. The next two 

methods, a step up and a step down version, are obtained directly from the AUC regression 

model where the direction of the step would be determined by the relative location of the 

MED in much the same sense as using either the FORWARD or BACKWARD selection 

procedure in model selection methods. The fourth method is a modification of the 

procedure given by Buros et al. (2017b) for differences between the treatment groups and 

the control. 

5.1 Method 1 - MW Step-Up (mwu) 

This procedure utilizes the relationship between the AUC and Mann-Whitney statistic as 

suggested by Zhang et al. (2011) where a step-up closed testing scheme suggested by 
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Tamhane et al. (1996) with a Sidak adjustment is used to control the FWE rate. At each 

stage in the step-up procedure the Mann-Whitney statistic is used to test for equality of the 

specified treatment arm versus the zero-dose (placebo) control. Let 𝜃𝑖 denote the median 

of population i. The procedure is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next two procedures use the asymptotic one-sided (1 − α)100%  confidence 

intervals for the covariate adjusted AUC given in equation (6). 

5.2 Method 2 - AUC Step-Down (aucd) 

This procedure is similar to the Method 1 where the one-sided confidence interval on the 

AUC is used instead of the p-value for the Mann-Whitney statistic. Each comparison of a 

specified treatment arm versus the zero-dose (placebo) control is made by determining if 

the AUC interval from (6) at each discrete covariate level contains 0.5.The procedure is as 

follows: 

 

 

 

 

 

 

• STEP 1: Test (7) at significance level α. If H0 is rejected,continue to 

step 2, otherwise stop. 

• STEP 2:𝜃0 < 𝜃𝐾 

• STEP 2+i (i = 1, … , K − 1): 

-Test H0: 𝜃0 = 𝜃𝑖 𝑎𝑡 𝛼∗ = 1 − (1 − 𝛼)(
1

𝑖
)
. 

-If p-value ≥ 𝛼∗, continue to step 2 + i + 1. 

-If p-value < 𝛼∗ stop and let j = i. 

• CONCLUDE: 

𝜃0 = ⋯ = 𝜃𝑗−1 < 𝜃𝑗 ≤ ⋯ ≤ 𝜃𝐾 

MED = j 
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5.3 Method 3 - AUC Step-Up (aucu) 

The step-up AUC procedure is similar to the step-down AUC procedure. Instead of 

stepping down sequentially from a comparison between the largest dose and control groups 

in Method 2, the step-up procedure starts with a comparison between the smallest dose 

group and the control, and proceeds with comparing the zero-dose control with increasing 

dose groups. The procedure is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

• STEP 1: Test (7) at significance level α. If H0 is rejected,continue to 

step 2, otherwise stop. 

• STEP 2:𝜃0 < 𝜃𝐾 

• STEP 2+i ( i = 1, … , K − 1): 

-Test H0: 𝜃0 = 𝜃𝐾−i 𝑎𝑡 𝛼∗ = 1 − (1 − 𝛼)(
1

𝑖
)
, conpute  

L𝐵0(𝐾−𝑖)=𝐴𝑈�̂�0(𝐾−𝑖)−𝑍(𝛼∗)s. e. (𝐴𝑈�̂�0(𝐾−𝑖)). 

-If L𝐵0(𝐾−𝑖) > 0.5, continue to step 2 + i + 1. 

-If L𝐵0(𝐾−𝑖) ≤ 0.5, stop and let j = i. 

• CONCLUDE: 

𝜃0 = ⋯ = 𝜃𝑗 < 𝜃𝑗+1 ≤ ⋯ ≤ 𝜃𝐾 

MED = j + 1 

• STEP 1: Test (7) at significance level α. If H0 is rejected,continue to 

step 2, otherwise stop. 

• STEP 2:𝜃0 < 𝜃𝐾 

• STEP 2+i ( i = 1, … , K − 1): 

-Test H0: 𝜃0 = 𝜃i 𝑎𝑡 𝛼∗ = 1 − (1 − 𝛼)(
1

𝑖
)
, conpute  

L𝐵0𝑖=𝐴𝑈�̂�0𝑖−𝑍(𝛼∗)s. e. (𝐴𝑈�̂�0𝑖) 

-If L𝐵0𝑖 ≤ 0.5, continue to step 2 + i + 1. 

-If L𝐵0𝑖 > 0.5, stop and let j = i. 

• CONCLUDE: 

𝜃0 = ⋯ = 𝜃𝑗−1 < 𝜃𝑗 ≤ ⋯ ≤ 𝜃𝐾 

MED = j 
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5.4 Method 4 - Adjusted Buros (bur) 

The adjusted Buros method utilizes the Buros et al. (2017a) and Buros et al. (2017b) 

multiple comparison procedure presented in Section 4. Recall that Odeh (1971) derived an 

alternative form for the Jonckheere-Terpstra statistic.The individual components of the JTS 

are defined as 

𝑈𝑠
∗ = ∑ 𝑈𝑖𝑠

𝑠−1

𝑖=0

 (18) 

for s = 1, … , K where 𝑈𝑠
∗ is the Mann-Whitney statistic for comparing the 𝑠𝑡ℎ  

group with a group formed by  combining the first (𝑠 − 1) groups with the 

control group. The alternative form for JTS is defined as the sum of the individual 

Mann-Whitney statistics given by 

𝑉2 = ∑ 𝑈𝑠
∗

𝐾

𝑠=1

 (19) 

Buros et al. (2017a) utilizes the Mann-Whitney statistics defined in (18) to identify all 

possible differences between treatments in a step-up procedure. The MED is the first break 

identified by the Buros et al. (2017a) method. The procedure is as follows: 

 

 

 

 

 

 

 

 

 

The first three procedures are alternatives to Shirley (1977) nonparamet- ric procedure for 

multiple comparisons to a control. The four procedures can be used to identify the MED. 

Their performance in identifying the MED is compared to the method given in Jan and 

Shieh (2004). A description of  the procedures found in Jan and Shieh (2004) and Shirley 

(1977) is given in Appendix B. 

• STEP 1:Test (7) at significance level 𝛼. If 𝐻0 is rejected,continue to 

step 2, otherwise stop. 

• STEP 2:𝜃0 < 𝜃𝐾 

• STEP 3:Compute 

P(W ≥ 𝑈𝑠
∗|𝐻0 is  ture) = 𝑝𝑠. 

Let 𝑠1 be the smallest index such that 𝑝𝑠 ≤ 𝛼. 

• CONCLUDE: 

MED = 𝑠1 
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6 Simulation Study 

In this section, the proposed methods are evaluated using a simulation study. The results 

for the methods are compared with Jan and Shieh (2004) and Shirley (1977).The simulation 

study consists of three increasing dose treatment groups and a zero-dose control group with 

a single discrete covariate X with J = 3 levels. Each method is evaluated in terms of control 

of the family-wise error rate, identification of breaks between treatment groups and the 

control, and the identification of the minimum effective dose. 

The simulation method given in Zhang et al. (2011) is used with the modification given in 

Appendix A. Let 𝑌𝑝 denote the random variable for the response from the placebo group 

and 𝑌𝑡 denote the random variable for the response from the treatment group where the 

data are generated such that 𝑌𝑗
𝑝

= −log (𝜇1) and 𝑌𝑗
𝑡𝑖 = − log(𝜇2) + 𝜃𝑖 + 𝛽𝑖𝑗,for the 𝑖𝑡ℎ 

treatment groupat the 𝑗𝑡ℎ covariate level where 𝜇1, 𝜇2~ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (1).The parameters 

in the model can be derived using, 

𝐴𝑈𝐶0𝑖(𝑗) = Ψ(𝜃𝑖 + 𝛽𝑖𝑗) (20) 

where 𝛹(𝑥) = (1 + 𝑒−𝑥)
−1

 is the CDF of a standard logistic random variable 

(Balakrishnan and Nevzorov, 2003). 

The first three methods are compared with Shirley (1977) when the objective is to 

identify the breaks between the treatment groups and control. The four methods are 

compared to Jan and Shieh (2004) when the objective is to identify the MED. The model is 

𝑦𝑖𝑗𝑚 = 𝛼𝑖𝑗 + 𝜖𝑖𝑗𝑚 (21) 

where 𝜖𝑖𝑗𝑚 = −log (𝜇)  and μ~ exponential(1)  for i = 0,1, … ,3  and j = 1,2,3. Let 

𝛼𝑖𝑗 = 𝜃𝑖 + 𝛽𝑖𝑗 where 𝜃𝑖 is the treatment effect and 𝛽𝑖𝑗 is a covariate effect that specify 

the ordered relationship among the treatment medians at each discrete covariate level. Note 

the value of 𝛽𝑖𝑗 influences the separation between the medians for the treatment arms. The 

following three scenarios are considered, 

1. 𝜃0𝑗 = 𝜃1𝑗 = 𝜃2𝑗 = 𝜃3𝑗 

2. 𝜃0𝑗 = 𝜃1𝑗 = 𝜃2𝑗 < 𝜃3𝑗 

3. 𝜃0𝑗 < 𝜃1𝑗 < 𝜃2𝑗 < 𝜃3𝑗 

where the sample size is 𝑛𝑖 = 10 and the number of replications is 2500. In scenario 1, no 

breaks are expected between any of the treatment groups and the control and the MED is 0. 

In scenario 2, a break is expected between the third treatment group and the control group 
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and the MED is 3. In scenario 3, a break is expected between each treatment group and the 

control group and the MED is 1. It should be noted that the relationship given by < is 

intended to indicate a statistical significant ordering. However, in some cases statistical 

significance at the desired breaks for each covariate levels is not realized. The results for 

the multiple comparisons to control are summarized in Figure 1 and for the identification of 

the minimum effective dose in Figure 2. 

The simulation results for the multiple comparisons to the zero-dose control are given in 

Figure 1. In scenario 1, when there are no differences between any of the treatment arms 

and the control, each of the four procedures identified false breaks in less than 5% of the 

trials. For scenario 2 there should be a break between the third treatment group and the 

control as indicated by the 03 column. At covariate level 1, each of the four procedures 

correctly identifies the 03 break in 50% of the trials. In the other 50% of the trials, one 

could not reject the overall JT null hypothesis. When the covariate level is 2, one finds the 

break between the third treatment and control in about 75% of the trials; whereas in the 

other 25% of the trials the overall null could not be rejected. When the covariate level is 3, 

the number of breaks identified is about 90% with Shirley’s method preforming the best 

with a small margin. In scenario 3, the breaks should be found between all three treatments 

and the control indicated by the 01, 02, and 03 columns. When the covariate level is 1, the 

step-up procedures (aucu and mwu) perform the best in identifying the smallest break from 

the control by identifying the 01 break in about 60% of the trials, followed by the 

step-down AUC procedure (aucd) with 50% of the trials. All three proposed methods 

outperform Shirley’s method which finds the 01 break in about 30% of the trials. The 

difference between the methods are less pronounced in identification of the 02 and 03 

breaks. The 02 break is identified in about 90% of the trials with the step-down AUC 

method performing the best. Each of the methods identifies the 03 break in 100% of the 

trials. At covariate levels 2 and 3 the trend is the same as what is seen at level 1. The 

step-up procedures perform the best in identifying the 01 break, and all three methods 

outperform Shirley’s method. The proposed procedures finds the 01 break about 20% of the 

times more than Shirley’s procedure at each covariate level. The other breaks at covariate 

levels 2 and 3 are each found in nearly 100% of the trials. 

The simulation results for the identification of the MED are given in Figure 2. In scenario 

1, there is no minimum effective dose with all treatments being equal to the control at all 
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three covariate levels. The MED is correctly identified as the zero-dose by each of the 

methods in about 95% of the trials. For scenario 2, the MED is the third treatment group. 

At covariate level 1, the MED is correctly identified as 3 in about 45% of the trials. Each 

method outperformed Shieh and Jan with a margin of about 10%. Recall in this scenario, 

the global JT null hypothesis is not rejected in 50% of the trials. 

The percentage of trials the MED is identified as 3 increases to about 75% at the 

second covariate level, and to about 85% at the third covariate level. In scenario 3, 

the MED should be one. When the covariate level is 1, each of the procedures 

correctly identify the MED as 1 in about 50 60% of the trials where the step-up 

AUC method performs the best with a slight margin. At the second covariate level, 

the difference between treatment groups increases with an increase in the 

covariate effect. The MED is identified as 1 in about 80% of the trials. The 

percentage of times the MED is identified as 1 increases to about 95% of the times 

at the third covariate level. As a whole, the proposed methods identify the MED 

correctly and outperformed the Shieh and Jan method. 

7 Type II Diabetes Mellitus Application 

In this section, the proposed methods are illustrated using results from a clinical 

trial (NCT00749190) for Type 2 diabetes Mellitus as described in Section 2. The 

objectives of this study were to determine efficacy and safety of Empagliflozin in 

a Phase 2 trial with 5 increasing dosage levels and a zero-dose control. The 

proposed methods are used to determine the dosage levels that demonstrated a 

statistical improvement when compared to the zero-dose control and to identify 

the MED. 

The results from the study are reproduced in Table 1. The summary statistics from the 

study were used to simulate the data presented in this section. The design for the data 

generation is similar to that given in Section 6 with an adjustment as described in Appendix 

A. The boxplots for the simulated data are depicted in Figure 3 where data are adjusted so 

that a larger response correspond to a more effective treatment. The dosage groups are 

represented from left to right in increasing order of placebo, 1mg, 5mg, 10mg, 25mg, and 

50mg of Empagliflozin. The response, x, represents the negative change from baseline of 

HbA1c. An analysis of these data has 𝑡1 = 1𝑚𝑔 as the MED. These results are not shown. 
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In order to better illustrate the proposed methods, simulated data were modified by 

decreasing the sample size for each group to 20 and increasing the variability within each 

group. The boxplots of the adjusted simulated data are given in Figure 4. The summary 

statistics for the adjusted simulated data are given in Table 2. The objective of the study is 

to determine the dosage levels that demonstrate statistical improvement when compared to 

the control. A secondary objective 

Scenario 1 

 

Scenario 2 

 

Scenario 3 

 

 

Figure 1: Comparisons to zero-dose control for scenario 1-3.The dashed 

horizontal line is at α = .0.5 . Methods: mwu -Mann-Whitney step up, 

aucd-Step-down AUC, aucu-Step-Up AUC, bur-Adjusted Buros 
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Scenario 1 

 

Scenario 2 

 

Scenario 3 

 

Figure 2: Identification of the MED in scenario 1-3. Methods: mwu -Mann-Whitney step up, 

aucd -Step-down AUC, aucu - Step-Up AUC, bur-Adjusted Buros is to determine the MED. 
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Table 1: Summary statistics for the original negative change from baseline of HbA1c at 

week 12. 

 Placebo 1mg 5mg 10mg 25mg 50mg 

Number of patients 71 71 71 71 71 71 

Mean negative change from baseline -0.15 0.09 0.23 0.56 0.55 0.49 

SE 0.08 0.08 0.08 0.08 0.08 0.08 

 

Figure 3: T2DM simulated treatment groups based on original summary statistics of 

negative change from baseline in HbA1C. 

 

Table 2: Summary statistics for the adjusted simulated negative HbA1c change from 

baseline 

 Placebo 1mg 5mg 10mg 25mg 50mg 

Number of patients 20 20 20 20 20 20 

Mean negative change from baseline 0.27 0.33 0.68 0.87 0.95 0.90 

SE 0.75 1.02 0.85 0.62 0.90 0.75 
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Figure 4: T2DM simulated treatment groups based on adjusted summary statistics of 

negative change from baseline in HbA1C. 

 

The family-wise error rate is set at 0.05 and the dose response curve is assumed to be 

monotonic. The initial step for each of the proposed methods is to test the global hypothesis 

given by 

𝐻0: 𝜃0 = 𝜃1 = ⋯ = 𝜃5 𝑉. 𝑆 𝐻1: 𝜃0 ≤ 𝜃1 ≤ ⋯ ≤ 𝜃5 (22) 

using the Jonckheere trend test at 𝛼 = 0.05. The null hypothesis in (22) is rejected (JT 

p-value < 0.0001) in which case we have 𝜃5 > 𝜃0. The study results from the AUC 

regression model are summarized in Table 3. These results are used in Sections 7.0.1 −

7.0.3 to perform the multiple comparison procedures. The Mann-Whitney p-value (MW 

p-value) is used in the Mann-Whitney step-up procedure. The estimates for the AUC and 

standard error are used in the step-up and step-down AUC procedures to calculate the si- 

multaneous confidence intervals on the AUC using (6). For each comparison, the true AUC 

is within two standard errors from the estimate obtained using AUC regression. 
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7.0.1.  MW step-up(mwu). 

Test 𝐻0: 𝜃0 = 𝜃1 𝑎𝑡 𝛼∗ = 1 − (1 − 0.05)1/1 = 0.05 using the Mann-Whitney test. Since 

the p-value is = 0.7150 > 0.05, proceed to the next step and test H0: θ0 = θ2 using the 

Sidak-adjusted 𝛼∗ = 1 − (1 − 0.05)
1

2 = 0.0253 . Since this H0  is not rejected  (p −

value =  0.0274 >  0.0253)proceed to the next step with testing H0: θ0 = θ3 at α∗ =

1 − (1 − 0.05)1/3 = 0.0170 .The p-value for this hypothesis is 0.0021 <  0.0170  in 

which case H0 is rejected and the procedure is stopped. The final conclusion is 𝜃0 = 𝜃1 =

𝜃2 < 𝜃3 ≤ 𝜃4 ≤ 𝜃5 and the MED is the 10mg dose. 

7.0.2.  AUC step-down (aucd). 

The next step in this procedure is to test 𝐻0: 𝜃0 = 𝜃4 𝑎𝑡 𝛼∗ = 1 − (1 − 0.05)1/1 = 0.05.  

The 95% lower-bound confidence  interval  on  the  AUC  is 𝐿𝐵04 > 0.626 which 

does not contain 0.5 indicating that the 25mg dose  level is significantly better than the 

control (𝜃4 > 𝜃0). A 98.47% confidence interval is used to compare the third dosage level 

to the placebo arm. Since 𝐿𝐵03 > 0.610 does not contain 0.5, we conclude that 𝜃3 > 𝜃0. 

Now test 𝐻0: 𝜃0 = 𝜃2 𝑎𝑡 𝛼∗ = 1 − (1 − 0.05)1/3 = 0.0170  level. Since 𝐿𝐵02 > 0.494 

overlaps 0.5, we conclude that the 5mg dose does not produce a significant improvement 

when compared with the control (𝜃2 = 𝜃0). The final conclusion is that, 𝜃0 = 𝜃1 = 𝜃2 ≤

𝜃3 ≤ 𝜃4 ≤ 𝜃5 and the MED is the 10mg dose. 

7.0.3.  AUC step-up (aucu). 

The next step in this procedure is to test 𝐻0: 𝜃0 = 𝜃1 𝑎𝑡 𝛼∗ = 1 − (1 − 0.05)1/1 = 0.05  

Since 𝐿𝐵01 > 0.290 contains 0.5, proceed to the next step and test 𝐻0: 𝜃0 = 𝜃2 𝑎𝑡 𝛼∗ =

1 − (1 − 0.05)1/2 = 0.0253. Since 𝐿𝐵02 > 0.508does not contain 0.5, conclude that 

𝜃2 > 𝜃0. In which case, the final conclusion is 𝜃0 = 𝜃1 < 𝜃2 ≤ 𝜃3 ≤ 𝜃4 ≤ 𝜃5 and the 

MED is the 5mg dose. 

7.0.4.  Adjusted Buros (bur). 

The next step in this procedure is to identify the smallest index, s, such that 𝑝𝑠 ≤ 0.05 

where 

P(W ≥ 𝑈𝑠
∗|𝐻0 is ture) =  𝑝𝑠 
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For s = 1, … ,4. In this case, s = 2 (p-value= 0.0101). The final conclusion is 𝜃0 = 𝜃1 <

𝜃2 ≤ 𝜃3 ≤ 𝜃4 ≤ 𝜃5 and the MED is the 5mg dose. 

 

Table 3: T2DM study results for multiple comparisons. 

Comparison True AUC AUC Estimate AUC SD MW P-value 

0 vs 1 0.59 0.45 0.10 0.7150 

0 vs 2 0.64 0.68 0.09 0.0274 

0 vs 3 0.74 0.77 0.08 0.0021 

0 vs 4 0.74 0.76 0.08 0.0029 

0 vs 5 0.72 0.75 0.08 0.0034 

Global    < 0.0001 

8 Discussion 

Three nonparametric methods were introduced for multiple comparisons to a placebo 

control when the alternative dose response curve is monotone. A fourth method was 

presented and used along with the other three to identify the smallest dose that produces a 

statistically desirable effect when compared with a zero-dose control. 

Each of the four methods satisfy the closed testing scheme that strongly controls the 

familywise error rate. The methods provide a creative solution to the existing problems 

found in dose-response studies by utilizing the relationship between the Mann-Whitney 

statistic and AUC which allows one to use the Dodd and Pepe semi-parametric AUC  

regression model.  The first method is a Mann-Whitney step-up procedure with a Sidak 

adjustment. Method 2 and 3 use one-sided confidence intervals on the AUC. The fourth 

method is a simple extension of the Buros method where only comparisons to the control 

are considered instead of all possible comparisons. 

A simulation study is performed to compare the proposed methods with the Shirley 

nonparametric multiple comparison procedure to the zero-dose control and with Shieh and 

Jan’s method when the objective is to determine the minimum effective dose. The proposed 

methods control the family-wise error rate and provide a notable increase in power when 

compared with Shirley’s method. The proposed methods are superior to the Shieh and    

Jan method, in identifying the MED. It has been determined that step-down procedures are 

slightly more powerful than step-up procedures Tamhane et al. (1996). In this simulation, 

the step-up procedures had increased power in identifying the MED when it was a low dose 

level. Based on the simulation results, our recommendation is to use the step-up AUC 
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procedure when the MED is expected at a low dose and to use the step-down AUC 

procedure when the MED is expected at a high dose. 

An example of a Type II diabetes dose-response study is included to illustrate the ability 

of the methods in identifying the MED. In this example, the MED is expected at a low dose 

level. The step-up AUC  procedure is able to identify the MED as the 5mg dose; whereas 

the step-down AUC procedure identifies the MED as one higher dose of  10mg. 

In conclusion, four nonparametric multiple comparison methods to a control and for 

identifying the minimum effective dose are presented. Each method controls the 

family-wise error rate, allows for adjustment of discrete covariates, and is competitive with 

available methods. 
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A. Modification of Simulation used in Zhang et al. (2011) 

Balakrishnan and Nevzorov (2003) derived the true AUC for two treatment groups with 

standard extreme value error terms. A similar derivation is followed to derive the true AUC 

when both treatment groups have extreme 

value distributions with the same scale parameter, λ. Let 

𝑌1 = −1/λ log(𝑈1) + 𝑚1 · x                         

𝑌2 = −1/λ log(𝑈2) + 𝑚0 + (𝑚1 + 𝑚2) · x, 

where 

𝑈1~ exp(1) , 𝑈2~ exp(1). 

We are interested in  

                                  AUC(x) = P[𝑌1 < 𝑌2] 

                         = P[1/λ  log( 𝑈2) − 1/λ log( 𝑈1) < 𝑚0 + 𝑚2 · x] 

                                                 = P[V < 𝑚0 + 𝑚2 · x] 

                                                 = 𝐹𝑉(𝑚0 + 𝑚2 · x). 

In order to find the CDF of V, let 𝑉1 = −1/λ  log(𝑈1). Then, 𝑈1 = exp (−λ𝑉1 ). It 

follows that the pdf of 𝑉1 is 

𝑓𝑉1
(𝑣1) = 𝑒𝑥𝑝{− 𝑒𝑥𝑝(−𝜆𝑣1)} · 𝜆 𝑒𝑥𝑝{−𝜆𝑣1}                                  

= 𝜆 𝑒𝑥𝑝{−𝑒𝑥𝑝(−𝜆𝑣1) − 𝜆𝑣1}, 
(23) 

Where −∞ < 𝑉1 < ∞ whih 𝐸(𝑉1) = 0.57722/𝜆 and Var(𝑉1) =  𝜋2/(6 · 𝜆2). 

The cdf of 𝑉1 is 

               𝑓𝑉1
(𝑣1) = 𝑃[𝑉1 < 𝑣1]

= ∫ 𝜆 exp{−𝜆 𝑒𝑥𝑝(−𝑥) − 𝑥} 𝑑𝑥 = exp {−exp (−𝜆𝑣1)}
𝑣1

−∞

. 
(24) 

Similarly, let 𝑉2 = −1/λ log (𝑈2). The pdf and cdf of 𝑉2 is the same as 𝑉1. We  

are interested in the distribution of 𝑉 = 𝑉1 − 𝑉2 where −∞ < 𝑉 < ∞. Define 

the bivariate transformation 

𝑉 = 𝑉1 − 𝑉2  and W = 𝑉2 (25) 

 

 

 

That is, 𝑉1 = 𝑉 + 𝑊 𝑎𝑛𝑑 𝑉2 = 𝑊 with a Jacobian of 1 and −∞ < V < ∞ and − ∞ <<

W < ∞. We have that 
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𝑓𝑉1,𝑉2
(𝑣1, 𝑣2) = 𝜆 exp{− exp(−𝜆𝑣1) − 𝜆𝑣1} · 𝜆 exp {− exp(−𝜆𝑣2) − 𝜆𝑣2} 

The CDF of V is derived as follows 

                                     𝐹𝑉(𝑣) = ∫ 𝑓𝑣(𝑥)𝑑𝑥
𝑣

−∞

 

                                                = ∫ ∫ 𝑓𝑉1,𝑉2
(𝑥 + 𝑤, 𝑤)𝑑𝑤𝑑𝑥

∞

−∞

𝑣

−∞

 

                                                = ∫ ∫ 𝑓𝑉1,𝑉2
(𝑥 + 𝑤, 𝑤)𝑑𝑥𝑑𝑤

𝑣

−∞

∞

−∞

 

                                                = ∫ 𝐹𝑉1

∞

−∞

(𝑣 + 𝑤)𝑑𝐹(𝑤) 

                                                = ∫ 𝑒𝑥𝑝{− 𝑒𝑥𝑝[−𝜆(𝑣 + 𝑤)]} · 𝜆 𝑒𝑥𝑝 {− 𝑒𝑥𝑝(−𝜆𝑤) − 𝜆𝑤}𝑑𝑤
∞

−∞

 

                                               = ∫ 𝜆 𝑒𝑥𝑝
∞

−∞

{−𝑒𝑥𝑝 [−𝜆 𝑤] · [1 + 𝑒𝑥𝑝 (−𝜆𝑣)] } · 𝑒𝑥𝑝 {−𝜆 𝑤}𝑑𝑤 

= ∫ 𝑒𝑥𝑝 {−𝑢 · [1 + 𝑒𝑥𝑝 (−𝜆𝑣)]}𝑑𝑢
∞

0

 

                                               =
𝑒𝑥𝑝 {−𝑢[1 + 𝑒𝑥𝑝 (−𝜆𝑣)]}

[1 + 𝑒𝑥𝑝 (−𝜆𝑣)]
|

0

∞

 

                                               =
1

[1 + 𝑒𝑥𝑝 (−𝜆𝑣)]
 

Which is  

𝑉~𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (0, 𝜋
2

3 ∗ 𝜆2
) 

As an example, suppose that the standard deviation for a treatment group is 132.29. Then 

the λ needed to adjust the standard error of the error structures to fit the standard deviation 

from the summary statistics is obtained as 

√ 𝜋
2

6 ∗ 𝜆2
= 132.29 ⇒ 𝜆 = √ 𝜋

2

6 ∗ (132.29)2
= 0.0097. 
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B. Competing Methods found in Jan and Shieh (2004) and Shirley (1977) 

Two existing nonparametric multiple comparison procedures are used as reference for the 

proposed methods. A brief description of these methods is given. 

B.1 Shirley’s Multiple Comparison (shi) 

(Shirley, 1977) considered the problem of determining differences in treatment groups that 

are created by increasing dosage levels of an active compound as compared with a 

zero-dose control group. The test is a nonparametric version of a parametric procedure 

given by Williams (1971). 

Suppose there are K treatment levels (increasing dosage levels of an active drug) and a 

zero-dose control group (group 0). Williams (1971) proposed a procedure based upon the 

maximum likelihood estimates of the location parameters, 𝑀𝑖, subject to the constraint that 

𝑀1 ≤ 𝑀2 ≤ ⋯ ≤ 𝑀𝐾. The statistic is 

𝑡𝐾 =
�̂�𝐾 − 𝑋0

(𝑆2/𝑟𝐾  + 𝑆2/𝐶)−1/2
 

where 𝑆2 is an estimate of the residual variance, c = 𝑟0 is the number of observations 

in the control group and 𝑋0is the control group sample mean. Williams (1971) provided 

tables for the critical points for 𝑡𝐾. 

(Shirley, 1977) developed a nonparametric version of the Williams test by analyzing the 

observed ranks instead of the actual data. The results were based on the Wald-Wolfowitz  

limit theorem (Wald and Wolfowitz (1944)),where the vector �̅� = (�̅�0, �̅�1, … �̅�𝐾) has  a  

limiting multivariate  normal distribution and �̅�𝑖 is the mean rank of group i. The Shirley 

multiple comparison test is as follows. For equal group sizes, let 

𝑡 = 𝐶𝑁,𝐾[
𝑚𝑎𝑥

1 ≤ 𝑢 ≤ 𝐾
∑ �̅�𝑗

𝐾

𝑗=𝑢

(𝐾 − 𝑢 + 1) − 𝑅0] (26) 

where 𝐶𝑁,𝐾 = [(𝐾 + 1)(𝑁 + 1)/6]1/2and N is the total sample size. The distribution 

of t can be approximated by the distribution of 𝑡𝐾 when 𝑣 = ∞. If the sample sizes are 

unequal or there are a considerable number of  ties in the data, the statistic becomes 

𝑡 = 𝐶𝑁,𝐾[
𝑚𝑎𝑥

1 ≤ 𝑢 ≤ 𝐾
(

∑ 𝑟𝑗�̅�𝑗

𝐾
𝑗=𝑢

∑ 𝑟𝑗
𝐾
𝑗=𝑢

) − �̅�0 (27) 
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where 𝐶𝑁,𝐾 = [𝑁(𝑁 + 1)/12(1/𝑟𝐾 + 1/𝐶)]1/2 . The Shirley multiple compar- 

ison test compare each treatment level to the zero-dose control group using 

either equation (26) or (27) and the critical points given by Williams (1971) 

B.2 Jan and Shieh’s Multiple Comparison (js) 

Jan and Shieh (2004) propose a step-down closed testing procedure based on contrasts of 

the Kruskal-Wallis test to identify the MED. 

The pairwise contrasts are defined within for each of K + 1 increasing dose levels. Let 

Yij denote the response for treatment i and subject j. When comparing the ith treatment 

group to the control group, let Rsj
(i)

denote the rank of Ysj  observation within the 

combination of the first i treatment groups with the control group for i = 1, … , K, s =

0, … , i, andj = 1, … , n.Let Rs
(i)

= ∑ Rsj
(i)n

j=1  denote the sum of ranks for the sth dose level. 

A pairwise contrast is defined as Pi = Ri
(i)

− R0
(i) for i = 1, … , K.The proposed statistic to 

compare the ith dose level to the control is defined as 

𝑍𝑖 =
𝑃𝑖

√𝑉𝑎𝑟(𝑃𝑖)
 (28) 

where the null variance of Pi is given by Var(Pi) = nNi(Ni + 1)/6 with Ni = (i + 1)n. 

In the presence of ties, the null variance is adjusted by replacing Ni + 1 with Ni + 1 −

∑ tj
g
j=1 (tj

2 − 1)/[Ni(Ni − 1)].Let Z = (Z1, … , ZK)′ .If the global hypothesis hold, then 

Z~NK(0, R) where R is given by 

R = [
1 ⋯ 1/2
⋮ ⋱ ⋮

1/2 ⋯ 1
] 

The MED can be found using the step-down closed testing scheme sug-gested by  

Tamhane  et al. (1996). Let 𝑍𝑖,𝜌=0.5
𝛼   denote the upper 𝛼|𝑡ℎper-centile of the multivariate 

normal distribution with zero mean vector and orrelation ρ = 0.5.The critical values for 

𝑍𝑖,𝜌=0.5
0.05  as reproduced from Hochberg and Tamhane (1987) are given in Table 4.Let k1 =

K and Z(k1) = max (Z1, … , Zk) .Define d(k1)  as the antirank of Z(k1) .That is, Z(k1) =

Zd(k1).If Z(k1) > Zk1,ρ
α  then H0i is rejected for i = d(k1), … , k1. At the jth step,let kj =

d(kj−1) − 1.If Zd(k1) > Zj,ρ=0.5
0.05 then reject H0i for i = dkj

, … , kj ;otherwise stop testing. 

When the testing stops at the mth step, then the MED is km + 1. 
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Table 4: Critical Values for Jan and Shieh Procedure. 

i 1 2 3 4 5 

𝑍𝑖,𝜌=0.5
0.05  1.645 1.92 2.06 2.16 2.23 

 

 


