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Abstract: In this article, we introduce a new class of five-parameter 

model called the Exponentiated Weibull Lomax arising from the 

Exponentiated Weibull generated family. The new class contains some 

existing distributions as well as some new models. Explicit expressions 

for its moments, distribution and density functions, moments of residual 

life function are derived. Furthermore,  Rényi and q–entropies, 

probability weighted moments, and order statistics are obtained. Three 

suggested procedures of estimation, namely, the maximum likelihood, 

least squares and weigthed least squares are used to obtain the point 

estimators of the model  parameters. Simulation study is performed to 

compare the performance of different estimates in terms of their relative 

biases and standard errors.  In addition, an application to two real data 

sets demonstrate the usefulness of the new model comparing with some 

new models. 
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1. Introduction 

The Lomax or Pareto II distribution is originally used for modeling business failure data, 

and it has been widely applied in a variety of contexts studies. Atkinson and Harrison (1978) 

and Harris (1968) applied the Lomax distribution to income and wealth data. Bryson (1974) 

suggested Lomax distribution as an alternative to the exponential distribution for heavy-

tailed data sets. Myhre and Saunders (1982) applied Lomax distribution in the right 

censored data. Different procedures of estimation for the Lomax distribution are suggested 

by Lingappaiah (1986). Moments of record values based on Lomax distribution were 

discussed by Ahsanullah (1991) and Balakrishnan and Ahsanullah (1994). Order statistics 

from non-identical right-truncated Lomax distribution and its applications were discussed 

by Childs et al. (2001). Abd-Elfattah et al. (2007) discussed the Bayesian and non-Bayesian 
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estimation problem of the sample size in the case of type-I censored samples.  Based on 

cumulative exposure model, the optimal times plans of changing stress level of simple 

stress for the Lomax distribution were determined by Hassan and Al-Ghamdi (2009). Abd-

Elfattah and Alharbey (2010) discussed the estimation problem for the Lomax distribution 

based on generalized probability weighted moments. Nasiri and Hosseini (2012) obtained 

the Bayesian and non-Bayesian estimators for the Lomax parameters in presence of record 

values. The estimation problem of the unknown parameters for the Lomax distribution 

based on type-II progressively hybrid censored samples has been discussed by Ma and Shi 

(2013). Ahmad et al. (2015) obtained the Bayesian estimators of the shape parameter of the 

Lomax distribution under different loss functions. The optimal times of changing stress 

level for k-level step stress accelerated life tests based on adaptive type-II progressive 

hybrid censoring with product's life time following Lomax distribution have been 

investigated by Hassan et al. (2016). 

The cumulative distribution function (cdf) and the probability density function (pdf) of 

Lomax distribution are given, respectively, by 

𝐺(𝑥；𝜆, 𝜃) = 1 − (1 +
𝑥

𝜆
)−𝜃 , 𝑥, 𝜆, 𝜃>0                                       (1) 

g((𝑥；𝜆, 𝜃) =
𝜃

𝜆
(1 +

𝑥

𝜆
)−(𝜃+1), 𝑥, 𝜆, 𝜃>0                                     (2) 

where, 0   is the scale parameter and 0  is the shape parameter.In the literature, 

some of the extended and generalized forms of the Lomax distribution were derived and 

discussed by several authors. Ghitany et al. (2007) suggested Marshall-Olkin extended 

Lomax distribution. Abdul-Moniem and Abdel-Hameed (2012) introduced the 

Exponentiated Lomax distribution by adding shape parameter to the distribution function of 

Lomax distribution. Elbatal and Kareem (2014) proposed the Kumaraswamy Exponentiated 

Lomax distribution.  Lemonte and Cordeiro (2013) investigated beta Lomax, 

Kumaraswamy Lomax and McDonald Lomax. Cordeiro et al. (2015) introduced the 

gamma-Lomax based on gamma generated family. Ashour and Eltehiwy (2013) introduced 

the transmuted Exponentiated Lomax distribution. Shams (2013) introduced 

Kumaraswamy-generalized Lomax distribution. Tahir et al. (2016a) introduced the Weibull 

Lomax based on Weibull generated family. The Gumbel-Lomax has been introduced by 

Tahir et al. (2016b). Rady et al. (2016) introduced more flexible model through applying 

power transformation, named as the power Lomax distribution. 

In recent years, new generated families of continuous distributions have attracted 

several statisticians to develop new models. These families are obtained by introducing one 

or more additional shape parameter(s) to the baseline distribution. A recent family of 

univariate distributions generated by Exponentiated Weibull random variables was 

suggested by Hassan and Elgarhy (2016) and then by Cordeiro et al. (2017). The cumulative 

distribution function of Exponentiated Weibull-generated (EW-G)family is defined by 

𝐹(𝑥) = [1 − 𝑒𝑥𝑝⁡(−𝛼[
𝐺(𝑥)

1−𝐺(𝑥)
]𝛽)]𝑎；𝑥 > 0；𝑎, 𝛼, 𝛽 > 0⁡          (3) 

where  , 0a    are the two shape parameters and 0  is the scale parameter. The 

associated pdf is given by 

𝑓(𝑥) =
𝑎𝛼𝛽(𝐺(𝑥))𝛽−1𝑔(𝑥)

(1−(𝐺(𝑥))𝛽+1
𝑒
−𝛼[

𝐺(𝑥)

1−𝐺(𝑥)
]𝛽
[1 − 𝑒𝑥𝑝⁡(−𝛼 [

𝐺(𝑥)

1−𝐺(𝑥)
]𝛽)]𝛼−1; 𝑥 > 0；𝑎, 𝛼, 𝛽 >

0⁡(4) 
Note that; 
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1. For 1,   the cdf (3) reduces to the odd generalized exponential family ( Tahir et al. 

(2015). 

2.  For 1,  1,a   the cdf (3) reduces to odd exponential-G family (Bourguignon et 

al. 2014). 

3. For 2,  1,   the cdf (3) reduces to Burr X -G family (Yousof et al. 2017). 

In this study, we introduce a new five-parameter model, called the Exponentiated 

Weibull Lomax distribution based on  the EW-G family.The rest of the paper is outlined as 

follows. In Section 2, we introduce the Exponentiated Weibull Lomax (EWL) distribution. 

In Section 3, we derive a very useful representation for the pdf and cdf of the proposed 

distribution besides  some of its mathematical properties. In Section 4, three different 

methods of point estimation; namely maximum likelihood, least squares and weighted least 

squares are performed to obtain the point estimates of the model parameters. An extensive 

simulation study is performed to compare the performance of the different estimators in 

Section 5. Section 6 provides  real data examples to illustrate the applicacbility of EWL 

distribution and finally we conclude the paper in Section 7. 

 

2. Exponentiated Weibull-Lomax Distribution 

The cdf of Exponentiated Weibull Lomax distribution, denoted by EWL ( , , , , ),a    

is obtained by inserting cdf (1) in (3) as follows 

𝐹(𝑥；𝛹) = [1 − 𝑒𝑥𝑝⁡(−⁡𝛼(1 +
𝑥

𝜆
)𝜃 − 1)𝛽]𝛼; 𝑎, 𝛼, 𝛽, 𝜆, 𝜃 > 0, 𝑥 > 0 (5) 

where, ( , , , , ),a      is the set of parameters. The pdf of EWL distribution is 

obtained by inserting the pdf (1) and cdf (2) into (4) as the following 

𝑓(𝑥⁡; 𝛹) =
𝑎𝛼𝛽𝜃

𝜆
(1 +

𝑥

𝜆
)𝛽𝜃−1(1 − (1 +

𝑥

𝜆
)−𝜃)𝛽−1𝑒𝑥𝑝⁡(−𝛼((1 +

𝑥

𝜆
)𝜃 − 1)𝛽[1 −

𝑒𝑥𝑝⁡(−𝛼((1 +
𝑥

𝜆
)𝜃 − 1)𝛽]𝛼−1(6) 

A random variable X has density (6) will be denoted by X EWL ( , , , , ).a       

Some special sub-models arise from cdf (5) as follows:  

1. For 1,a  the cdf (5) reduces to Weibull Lomax (WL) (Tahir et al. (2016 a)). 

2. For 1,   the cdf (5) reduces to new model, called odd generalized exponential 

Lomax.  

3. For 1, 1a    the cdf (5) reduces to new model, called odd exponential Lomax. 

4.  For 2,  1,  the cdf (5) reduces to new model,  called Burr X Lomax (BXL) 

5. For (1 ) 1 ,
x

Y 



 
   
 

 X  EWL ( , , , , ),a      then Y has the Exponentiated 

Weibull distribution (Mudholkar and Srivastava (1993)). 

6. For (1 ) 1 ,
x

Y







 
   
 

 X EWL ( , , , , ),a      then Y has the Exponentiated 

exponential distribution (Gupta and Kundu(1999)). 
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7. For (1 ) 1 ,
x

Y







 
   
 

 X  EWL (1, , , , ),     then Y has the exponential 

distribution.  

Figure (1) provides plots of the pdf for some selected values of parameters.  It is clear 

from Figure 1 that the EWL densities take various shapes such as symmetrical, right-skewed, 

reversed J-shaped and unimodal 

 
 

Figure 1: Plots of the EWL pdf for some parameters 

 

The survival and hazard rate (hrf) of EWL distribution are given, respectively, as 

follows: 

𝑅((𝑥；𝛹) = 1 − [1 − 𝑒𝑥𝑝⁡(−⁡𝛼(1 +
𝑥

𝜆
)𝜃 − 1)𝛽)]𝛼, 

ℎ((𝑥；𝛹)

=
𝑎𝛼𝛽𝜃(1 +

𝑥
𝜆
)𝛽𝜃−1(1 − (1 +

𝑥
𝜆
)−𝜃)𝛽−1𝑒𝑥𝑝⁡(−𝛼((1 +

𝑥
𝜆
)𝜃 − 1)𝛽)[1 − 𝑒𝑥𝑝⁡(−𝛼((1 +

𝑥
𝜆
)𝜃 − 1)𝛽]𝛼−1

𝜆{1 − [1 − 𝑒𝑥𝑝⁡(−𝛼((1 +
𝑥
𝜆
)𝜃 − 1)𝛽]𝛼}

 

Furthermore, the reversed-hazard rate and cumulative hazard rate functions are as 

follows:𝜏(𝑥；𝛹) =
𝛼𝛽𝜃(1+

𝑥

𝜆
)𝛽𝜃−1(1−(1+

𝑥

𝜆
)−𝜃)𝛽−1𝑒𝑥𝑝⁡(−𝛼((1+

𝑥

𝜆
)𝜃−1)𝛽)

𝜆{1−[1−𝑒𝑥𝑝⁡(−𝛼((1+
𝑥

𝜆
)𝜃−1)𝛽]}

 

And 

𝐻(𝑥；𝛹) = −𝐼𝑛|⁡𝑅((𝑥；𝛹)|= −𝐼𝑛|1 − [1 − 𝑒𝑥𝑝⁡(−𝛼((1 +
𝑥

𝜆
)𝜃 − 1)𝛽]𝑎| 

Also, Figure 2 shows that hazard rate shapes can take different shapes such as constant, 

increasing, decreasing, and reversed J shape. This fact implies that the EWL can be very 

useful for fitting data sets with various shapes. 
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3. Statistical Properties 

This section provides some properties of the EWL  distribution. 

 

3.1 Useful Expansions  

Here, expansions for the pdf and cdf of Exponentiated Weibull-Lomax distribution are 

derived. The pdf (6) can be rewritten as follows: 

𝑓(𝑥；𝛹) =
𝑎𝛼𝛽𝜃(1−(1+

𝑥

𝜆
)−𝜃)𝛽−1(1+

𝑥

𝜆
)−𝜃)−(𝜃+1)

𝜆{1−[1−(1+
𝑥

𝜆
)−𝜃]}𝛽+1

𝑒
−𝛼(

1−(1+
𝑥
𝜆
)−𝜃

(1+
𝑥
𝜆
)−𝜃

)𝛽

[1 −

𝑒𝑥𝑝⁡(−𝛼(
1−(1+

𝑥

𝜆
)−𝜃

1−[1−(1+
𝑥

𝜆
)−𝜃]

)𝛽)]𝛼−1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

Since the generalized binomial theorem, for 0    is real non integer and  1,z  is 

given by: 

(1 − 𝑧)𝛽−1 = ∑ (−1)𝑖∞
𝑖=0 (𝛽−1

𝑖
)𝑧𝑖                                  (8) 

Then, by applying the binomial theorem (8),where  a is real non integer and the power 

series for the exponential function in (7), then  the pdf of EWL  distribution becomes: 

f(x；Ψ) = ∑ (a−1
i
)∞

i,j=0 (−1)i+j
aθβαj+1(i+1)j

λj!
(1 +

x

λ
)−(θ+1)(1 − (1 +

x

λ
)−θ)β+βj−1[1 −

(1 +
x

λ
)−θ]]−β(j+1)−1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

Also, it is known that 

(1 − 𝑧)−𝑘 = ∑
𝛤(𝑘+𝑗)𝑧𝑗

𝛤(𝑘)𝑗!
∞
𝑗=0 , |𝑧| < 1, 𝑘 > 0                         (10) 

Hence, the pdf of EWL distribution takes the following form 

f(𝑥；𝛹) = ∑ 𝑤𝑖,𝑗,𝑘ℎ𝛽(𝑗+1)+𝑘(𝑥)

∞

𝑖,𝑗,𝑘=0

, 

  
Figure 2: Plots of the EWL hrf for some parameters 
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⁡⁡⁡⁡⁡{
f(𝑥；𝛹) = ∑ 𝑤𝑖,𝑗,𝑘ℎ𝛽(𝑗+1)+𝑘(𝑥)

∞
𝑖,𝑗,𝑘=0 ,

𝑤𝑖,𝑗,𝑘 = (−1)
𝑖+𝑗 𝑎𝛽𝛼

𝑗+1(𝑖+1)𝑗𝛤(𝛽(𝑗+1)+𝑘)

𝑗!𝑘!𝛤(𝛽(𝑗+1)+1)
, ℎ𝑑(𝑥) = 𝑑𝑔(𝑥；𝛹)(𝐺(𝑥；𝛹))𝑑−1

}⁡(11)

 

Therefore, the pdf of Exponentiated Weibull Lomax can be expressed as a mixture of 

Exponentiated Lomax densities with parameters ,  and ( 1)j k   . 

Furtheremore, an expansion for the cumulative distribution function  ( ; )
s

F x   is 

derived. Using binomial expansion for  ( ; )
s

F x  , where s  is an integer and a  is a real 

non integer , leads to : 

(𝐹(𝑥；𝛹))𝑆 = ∑(−1)𝑝 (
𝑎𝑠

𝑝
)

∞

𝑝=0

𝑒𝑥𝑝⁡(−𝛼𝑝(
1 − (1 +

𝑥
𝜆
)−𝜃

1 − [1 − (1 + +
𝑥
𝜆
)−𝜃]

)𝛽)⁡⁡(12) 

Applying the power series for the exponential function and the binomial expansion (10) 

in (12), then we obtain 

{
(𝐹(𝑥；𝛹))𝑆 = ∑ 𝜂

𝑝,𝑞,𝑙
𝐺𝛽𝑞+1(𝑥),

∞
𝑝,𝑞,𝑙=0

𝜂
𝑝,𝑞,𝑙

= (−1)𝑝+𝑞 (𝑎𝑠
𝑝
)
𝐺𝛽𝑞+1(𝑥)𝛤(𝛽𝑞+1)(𝛼𝑝)

𝑞

𝑞!1!𝛤(𝛽𝑞)
⁡
} ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13)  

where ( )qG x   is the cdf of the Exponentiated Lomax distribution with parameters

,  and q  . 

 

3.2 Quantile Function 

The quantile function, say 1( ) ( )x Q u F u   of X can be obtained by inverting (5) as 

follows  

𝑥 = 𝑄(𝑢) = 𝜆{[1 + [−
1

𝛼
𝑙𝑛 (1 − 𝑢

1
𝑎)]

1
𝛽]
1
𝜃 − 1},⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 

where u is a uniform random variable on the unit interval  0,1 . In particular,  the 

median is obtained by subsituting u  0.5 in (14).  

Furthermore, the variability of the skewness and kurtosis on the shape parameters , 

and a  can be investigated based on quantile measures. Bowley skewness based on quantile 

has been introduced by Kenney and Keeping (1962) and given by: 

𝐵 =
𝑄 (
3
4) − 2𝑄 (

1
2) + 𝑄(

1
4)

𝑄 (
3
4) − 𝑄(

1
4)

 

The Moors kurtosis (see Moors (1988)) based on quantiles is given by: 
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⁡ 

where Q(.) denotes the quantile function. Plots of the skewness and kurtosis for some 

choices of the parameters   and
   and a are shown in Figures 3 and 4. 

 

 

 

 

 

(i) (ii) (iii) 

Skewness for EWL 

as function of a and 

different values of   

Skewness for EWL as 

function of a and different 

values of   

Skewness for EWL 

as function of  and 

different values of   

Figure 3: Skewness plots for EWL distribution based on quantile function 

 

   

(iv) (v) (vi) 

Kurtosis for EWL as 

function of a and different 

values of   

Kurtosis for EWL as 

function of a and different 

values of   

Kurtosis for EWL as 

function of  and 

different values of   

Figure 4 : Kurtosis plots  for EWL distribution based on quantile function 
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It is obvious from Figure 3(i), that the skewness of EWL is smaller than the skewness 

for WL distribution at 0.5  and 2.   While the skewness of EWL and WL are equal  

at 0.5,1.5  as seen in Figure 3(ii). The skewness of EWL is less than the skewness of 

WL at 0.8 
 
as a function of  , while skewness of EWL is greater than the skewness of 

WL at 2.5 
 
as a function of  (see Figure 3(iii)).  

We can detect from Figures 4(iv) that the kurtosis of EWL is less than the kurtosis of 

WL at 0.5,2   as a function of a. Also, the kurtosis of EWL is less than the kurtosis of 

WL at 0.8,2.5   as a function of   (see Figure 4(vi)). While the kurtosis of EWL is 

greater than the kurtosis of WL at 0.5,1.5  ( see Figure 4(v)). Generally, these plots 

show that all the values of skewness and kurtosis decrease when the values of the 

parameters increase. 

 

3.3 Rényi and q - Entropies 

The entropy of a random variable fixed X is a measure of variation of uncertainty and 

has been used in many fields such as physics, engineering and economics. According to 

Rényi (1961), the Rényi entropy is defined by 

𝐼𝛿(𝑥) =
1

1 − 𝛿
log∫ 𝑓(𝑥)𝛿 𝑑𝑥, 𝛿 > 0⁡𝑎𝑛𝑑⁡𝛿 ≠ 1

∞

−∞

 

By applying the binomial theory (8), (10) and exponential expansion in the pdf (7), then 

the pdf ( ; )f x  becomes 

(f(𝑥；𝛹))𝛿 = ∑ 𝑀𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

(1 +
𝑥

𝜆
)−𝛿(𝜃+1)(1 − (1 +

𝑥

𝜆
)−𝜃)𝛿(𝛽−1)+𝛽𝑗+𝑘 

𝑀𝑖,𝑗,𝑘 = (−1)
𝑖+𝑗 (

𝛿(𝑎 − 1)

𝑖
)
(𝑎𝛼𝜃𝛽)𝛿(𝛼(𝛿 + 𝑖))𝑗𝛤(𝛿(𝛽 + 1) + 𝛽𝑗 + 𝑘)

𝜆𝛿𝑘! 𝛤(𝛿(𝛽 + 1) + 𝛽𝑗)
 

Therefore, the Rényi entropy of EWL distribution is given by: 

Iδ(x) =
1

1 − δ
log⁡[ ∑ Mi,j,k

∞

i,j,k=0

λ

θ
B(
δ(θ + 1) − 1

θ
, δ(β − 1) + βj + k + 1)] 

where (.,.) stands for beta function. Additionally, the q- entropy is defined by: 

Hq(X) =
1

1 − q
log(1 − ∫ f(x;

∞

−∞

⁡Ψ)q dx) , q > 0⁡and⁡q ≠ 1 

Therefore, the q- entropy of EWL distribution is given by: 

Hq(X) =
1

1 − q
log⁡{1 − ∑ Mi,j,k

∞

i,j,k=0

λ

θ
B(
q(θ + 1) − 1

θ
) , q(β − 1) + βj + k + 1)]} 
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3.4. Moments 

The rth moment of EWL distribution can be obtained by using pdf (11)  as follows 

𝜇𝑟
′ = ∑ 𝑊𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

∫ 𝑥𝑟ℎ𝛽(𝑗+1)+𝑘(𝑥) 𝑑𝑥
∞

0

= ∑ 𝑊𝑖,𝑗,𝑘

∞

𝑖,𝑗,𝑘=0

∫ 𝑥𝑟
𝜃(𝛽(𝑗 + 1) + 𝑘)

𝜆
(1 +

∞

0

𝑥

𝜆
)−(𝜃−1)(1 − (1

+
𝑥

𝜆
)−𝜃)𝛽+𝛽𝑗+𝑘−1 𝑑𝑥 

Let (1 ) 



 
x

y and using the binomial expansion, hence the rth moment of EWL 

distribution takes the following form: 

{
 
 

 
 𝜇𝑟

′ = ∑ ∑ 𝐷𝑖,𝑗,𝑘,𝑚

𝑟

𝑚=0

∞

𝑖,𝑗,𝑘=0

(𝛽(𝑗 + 1) + 𝑘)𝜆𝑟 (
𝑟

𝑚
)𝐵 (1 − (

1

𝜃
(𝑟 − 𝑚)) , 𝛽(𝑗 + 1) + 𝑘) ,

𝐷𝑖,𝑗,𝑘,𝑚 = (−1)𝑚 (
𝑟

𝑚
)𝑊𝑖,𝑗,𝑘 }

 
 

 
 

(15) 

Setting 1,2,3,4r  in (15), we can obtain the first four moments about zero. 

Furthermore, the moment generating functionof EWL distribution is obtained as follows:

 
𝑀𝑥(𝑡) =∑

𝑡𝑟

𝑟!

∞

𝑟=0

μr
′

= ∑ ∑ Di,j,k,m

r

m=0

∞

i,j,k=0

(β(j + 1) + k)λr
𝑡𝑟

𝑟!
(
𝑟

𝑚
)𝐵(1 − (

1

𝜃
(r − m)) , 𝐵(𝑗 + 1)

+ 𝑘) 

3.5 The Probability Weighted Moments 

The probability weighted moments (PWM) of a random variable X following the EWL 

distribution, say , ,r s  is formally defined by: 

𝜏𝑟,𝑠 = 𝐸[𝑋
𝑟𝐹(𝑥)𝑠] = ∫ 𝑥𝑟𝑓(𝑥)(𝐹(𝑥))𝑠 𝑑𝑥 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16)

∞

−∞

 

Inserting  (11) and (13) into (16), hence, the PWM of EWL distribution takes the 

following form 

𝜏𝑟,𝑠 = ∑ ∑(−1)𝑟𝑊𝑖,𝑗,𝑘𝜂𝑝,𝑞(𝛽(𝑗 + 1) + 𝑘)𝜆
𝑟𝐵(1 −

𝑟 −𝑚

𝜃

𝑟

𝑚=0

, 𝛽𝑞 + 1 + 𝛽 + 𝛽𝑗

∞

𝑖,𝑗,𝑘,𝑝,𝑞,𝑙=0

+ 𝑘) 
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3.6 Moments of Residual Life Function 

The residual life plays an important role in life testing situations and reliability theory. 

The nth moment of the residual life is given by: 

𝑚𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)
𝑛|𝑋 > 𝑡] =

1

𝑅(𝑡)
∫ (𝑥 − 𝑡)𝑛𝑓(𝑥) 𝑑𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡(17)
∞

𝑡

 

The nth moment of the residual life of a random variable has EWL distribution is 

obtained by inserting pdf (11) in (17) as follows 

{
 
 

 
 

𝑚𝑛(𝑡) =

∑ ∑ ∑ 𝑁𝑖,𝑗,𝑘,𝑟,𝑚𝜆
𝑟𝐵𝑒𝑡𝑎[(1 +

𝑡
𝜆
)−𝜃 , 1 − (

1
𝜃
(𝑟 − 𝑚)) , 𝛽(𝑗 + 1) + 𝑘]∞

𝑖,𝑗,𝑘
𝑟
𝑚=0

𝑛
𝑟=0

1 − [1 − exp⁡(−𝛼((1 +
𝑡
𝜆
)𝜃 − 1)𝛽)]𝑎

,

𝑁𝑖,𝑗,𝑘,𝑟,𝑚 = (−1)𝑛−𝑟+𝑚𝑊𝑖,𝑗,𝑘 (
𝑟

𝑚
) (
𝑛

𝑟
) 𝑡𝑛−𝑟(𝛽(𝑗 + 1) + 𝑘) }

 
 

 
 

⁡(18) 

 

Another interesting function is the mean residual life (MRL),which represents the 

expected additional life length for a unit which is alive at age x . The MRL of the EWL  

distribution is obtained by putting 1n   in (18). 

 

3.7 Order Statistics 

Order statistics play a vital role in many areas of statistical theory and practice.  We 

derive an explicit expression for the density function of the rth order statistic :r nX in a 

random sample 1: 2: :...n n n nX X X   , of size n from the EWL distribution. The pdf of rth 

order statistics can be written as follows 

𝑓𝑟,𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑟, 𝑛 − 𝑟 + 1)
∑(−1)𝑣 (

𝑛 − 𝑟

𝑣
)𝐹(𝑥)𝑣+𝑟−1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19)

𝑛−𝑟

𝑣=0

 

Inserting (11) in (19) and (13) by replacing s with 1,v r   in (19), leads to 

𝑓𝑟,𝑛(𝑥) = ∑ ∑ 𝐾𝑖,𝑗,𝑘,𝑝,𝑞,𝑙ℎ𝛽+𝛽𝑗+𝛽𝑞+𝑙+𝑘(𝑥),

∞

𝑖,𝑗,𝑘,𝑝,𝑞,𝑙

𝑛−𝑟

𝑣=0

 

𝐾𝑖,𝑗,𝑘,𝑝,𝑞

= (−1)𝑣+𝑝+𝑞 (
𝑛 − 𝑟

𝑣
)(
𝑎(𝑣 + 𝑟 − 1)

𝑝
)
(𝛼𝑝)𝑞𝛤(𝛽𝑞 + 1)

𝑞! 1! 𝛤(𝛽𝑞)

𝑊𝑖,𝑗,𝑘

𝐵(𝑟, 𝑛 − 𝑟 + 1)

𝛤(𝛽(𝑗 + 1) + 𝑘 + 1)

𝛽 + 𝛽𝑗 + 𝛽𝑞 + 1 + 𝑘
⁡⁡(20) 

Therefore, the pdf of rth order statistics of Exponentiated Weibull Lomax can be 

expressed as a mixture of Exponentiated Lomax densities with parameters ,   and 

j q k      . 
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Further, the pdf of the smallest order statistics is obtained by subsituting 1r  in (20) 

as follows 

𝑓1:𝑛(𝑥) = ∑ ∑ 𝜍𝑖,𝑗,𝑘,𝑝,𝑞,𝑙ℎ𝛽+𝛽𝑗+𝛽𝑞+𝑙+𝑘(𝑥),

∞

𝑖,𝑗,𝑘,𝑝,𝑞,𝑙

𝑛−1

𝑣=0

 

𝜍𝑖,𝑗,𝑘,𝑝,𝑞 = (−1)
𝑣+𝑝+𝑞 (

𝑛 − 1

𝑣
) (
𝑎𝑣

𝑝
)𝑊𝑖,𝑗,𝑘

𝑛(𝛼𝑝)𝑞𝛤(𝛽𝑞 + 1)

𝑞! 1! 𝛤(𝛽𝑞)

𝛤(𝛽(𝑗 + 1) + 𝑘 + 1)

𝛽 + 𝛽𝑗 + 𝛽𝑞 + 1 + 𝑘
 

Also, the pdf of the largest order statistics is obtained by subsituting r n  in (20) as 

follows 

𝑓𝑛:𝑛(𝑥) = ∑ 𝜔𝑖,𝑗,𝑘,𝑝,𝑞,𝑙ℎ𝛽+𝛽𝑗+𝛽𝑞+𝑙+𝑘(𝑥),

∞

𝑖,𝑗,𝑘,𝑝,𝑞,𝑙

 

𝜔𝑖,𝑗,𝑘,𝑝,𝑞 = (−1)
𝑝+𝑞𝑊𝑖,𝑗,𝑘

𝑛(𝛼𝑝)𝑞𝛤(𝛽𝑞 + 1)

𝑞! 1! 𝛤(𝛽𝑞)

𝛤(𝛽(𝑗 + 1) + 𝑘 + 1)

𝛽 + 𝛽𝑗 + 𝛽𝑞 + 1 + 𝑘
 

4. Different Estimation Methods 

This section concerns with the point estimates of the model parameter for EWL 

distribution using three different methods. The maximum likelihood estimators, least 

squares estimators and weighted least squares estimators are derived in the following 

subsections. 

 

4.1 Maximum Likelihood Estimators 

The maximum likelihood (ML) estimators of the unknown parameters for the 

expoentiated Weibull Lomax distribution are obtained. Let  1,..., nX X   be observed values 

from the EWL distribution with set of parameters ( , , , , ) .Ta       The log-likelihood 

function for the vector of parameters   can be written as  

𝑙𝑛𝐿(𝛹) = 𝑛𝑙𝑛𝑎 + 𝑛𝑙𝑛𝛼 + 𝑛𝑙𝑛𝛽 + 𝑛𝑙𝑛𝜃 − 𝑛𝑙𝑛𝜆 + (𝛽 + 1)∑𝑙𝑛(1 − 𝑍𝑖−𝜃) + (

𝑛

𝑖=1

𝜃𝛽

− 1)∑𝑙𝑛𝑍𝑖 − 𝛼[

𝑛

𝑖=1

𝑍𝑖−𝜃 − 1]𝛽 + (𝑎

− 1)∑𝑙𝑛⁡[1 − 𝑒𝑥𝑝⁡(−𝛼[𝑍𝑖−𝜃 −

𝑛

𝑖=1

1]𝛽)] 

where, 1 .i
i

x
z



 
  
 

The elements of the score function 

U(𝛹) = (𝑈𝑎 , 𝑈𝛼 , 𝑈𝛽 , 𝑈𝜃 , 𝑈𝜆 are given by 
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𝑈𝑎 =
𝑛

𝑎
+∑ln⁡[1 − exp⁡(−𝛼[𝑍𝑖−𝜃 −

𝑛

𝑖=1

1]𝛽)]。 

𝑈𝑎 =
𝑛

𝑎
− [𝑍𝑖−𝜃 − 1]𝛽 + (𝑎 − 1)∑

exp(−𝛼[𝑍𝑖−𝜃−1]𝛽)[𝑍𝑖−𝜃−1]𝛽

[1−exp(𝛼[𝑍𝑖−𝜃−1]𝛽)]
𝑛
𝑖=1 , 

𝑈𝛽 =
𝑛

𝛽
+∑ln⁡(1 −

𝑛

𝑖=1

𝑍𝑖−𝜃) + 𝜃∑𝑙𝑛𝑍𝑖 − 𝛼[

𝑛

𝑖=1

𝑍𝑖𝜃 − 1]𝛽 ln[𝑍𝑖𝜃 − 1] + 𝛼(𝑎

− 1)∑
exp⁡(−𝛼[𝑍𝑖𝜃 − 1]𝛽[𝑍𝑖𝜃 − 1]𝛽𝑙𝑛[𝑍𝑖𝜃 − 1]

[1 − exp(−𝛼[𝑍𝑖𝜃 − 1]𝛽)]

𝑛

𝑖=1

 

𝑈𝜆 = −
𝑛

𝜆
−
𝜃(𝛽 + 1)

𝜆2
∑

𝑥𝑖𝑍𝑖
−𝜃−1

(1−𝑍𝑖−𝜃)
−
(𝜃𝛽 − 1)

𝜆2
∑

𝑥𝑖
𝑍𝑖
+
𝛼𝛽𝜃

𝜆2

𝑛

𝑖=1

𝑛

𝑖=1

[𝑍𝑖𝜃 − 1]𝛽−1𝑍𝑖𝜃−1𝑥𝑖

−
(𝛼 − 1)𝛼𝛽𝜃

𝜆2
∑

exp⁡(−𝛼[𝑍𝑖𝜃 − 1]𝛽)[𝑍𝑖𝜃 − 1]𝛽−1𝑍𝑖𝜃−1𝑥𝑖
[1 − exp⁡(−𝛼[𝑍𝑖𝜃 − 1]𝛽)]

,

𝑛

𝑖=1

 
𝑈𝜃 =

𝑛

𝜃
+ (𝛽 + 1)∑

𝑙𝑛𝑍𝑖

(𝑍𝑖
𝜃 − 1)

+ 𝛽∑𝑙𝑛

𝑛

𝑖=1

𝑍𝑖 −

𝑛

𝑖=1

𝛼𝛽[𝑍𝑖
𝜃 − 1]𝛽−1𝑍𝑖

𝜃𝑙𝑛𝑍𝑖 + (𝑎

− 1)∑
𝑒𝑥𝑝⁡(−𝛼[𝑍𝑖𝜃 − 1]𝛽)𝛼𝛽[𝑍𝑖

𝜃 − 1]𝛽−1𝑍𝑖
𝜃𝑙𝑛𝑍𝑖

[1 − 𝑒𝑥𝑝⁡(𝛼[𝑍𝑖𝜃 − 1]𝛽)
,

𝑛

𝑖=1

 

ML estimators of the model parameters are determined by solving numerically the non-

linear equations 0, 0, 0, 0aU U U U       and 0U   simultaneously by using 

mathematical package. 

 

4.2 Least Squares Estimators 

Suppose 1,..., nX X   is a random sample of size 𝑛 from EWL distribution and suppose

1: 2: :...n n n nX X X   denotes the corresponding ordered sample. According to Johnson et 

al. (1995), the expectation and the variance of distribution are independent of the unknown 

parameter and are given by 

𝐸(𝐹(𝑋𝑖:𝑛)) =
𝑖

𝑛 + 1
⁡, 𝑣𝑎𝑟(𝐹(𝑋𝑖:𝑛)) =

𝑖(𝑛 − 𝑖 + 1)

(𝑛 + 1)2(𝑛 + 2)
 

where :( )i nF X is cdf for any distribution and :i nX is the ith order statistic. Hence, the 

least squares (LS) estimators can be obtained by minimizing the sum of squares errors 

∑(𝐹(𝑋𝑖:𝑛) −
𝑖

𝑛 + 1
)2,

𝑛

𝑖=1
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with respect to the unknown parameters. So the LS estimators of the unknown 

parameters , , ,a     and   are obtained by minimizing the following quantity  

∑([1 − exp⁡(

𝑛

𝑖=1

𝛼((1 +
𝑥

𝜆
)𝜃 − 1)𝛽]𝑎 −

𝑖

𝑛 + 1
)2, 

with respect to , , ,a   
 
and  . It is very hard to obtain a closed form solution, so 

mathematical software will be applied. 

 

4.3 Weighted Least Squares Estimators 

Here the weighted least squares (WLS) estimators of the unknown parameters for EWL 

are derived. Again, let 1,..., nX X   is a random sample of size 𝑛 from EWL distribution and 

1: 2: :...n n n nX X X    be the corresponding ordered sample. The WLS estimators can be 

obtained by minimizing the following sum of squares errors 

∑
1

𝑣𝑎𝑟(𝐹(𝑋𝑖:𝑛))
[𝐹(𝑋𝑖:𝑛) − 𝐸(𝐹(𝑋𝑖:𝑛))]

2
,

𝑛

𝑖=1

 

with respect to the unknown parameters 𝛼, 𝜆, 𝜃 and 𝛽. Therefore, the WLS estimators 

will be obtained by minimizing the following quantity  

∑
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
([1 − exp⁡(−

𝑛

𝑖=1

𝛼((1 +
𝑥

𝜆
)𝜃 − 1)𝛽]𝑎 −

𝑖

𝑛 + 1
)2⁡, 

with respect to 
, , ,a   

and  . 

 

5. Simulation Study 

In this section, an extensive simulation study is conducted to compare the performance 

of the different estimators in the sense of their relative biases (RBs) and standard errors 

(SEs) for different sample sizes and for different parameter values.1000 samples of small, 

moderate and large sample sizes are generated from EWL distribution with different set of 

parameters. Without loss of generality, we take the scale parameter   to be known and 

equal one throughout the experiment and six sets of parameters are considered. The RBs 

and SEs of the ML, LS and WLS estimates of the models parameters are listed in Tables (1, 

2 and 3). The simulation study is carried out as follows: 

 

Step 1: Generate 1000 random samples of size 10, 20, 30, 50 and 100 from the EWL 

distribution.  

Step 2: Six sets of parameters values are selected as; case 1 ≡ (α = 0.5, a = 1.5, θ = 0.5, 

β = 0.5), case 2 ≡ (α = 0.5, a = 1.5, θ = 0.5, β = 1.5), case 3 ≡ (α = 0.5, a = 1.5, θ = 1.5, β = 

0.5), case 4 ≡ (α = 0.5, a = 1.5, θ = 1.5, β = 1.5)), case 5≡ (α = 0.5, a = 0.8, θ = 0.5, β = 0.8)) 

and case 6 ≡ (α = 0.5, a = 0.8, θ = 0.5, β = 0.5) 
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Step 3: The ML, LS  and WLS estimates of the unknown parameters are obtained.  

Step 4: The RBs and SEs of different estimates of unknown parameters are computed.  

 

All the results of the simulation are listed in Tables (1, 2, and 3). Some conclusion can 

be deducted about the performance of different estimators: 

1. For all different values of estimates and different methods of estimation we can 

realize that the SEs decrease as sample size increases. (see Tables (1, 2, and 3)).  

2. The SEs of ML estimates, for all parameters values, are the largest among the other 

estimates in all cases (see Tables (1, 2, and 3)). 

3. Based on Tables 1, 2 and 3, the SEs for the β estimate increase as the value of the 

parameter β increases, for all different methods of estimation. 

4. The SEs of the estimate 𝜃 are the smallest for set of parameters 2 and 4, for different 

methods of estimation and different sample sizes (see Tables 1 and 2). 

5. Depending on Tables 1 and 2, both the RBs and SEs for 𝜃 decrease when the value of 

𝜃 increases.  

 

 
Table 1: Results of simulation study of RBs and SEs of estimates for different values of parameters 

(𝛼, 𝑎, 𝜃, 𝛽) for the Exponentiated Weibull Lomax distribution 

𝑛 Method Properties 
Case 1 Case 2 

𝛼 = 0.5 𝑎 = 1.5 𝜃 = 0.5 𝛽 = 0.5 𝛼 = 0.5 𝑎 = 1.5 𝜃 = 0.5 𝛽 = 1.5 

10 

ML 
RB 0.808 0.425 0.141 1.241 1.310 1.209 0.095 0.277 

SE 0.145 0.321 0.035 0.068 0.176 0.447 0.025 0.079 

LS 
RB 0.266 0.27 0.130 0.616 0.232 0.047 0.045 0.129 

SE 0.082 0.085 0.028 0.026 0.065 0.129 0.011 0.055 

WLS 
RB 0.294 0.258 0.113 0.594 0.290 0.073 0.047 0.136 

SE 0.083 0.087 0.031 0.027 0.073 0.138 0.013 0.057 

20 

ML 
RB 0.122 0.146 0.182 1.023 1.049 0.826 0.021 0.156 

SE 0.041 0.086 0.015 0.026 0.068 0.163 9.668* 0.034 

LS 
RB 8.03* 0.339 0.182 0.639 0.174 6.912* 0.065 0.123 

SE 0.031 0.033 0.011 9.592* 0.024 0.051 3.452* 0.023 

WLS 
RB 0.028 0.333 0.19 0.621 0.167 0.012 0.071 0.133 

SE 0.029 0.029 0.011 9.991* 0.02 0.042 3.746* 0.023 

30 

ML 
RB 0.057 0.323 0.267 1.003 0.583 0.412 7.859 0.129* 

SE 0.019 0.031 6.883* 0.014 0.031 0.07 4.505* 0.018 

LS 
RB 0.08 0.367 0.248 0.668 0.046 0.062 0.051 0.131 

SE 0.016 0.016 5.062* 5.063* 0.011 0.024 2.164* 0.014 

WLS 
RB 0.07 0.359 0.249 0.655 0.091 0.051 0.063 0.125 

SE 0.015 0.016 5.508* 5.578* 9.777* 0.021 2.26* 0.013 

50 

ML 
RB 0.135 0.377 0.288 0.869 0.361 0.214 0.024 0.114 

SE 7.642* 0.013 5.217* 5.727* 0.014 0.029 3.142* 8.684* 

LS 
RB 0.144 0.394 0.282 0.693 5.407* 0.09 0.051 0.123 

SE 7.008* 6.526* 2.461* 2.6* 3.746* 9.335* 1.217* 6.985* 

WLS 
RB 0.125 0.361 0.276 0.632 0.064 0.065 0.063 0.118 

SE 6.055* 6.277* 2.556* 6.095* 4.095* 9.421* 2.188* 6.789* 

100 
ML 

RB 0.255 0.445 0.337 0.833 0.135 0.031 0.04 0.103 

SE 2.234* 2.661* 4.184* 1.352* 3.657* 7.26* 2.547* 3.275* 

LS RB 0.224 0.409 0.303 0.702 0.037 0.099 0.037 0.115 
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SE 2.522* 2.571* 2.061* 1.159* 8.975* 3.056* 5.921* 3.051* 

WLS 
RB 0.214 0.384 0.294 0.653 4.577* 0.085 0.044 0.108 

SE 2.051* 2.389* 2.402* 1.426* 3.963* 2.995* 1.663* 2.889* 

 

* Indicate that the value multiply 10−3 

Table 2: Results of simulation study of RBs and SEs of estimates for different values of parameters 

(𝛼, 𝑎, 𝜃, 𝛽) for the Exponentiated Weibull Lomax distribution. 

𝑛 Method Properties 
Case 3 Case 4 

𝛼 = 0.5 𝑎 = 1.5 𝜃 = 1.5 𝛽 = 0.5 𝛼 = 0.5 𝑎 = 1.5 𝜃 = 1.5 𝛽 = 1.5 

10 

ML 
RB 0.753 0.336 0.411 3.065 3.405 2.042 0.367 1.855 

SE 0.152 0.385 0.066 0.158 0.278 0.669 0.033 0.395 

LS 
RB 0.875 0.253 0.454 1.267 2.111 0.353 0.303 0.538 

SE 0.129 0.128 0.053 0.060 0.150 0.217 0.04 0.126 

WLS 
RB 0.869 0.245 0.422 1.16 2.235 0.420 0.296 0.553 

SE 0.133 0.130 0.54 0.057 0.169 0.242 0.041 0.134 

20 

ML 
RB 0.253 0.254 0.453 2.298 2.108 0.896 0.316 1.072 

SE 0.041 0.082 0.029 0.055 0.088 0.213 0.017 0.137 

LS 
RB 0.468 0.383 0.486 1.333 1.763 0.171 0.322 0.543 

SE 0.039 0.038 0.022 0.027 0.055 0.086 0.014 0.061 

WLS 
RB 0.393 0.378 0.434 1.207 1.747 0.195 0.3 0.497 

SE 0.038 0.036 0.023 0.025 0.058 0.085 0.016 0.059 

30 

ML 
RB 0.029 0.405 0.459 2.117 1.566 0.438 0.303 0.801 

SE 0.019 0.035 0.015 0.032 0.039 0.101 9.194* 0.069 

LS 
RB 0.345 0.432 0.499 1.419 1.528 0.074 0.308 0.55 

SE 0.023 0.021 0.014 0.017 0.030 0.048 9.139* 0.039 

WLS 
RB 0.274 0.415 0.434 1.214 1.454 0.088 0.291 0.487 

SE 0.024 0.021 0.015 0.016 0.03 0.047 8.667* 0.038 

50 

ML 
RB 0.134 0.517 0.471 1.886 1.325 0.197 0.291 0.475 

SE 7.767* 0.011 6.87* 0.015 0.016 0.037 4.478* 0.024 

LS 
RB 0.137 0.503 0.516 1.54 1.425 0.022 0.319 0.497 

SE 8.223* 8.302* 7.323* 9.856* 0.014 0.023 4.003* 0.022 

WLS 
RB 0.036 0.479 0.435 1.255 1.302 0.02 0.294 0.439 

SE 8.387* 7.709* 8.096* 9.088* 0.014 0.022 4.095* 0.021 

100 

ML 
RB 0.222 0.562 0.490 1.735 1.028 0.094 0.299 0.405 

SE 2.425* 2.976* 2.841* 5.847* 3.944* 7.658* 4.469* 7.377* 

LS 
RB 0.037 0.569 0.557 1.751 1.09 0.138 0.308 0.509 

SE 2.15* 2.732* 3.142* 4.663* 3.615* 6.875* 4.606* 0.01 

WLS 
RB 0.097 0.515 0.443 1.286 0.948 0.094 0.273 0.372 

SE 2.481* 2.547* 3.784* 4.848* 4.089* 6.418* 3.577* 8.88* 

 

* Indicate that the value multiply 10−3 
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Table 3: Results of simulation study of RBs and SEs of estimates for different values of parameters 

(𝛼, 𝑎, 𝜃, 𝛽) for the Exponentiated Weibull Lomax distribution. 

𝑛 Method Properties 
Case 5 Case 6 

𝛼 = 0.5 𝑎 = 0.8 𝜃 = 0.5 𝛽 = 0.8 𝛼 = 0.5 𝑎 = 0.8 𝜃 = 0.5 𝛽 = 0.5 

10 

ML 
RB 1.101 1.828 0.263 0.67 0.756 1.183 0.148 1.029 

SE 0.156 0.356 0.0489 0.109 0.126 0.296 0.045 0.073 

LS 
RB 0.900 0.441 0.204 0.039 0.661 0.120 0.196 0.154 

SE 0.118 0.111 0.045 0.04 0.096 0.070 0.050 0.028 

WLS 
RB 0.996 0.536 0.236 5.443* 0.703 0.168 0.179 0.142 

SE 0.123 0.128 0.047 0.038 0.097 0.079 0.049 0.027 

20 

ML 
RB 0.472 0.757 0.149 0.473 0.241 0.235 0.023 0.821 

SE 0.047 0.108 0.018 0.043 0.036 0.064 0.015 0.03 

LS 
RB 0.592 0.272 0.123 0.048 0.424 0.063 0.091 0.145 

SE 0.045 0.041 0.017 0.017 0.037 0.027 0.019 0.012 

WLS 
RB 0.650 0.343 0.187 0.022 0.422 0.058 0.054 0.155 

SE 0.046 0.043 0.019 0.015 0.035 0.025 0.018 0.012 

30 

ML 
RB 0.273 0.297 0.075 0.397 0.084 0.062 0.029 0.676 

SE 0.022 0.038 9.975* 0.025 0.018 0.031 9.91* 0.016 

LS 
RB 0.394 0.143 0.039 0.077 0.198 0.018 0.091 0.136 

SE 0.023 0.02 9.016* 0.01 0.017 0.011 0.011 7.186* 

WLS 
RB 0.421 0.215 0.135 0.016 0.203 3.598* 0.085 0.125 

SE 0.023 0.020 0.01 9.362* 0.015 0.011 0.010 7.116* 

50 

ML 
RB 0.249 0.194 0.028 0.228 0.022 0.094 0.117 0.610 

SE 9.722* 0.015 4.628* 0.01 8.36* 0.012 4.394* 7.766* 

LS 
RB 0.293 0.056 5.637* 0.088 0.163 0.021 0.024 0.153 

SE 9.785* 7.71* 4.728* 5.393* 7.851* 5.848* 5.24* 4.172* 

WLS 
RB 0.328 0.167 0.106 0.036 0.17 4.22* 0.023 0.126 

SE 9.214* 7.377* 5.196* 5.163* 6.969* 5.543* 4.877* 4.036* 

100 

ML 
RB 0.117 0.032 0.02 0.163 0.109 0.214 0.183 0.531 

SE 3.027* 3.945* 1.728* 3.208* 2.822* 3.999* 1.514* 2.828* 

LS 
RB 0.132 0.014 0.046 0.132 0.056 0.027 0.013 0.15 

SE 3.303* 2.954* 1.628* 2.516* 2.464* 2.501* 1.852* 1.985* 

WLS 
RB 0.168 0.119 0.09 0.024 0.072 8.021* 0.011 0.106 

SE 2.866* 2.67* 2.089* 2.547* 2.217* 2.372* 1.806* 1.918* 

 

* Indicate that the value multiply 10−3 

6. Applications to Real Data 

In this section, two real data sets are provided to illustrate the importance and flexibility 

of EWL distribution comparing with main four models; Exponentiated generalized modified 

Weibull (EGMW) (Aryal and Elbatal (2015)), Beta modified Weibull (BMW) (Silva et al. 

(2010)),Kumaraswamy Lomax (KL); and Weibull Lomax (WL). The method of maximum 

likelihood is used to estimate the unknown parameters of the selected models. The 
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following statistics: -2log-likelihood function ( 2ln ) evaluated at the parameter estimates, 

Akaike information criterion (AIC), the corrected Akaike information criterion (CAIC), the 

Hannan-Quinn information criterion (HQIC), Anderson-Darling (A*) criterion and Cramér–

von Mises (W*) criterion are used to compare all the models. However, the better 

distribution corresponds to the smaller values of AIC, BIC, CAIC, HQIC, A* and W* 

criteria. Furthermore, we plot the histogram for each data set and the estimated pdf of the 

models. Moreover, the plots of empirical cdf of the data sets and estimated cdf of the 

models are displayed in Figures 5 and 6. 

Data Set 1: 
The real data represents 34 observations of the vinyl chloride data obtained from clean 

up gradient ground –water monitoring wells in mg/L. The data are obtained from Bhaumik 

et al. (2009) and recorded as follows 

5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 

2.5, 2.3, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4,0.2. 

 
Table 4: ML estimates and their SEs (in parentheses) for the first data set 

 

 

 

 

 
Table (5) Model selection criteria for the first data set 

 
Results in Table 5, indicate that the EWL model is more suitable than the other 

competitive models for this data set based on the selected criteria. Additionally, it is clear 

from Figure 5 that the EWL distribution provides a better fit and therefore be one of the best 

models for this data set. 

Models 
Estimated Parameters 

α        β δ ε 

EWL 
5.158 

(3.631) 

86.306 

(366.672) 

58.308 

(236.529) 

25.057 

(94.904) 

0.158 

(0.169) 
- - 

KL - - 0.461 

(1.747) 

0.04 

(0.378) 
- 

1.35 

(0.919) 

163.759 

(2015.539) 

WL - - 
0.019 

(0.15) 

0.766 

(10.305) 
- 

36.64 

(930.774) 

0.996 

(0.198) 

BMW 
0.561 

(14.561) 

0.778 

(0.611) 

6.8710-5 

(0.155) 
- - 

1.615 

(2.219) 

1.668 

(47.502) 

EGMW 
0.036 

(0.00854) 

0.0084 

 (17.699) 

0.913 

(4.76) 

15.369 

(0.462) 

1.076 

(2.578) 
  

Model 2ln  AIC CAIC BIC HQIC A*
 

W*
 

EWL 108.642 118.642 120.642 126.274 121.245 0.1652 0.0232 

EGMW 110.804 120.804 122.949 128.435 123.406 0.2882 0.0444 

BMW 110.191 120.191 122.333 127.822 122.793 0.2317 0.0356 

KL 129.527 137.527 138.817 143.632 139.609 0.2025 0.0304 

WL 128.325 136.325 137.615 142.43 138.407 0.3173 0.0487 
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Data Set 2: 
The second real data set corresponds to an uncensored data set from Nichols and 

Padgett (2006) on breaking stress of carbon fibres (in Gba). The data are recorded as 

follows 

3.70,2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19,3.22, 1.69, 3.28, 

3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39,2.81, 

4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 

2.83,1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 

1.73, 1.59, 2.00,1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 

1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 

2.88, 2.82, 2.05, 3.65. 

Results in Table 7, show that the EWL model is more suitable than the other 

competitive models for this data set based on the above selected criteria.  

 
Table 6: ML estimates and their SEs (in parentheses) for the second data set 

 

 

 

 

Figure 5: Densities and distributions of models for the first data set 

Models 
Estimated Parameters 

α        β δ ε 

EWL 
0.03 

(0.639) 

1.665 

(4.274) 

0.742 

(8.259) 

1.601 

(6.356) 

1.563 

(5.67) 
- - 

WL - - 
0.336 

(1.224) 

1 

(1.043) 
- 

1.032 

(11.506) 

2.769 

(0.874) 

BMW 
7.132 

(5.915) 

2.199 

(0.694) 

0.207 

(0.23) 
  

0.341 

(0.223) 

6.68710-3 

(5.59910-3) 

EGMW 
0.021 

(2.24310-3) 

1.582 

(0.768) 

3.032 

(1.976) 

1.36310-3 

   (0.383) 
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Table (7) Model selection criteria for the second data set 

 

 
Additionally, it is clear from Figure 6 that the EWL distribution provides a better fit 

than the EGMW, BMW and WL for this data set. 

 

7. Conclusion 

In this paper, we present a new class of distributions, called the Exponentiated Weibull 

Lomax, based on Exponentiated Weibull-G family.  The EWL distribution generalizes the 

Weibull Lomax distribution presented by Tahir et al. (2016 a) and at the same time, 

provides some new models. Some properties of the EWL distribution such as, moments, 

mean residual life, order statistics, quantile, Re'nyi and q- entropies are derived. The 

maximum likelihood, least squares, and weighted least squares estimators are obtained and 

simulation study is provided to compare the model performance of the estimates. An 

application of the EWL distribution to two real data sets show that the new distribution can 

be used quite effectively to provide better fits than Kumaraswamy-Lomax, Weibull-Lomax, 

beta modified Weibull and Exponentiated generalized modified Weibull models. 

  

  

               Figure 6: Densities and distributions of models for the second data set 

Model 2ln  AIC CAIC BIC HQIC A*
 

W*
 

EWL 282.624 292.624 293.249 305.65 297.896 0.4125 0.0706 

WL 457.607 465.607 466.019 476.028 469.824 153.316 9.813 

BMW 287.823 297.823 298.461 310.849 303.095 86.216 17.183 

EGMW 283.544 293.544 294.183 306.57 298.816 99.482 3.950 
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