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Abstract: In this paper, we introduce a new generalized family of distri- butions 

from bounded support (0,1), namely, the Topp-Leone-G family.Some of 

mathematical properties of the proposed family have been studied. The new 

density function can be symmetrical, left-skewed, right-skewed or reverse-J 

shaped. Furthermore, the hazard rate function can be constant, in- creasing, 

decreasing, J or bathtub hazard rate shapes. Three special models are discussed. 

We obtain simple expressions for the ordinary and incomplete moments, 

quantile and generating functions, mean deviations and entropies. The method of 

maximum likelihood is used to estimate the model parame- ters. The flexibility 

of the new family is illustrated by means of three real data sets. 
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1. Introduction 

Several generators have been defined in the literature by introducing one or more parameters to 

a parent distribution in order to construct more flexible models. It is still debatable whether a 

G-class (or distribution) for bounded support is more appropriate than the G-class (or 

distribution) with unbounded support. For bounded interval (0,1), few G-classes have been 

explored in the literature such as the beta-G by Eugene et al.(2002) and Jones(2004), 

Kumaraswamy-G (Kw-G) by Cordeiro and de Castro (2011) and McDonald-G (Mc-G) by 

Alexan- der et al. (2012). For more details about recent developments in distribution theory, see 

Alzaatreh et al. (2013) and Lee et al. (2013). 

The Topp-Leone (TL) random variable (Topp and Leone, 1955) has bounded support of (0,1) 

and exhibits J-shaped density and bathtub-shaped hazard rate.The later characteristic is attractive 

and useful in reliability and lifetime data analysis. Since Nadarajah and Kotz (2003) paper, the 

TL model has attracted researchers to explore the distribution further. In contrast to the beta 

distribution, the TL model has a closed-form cumulative distribution function (cdf). If a random 

variable Z  has the TL distribution with shape parameter α ∈ (0, 1), then its cdf and probability 

density function (pdf), for x ∈ (0, 1), are respectively, given by 

𝑅𝑇𝐿(𝑋) = [1 − (1 − 𝑋)2]𝛼𝑎𝑛𝑑 𝑟𝑇𝐿(𝑋) = 2𝛼(1 − 𝑋)[1 − (1 − 𝑋)2]𝛼−1.   (1) 

We study a new class of distributions based on the TL random variable called the Topp-Leone 

generalized (TLG) family. The paper is organized as follows. In Section 2, we define the new 

family. Section 3 provides three special TLG distributions. In Section 4, some of its 

mathematical properties are derived including asymptotics, a useful linear representation for the 

density function, ordinary and incomplete moments, generating function, a power series for the 

quantile function (qf) and mean deviations. Two types of entropies are derived in Section 5. In 

Section 6, the model parameters are estimated by the maximum likelihood method. A simulation 

study is presented in Section 7. In Section 8, we prove the usefulness of the TLG family by 

means of three applications to real data sets. Finally, Section 9 offers some concluding remarks. 

 

2. The New Generalized Family 
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Let T, R and Y be random variables with cdfs 𝐹𝑇(𝑥) = 𝑃(𝑇 ≤ 𝑥) , 𝐺𝑅(𝑥) = 𝑃(𝑅 ≤ 𝑥) and 

𝐷𝑌(𝑥) = 𝑃(𝑌 ≤ 𝑥) . The corresponding qfs are 𝑄𝑇(𝑝) ,𝑄𝑅(𝑝)  and 𝑄𝑌(𝑝) ,where the qf is 

defined by  𝑄𝑍(𝑝) =  𝑖𝑛𝑓{ 𝑧 ∶ 𝐹𝑍(𝑧)  ≥  𝑝}, 0 <  𝑝 <  1 .If the densities exist, we denote 

themby 𝑓𝑇(𝑥),gR(x) and 𝑑𝑌(𝑥).We assumethe random variables T∈(a,b) and Y∈(c,d), for 

-∞ ≤ 𝑎 <  𝑏 ≤ ∞ and  -∞ ≤ 𝑐 <  𝑑 ≤ ∞. Aljarrah et al. (2014) (see also Alzaatreh et al., 

2014) defined the cdf of the T-R{Y}family 

  𝑏𝑦   𝐹𝑋(𝑥) = ∫ 𝑓𝑇(𝑡)
𝑄𝑌(𝐺𝑅(𝑥))

𝑎
𝑑𝑡 = 𝐹𝑇 (𝑄𝑌(𝐺𝑅(𝑥))).     (2)    

The pdf and hazard rate function (hrf) corresponding to (2) are, respectively, given by 

(Alzaatreh et al., 2014) 

𝑓𝑋(𝑥) = 𝐺𝑅(𝑥) ×
𝑓𝑇(𝑄𝑌(𝐺𝑅(𝑥))))

𝑑𝑌 (𝑄𝑌(𝐺𝑅(𝑥)))
  𝑎𝑛𝑑   ℎ𝑋(𝑥) ×

ℎ𝑇(𝑄𝑌(𝐺𝑅(𝑥))))

ℎ𝑌(𝑄𝑌(𝐺𝑅(𝑥))))
 

If T has the TL distribution and taking the qf of the standard uniform distribution, 𝑄𝑌(𝑥) = 𝑥, 

the cdf 𝐹 (𝑥) = 𝐹(𝑥; 𝛼, 𝜉)corresponding to (2) becomes 

𝐹(𝑥) ∫ 2𝛼(1 − 𝑡)[𝑡(2 − 𝑡)]𝛼−1𝐺𝑅(𝑥;𝝃)

0
𝑑𝑡 = {1 − [1 − 𝐺𝑅(𝑥; 𝝃)]2}𝛼.       (3)   

Then, the pdf 𝑓 (𝑥) = 𝑓(𝑥; 𝛼, 𝜉) of X is given by 

F(𝑥)  =  2𝛼𝑔𝑅(𝑥; 𝜉)[1 − 𝐺𝑅(𝑥; 𝜉)]{1 − [1 − 𝐺𝑅(𝑥; 𝜉)]2}𝛼−1.                      (4) 

where 𝑔𝑅(𝑥; 𝜉) is the baseline pdf. The class of distributions in (4) is called the TLG family. 

The parameter α controls the skewness and kurtosis of the generated family and its tail weights. 

Further, we can omit sometimes the dependence on the parameter vector ξ and write simply 

𝐺(𝑥) = 𝐺𝑅(𝑥; 𝜉) and 𝑔(𝑥) = 𝑔𝑅(𝑥; 𝜉).  

Equation (4) will be most tractable when 𝐺(𝑥) and 𝑔(𝑥) have simple analytic expressions. 

Hereafter, a random variable X with pdf (4) is denoted by 𝑋 ~𝑇𝐿𝐺(𝛼, 𝜉). The TLG family can 

be used in statistical communication theory as a model for the amplitude of a periodic signal in 

thermal noise, as the time allocation in project management and control systems and as the 

limiting spectral density function of a high-index-angle modulated carrier. Further, it can be 

applied for modeling economic data, variability of soil properties and proportions of the minerals 

in rocks in stratigraphy and the behavior of random variables limited to finite intervals in a wide 

variety of areas. 
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For any baseline pdf 𝑔𝑅(𝑥; 𝜉) with parameter vector ξ, the exponentiated-G (“exp-G”) model 

with power parameter d > 0, say exp-G(d),  is defined by the cdf and pdf 

𝑉𝑑(𝑥; 𝜉) = 𝐺(𝑥; 𝜉)𝑑    𝑎𝑛𝑑   𝑣𝑑(𝑥; 𝜉) = 𝑑𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)𝑑−1, 

respectively.This transformation is also called the Lehmann type I class of distributions. Some 

structural properties of the exp-G distributions have been studied by Mudholkar and Srivastava 

(1993), Mudholkar et al. (1995), Mudholkar and Hutson (1996), Gupta et al. (1998), Gupta and 

Kundu (1999, 2001), Nadarajah and Kotz (2006), and Nadarajah (2011). 

Note that there is a dual transformation, say exp-(1-G)(d), called the Lehmann type II class 

defined by the cdf 𝑊𝑑(𝑥; 𝜉) = 1 − {1 − 𝐺(𝑥; 𝜉)}𝑑 .Thus, equation (3) corresponds to the 

two-stage construction exp-[exp-(1-G)(2)](α). In other words, the exponentiated transformation 

applied to the Lehmann type II transformation with parameter two thus generates the TLG family. 

Some properties of the new family may be facilitated by this construction. 

If α is a positive integer, the TLG family shares a physical interpretation scheme. Consider a 

system made of α parallel independent components, where each component consists of a series 

of two independent sub-components identically distributed. The system fails if all α components 

fail and each component fails if at least one of the two sub-component fails. For j = 1, . . . , α, let 

Xj1 and Xj2 denote the lifetimes of the sub-components within the jth component having a 

common cdf tt(𝑥; ξ). Let Xj denote the lifetime of the jth component and let X denote the lifetime 

of the system. Thus, the cdf of X is given by 

𝑃(𝑋 ≤ 𝑥)  = [1 − 𝑃(𝑋𝑗 > 𝑥)]
𝛼

= [1 − 𝑃(𝑋𝑗1 > 𝑥, 𝑋𝑗2 > 𝑥)]
𝛼

 

                                                 = [1 − {𝑃(𝑋𝑗1 ≤ 𝑥)}2]𝛼, 

and then the lifetime of the system follows the TLG family. 

Remark 1. If T and X have the TL and TLG distributions, it is easy to prove the following: 

(𝑖)𝑋 
𝑑
=

𝑄𝑅(𝑇), 

(𝑖𝑖)𝑄𝑥(𝑃) = 𝑄𝑅(𝑄𝑇(𝑃)), 

(𝑖𝑖𝑖)𝑖𝑓  𝑇   
𝑑
=

  𝑈𝑛𝑖𝑓𝑜𝑟𝑚, 𝑡ℎ𝑒𝑛 𝑋    
𝑑
=

    𝑅.  
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The survival function (sf), 𝐹(𝑥; 𝛼, 𝜉), and hrf, ℎ(𝑥; 𝛼, 𝜉), corresponding to the 

pdf (4) are given by 

�̅�(𝑥; 𝛼, 𝜉) = 1 − {1 − [1 − 𝐺𝑅(𝑥; 𝜉)]2}𝛼 

and 

ℎ(𝑥; 𝛼, 𝜉) =
2𝛼𝑔𝑅(𝑥;𝜉){1−𝐺𝑅(𝑥;𝜉)}{1−[1−𝐺𝑅(𝑥;𝜉)]2}𝛼−1

1−{1−[1−𝐺𝑅(𝑥;𝜉)]2}𝛼             (5),    

respectively. 

 

3. Special models of the TLG family 

In this section, we provide four special models of the TLG family, namely:the TL-Weibull, 

TL-Gamma, TL-log-logistic and TL-logistic distributions. 

3.1 The TL-Weibull (TLW) distribution 

If the parent distribution has the Weibull distribution with pdf and cdf g(x) =

 abxb−1e−(ax)b
and 𝐺(𝑥)  = 1 − 𝑒−(𝑎𝑥)𝑏

, 𝑥, a, b > 0, the TLW pdf can be expressed as 

𝑓𝑇𝐿𝑊(𝑥, 𝛼, 𝑎, 𝑏) = 2𝑎𝑏(𝑎𝑥)𝑏−1𝑒−2(𝑎𝑥)𝑏
[1 − 𝑒−2(𝑎𝑥)𝑏

]𝛼−1, 𝑥 > 0    

If b = 1, then the TLW distribution reduces to the TL-exponential (TLE) model.   

If b = 2, it gives the TL-Rayleigh (TLR) distribution. 

3.2 The TL-Gamma (TLGa) distribution 

If the parent distribution has the gamma distribution with pdf 𝑔(𝑥;  𝑎, 𝑏)  =
𝑏𝑎

𝛤(𝑎)
𝑥𝑎−1𝑒−𝑏𝑥and 

cdf 𝐺(𝑥; 𝑎, 𝑏)  =
𝛾(𝑎;𝑏 𝑥)

𝛤(𝑎)
, 𝑥, 𝑎, 𝑏 > 0, where 𝛾(𝑎, 𝑦)  = ∫ 𝑦𝑎−1𝑒−𝑦𝑧

0
𝑑𝑦  is the incomplete 

gamma function, the TLGa bdf is given by 

𝑓𝑇𝐿𝐺𝑎(𝑥; 𝑎, 𝑏) =
2𝛼𝑏𝑎

𝛤(𝑎)
 𝑥𝑎−1𝑒−𝑏𝑥[1 −

𝛾(𝑎; 𝑏 𝑥)

𝛤(𝑎)
][1 − {1 −

𝛾(𝑎; 𝑏 𝑥)

𝛤(𝑎)
}2]𝛼−1.  
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3.3 The TL logistic (TLLc) distribution 

If the parent distribution follows the logistic distribution with pdf 𝑔(𝑥; 𝜆)  = 𝜆𝑒−𝜆𝑥(1 +

𝑒−𝜆𝑥)−2, x ∈ R and cdf 𝐺(𝑥; 𝜆)  = (1 + 𝑒−𝜆𝑥)−1, the TLLc pdf is given by 

fTLLc(𝑥; α, λ) =  2αλe−λ𝑥 (1 + e−λ𝑥)−2 {1 − (1 + e−λ𝑥)
−1

} × [1 − {1 − (1 + e−λ𝑥)
−1

}
2

]
α−1

. 

3.4 The TL log-logistic (TLL) distribution 

If the parent distribution has the log-logistic distribution with pdf 𝑔(𝑥; 𝑠, 𝑐)  =  𝑐𝑠−𝑐𝑥𝑐−1[1 +

(
𝑥

𝑠
)𝑐]−2 and cdf 𝐺(𝑥; 𝑠, 𝑐)  =  1 − [1 + (

𝑥

𝑠
)𝑐]−1, 𝑥, 𝑠, 𝑐 >  0, then the TLL pdf is given by  

𝑓𝑇𝐿𝐿(𝑥; 𝛼, 𝑠, 𝑐) =  2𝛼𝑐𝑠−𝑐𝑥𝑐−1 [1 + (
𝑥

𝑠
)

𝑐
]

−3

{1 − [1 + (
𝑥

𝑠
)

𝑐
]

−2

}

𝛼−1

.  

In Figures 1–4, we display some plots of the pdf and hrf of the TLW, TLGa, TLLc and TLL 

distributions for fixed scale parameters and selected shape parameter values. The plots of Figures 

1 and 2 indicate that the TLG family generates distributions with various shapes such as 

symmetrical, reversed-J, left- skewed and right-skewed. Also, the plots in Figures 3 and 4 reveal 

that this family can produce flexible hazard rate shapes such as constant, increasing, decreasing, 

upside-down bathtub and bathtub. These facts show that the TLG family can be very useful in 

reliability and life-testing for fitting different data sets with various shapes.
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Figure 1: Plots of the (a) TLW and (b) TLGa densities for some parameter values. 

(c) (d) 

 

 

 

 

 

 

 

 

Figure 2: Plots of the (c) TLLc and (d) TLL densities for some parameter values. 

 

4. Some Mathematical Properties of TLG Family of Distributions 

In this section, we provide some general properties of the TLG family. 

4.1 Asymptotics 

Proposition 4.1 The asymptotics of equations (3),(4) and (5) when 𝐺(𝑥) → 0
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(a) (b) 

 

 

 

 

 

 

 

 

 

Figure 3: Plots of the (a) TLW and (b) TLGa hazard functions for some param- eter values. 

(c) (d) 

 

 

 

 

 

 

 

 

Figure 4: Plots of the (c) TLLc and (d) TLL hazard functions for some parameter values. 

 

are given by 

𝐹(𝑥)~[2𝐺𝑅(𝑥)]𝛼                            𝑎𝑠 𝐺(𝑥)0, 

𝑓(𝑥)~2𝛼𝑔𝑅(𝑥)[2𝐺𝑅(𝑥)]𝛼−1      𝑎𝑠 𝐺(𝑥)0, 

 ℎ(𝑥)~2𝛼𝑔𝑅(𝑥)[2𝐺𝑅(𝑥)]𝛼−1         𝑎𝑠 𝐺(𝑥)0. 

 

Proposition 4.2  The asymptotics of equations (3), (4) and (5) when x → ∞ are 
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given by 

                                                 1 − 𝐹(𝑥)~2𝛼[1 − 𝐺𝑅(𝑥)]  𝑎𝑠       𝑥∞, 

                                                𝑓(𝑥)~2𝛼𝑔𝑅(𝑥)                     𝑎𝑠       𝑥∞, 

                                               ℎ(𝑥)~
𝑔𝑅(𝑥)

1−𝐺𝑅(𝑥)
                         𝑎𝑠      𝑥∞.       

4.2 Useful Expansions 

We can demonstrate that the cdf (3) of X admits the expansion 

𝐹(𝑥) = ∑ 𝑏𝑘𝑉𝑘(𝑥)∞
𝑘=0                        , (6)    

where 

𝑏𝑘 = ∑ (−1)𝑖+𝑘∞
𝑖=𝑖(𝑘) (𝛼

𝑖
)(2𝑖

𝑘
)           , (7)    

𝐼(𝑘)  = [
𝑘

2
] when k is even and 𝑖(𝑘)  = [

𝑘

2
] + 1 when k is odd, [

𝑘

2
] denotes the integer part of 

𝑘

2
(𝑓𝑜𝑟 𝑘 ≥ 0)  and 𝑉𝑘(𝑥) =  𝑉𝑘(𝑥; ) = 𝐺(𝑥; )𝑘 represents the exp-G(k) cdf. 

The density function of X can be expressed as 

f(x; α, ) = ∑ bk+1
∞
k=0 vk+1(x)       , (8)  

where 𝑣𝑘+1(𝑥) =  𝑑𝑉𝑘+1(𝑥)/𝑑𝑥. Equation (8) reveals that the TLG density function is a 

linear combination of exp-G density functions. Thus, some mathematical properties of the new 

model can be derived from those properties of the exp-G distribution. 

4.3 Moments  

Let Y be a random variable with the baseline G distribution and let 𝑌𝑘+1 have the exp-G 

distribution with power parameter 𝑘 +  1, 𝑖. 𝑒. 𝑌𝑘+1~𝑒𝑥𝑝 − 𝐺(𝑘 +  1). So, 𝑌1 =  𝑌 ~𝐺.  We 

define the (n, r)th probability weighted moment (PWM) of  Y  by 𝜏𝑛,𝑟 = 𝐸[𝑌𝑛𝐺(𝑌)𝑟], for n, r 

= 0, 1,…. The PWMs are usually evaluated numerically since they are available in closed-form 

for few distributions. The nth moment of X can be obtained from equation (8) and the exp-G 

moments as 

μ′ = E(Xn) = ∑ bk+1E(YK+1
n ) = ∑ (k + 1)bk+1

∞
k=0

∞
k=0  τn,k .         (9) 

Equations (9) is the main result of this section and can be used to derive several TLG moments.  
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Then,the moments of the TLG family can also be determined as infinite weighted linear 

combinations of the PWMs of the G distribution. 

We provide two simple examples. First, we take the Weibull baseline distribution with scale 

parameter 𝑎 > 0 and shape parameter b > 0.The moments of the TLW model (presented in 

Section 3.1) follow easily from (9) and the moments of the exp-Weibull given by 

𝐸(𝑌𝑘+1
𝑛 )  =  

(𝑘 + 1)

𝑎𝑛
𝛤(

𝑛 + 𝑏

𝑏
) ∑

(−𝑘)𝑖

𝑖! (𝑖 + 1)(𝑛+𝑏)/𝑏′

∞

𝑖=0

 

where (−𝑘)𝑖 = (−1)𝑖𝑘(𝑘 + 1) … (𝑘 + 1 − 𝑖). 

For the second example, we consider the TL-standard logistic (TLSL),where 𝐺(𝑥)  =  (1 +

𝑒−𝑥) − 1. We can obtain 𝜏𝑛,𝑘(𝑓𝑜𝑟 𝑡 <  1)  using Mathematica and then 

𝜇𝑛
′ =  ∑(𝑘 + 1)𝑏𝑘+1(

𝜕

𝜕𝑡
)𝑛

∞

𝑘=0

 𝐵(𝑡 + 𝑘 + 1,1 − 𝑡)|𝑡=0, 

where 𝐵(𝑎, 𝑏)  = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡
1

0
 is the beta fumction. 

The central moments (𝜇𝑛) and cumulants (𝐾𝑛) of X can be determined from (9) as  

𝜇𝑛 = ∑ (−1)𝑘𝑛
𝑘=0 (𝑛

𝑘
)𝜇1

′𝑛𝜇𝑛−𝑘
′     𝑎𝑛𝑑  𝐾𝑛 = 𝜇𝑛

′ − ∑ (𝑛−1
𝑘−1

)𝑛−1
𝑘+1 𝐾𝑘𝜇𝑛−𝑘

′   

respectively, where 𝐾1 = 𝜇1
′ . The skewness  

1
= 𝐾3/𝐾2

3/2
 and kurtosis  

2
 = 𝐾4/𝐾2

2 

can be evaluated from the third and fourth standardized cumulants. 

4.4 Generating function 

Here, we obtain the moment generating function (𝑚𝑔𝑓) 𝑀 (𝑡)  =  𝐸(𝑒𝑡𝑥) of X.We can write 

M (t) from (8) as 

𝑀(𝑡) = ∑ 𝑏𝑘+1𝑀𝐾+1(𝑡) = ∑ (𝑘 + 1)𝑏𝑘+1𝜌(𝑡, 𝑘)∞
𝑘=0

∞
𝑘=0           , (10)    

Where 𝑀𝐾+1(𝑡) is the mgf of 𝑌𝑘+1 and 

𝜌(𝑡, 𝑘) ∫ 𝑒𝑥𝑝[𝑡𝑄𝐺(𝑢)] 𝑢𝑘
1

0

𝑑𝑢. 
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Hence, M (t) can be immediately determined from the exp-G generating function. 

Next, we provide three application of equations (10) for special TLG distributions. The mgfs  

of the TL-exponential (TLE) (with rate parameter λ and t < −1
) and TLSL (defined in Section 

4.3, for t < 1) distributions are given by 

𝑀(𝑡)  = ∑(𝑘 + 1)𝑏𝑘+1𝐵(𝑘 + 1,1 − 𝑡)

∞

𝑘=0

 

and 

𝑀(𝑡) = ∑ (𝑘 + 1)𝑏𝑘+1𝐵(𝑡 + 1 + 𝑘, 1 − 𝑡)

∞

𝑘,𝑗=0

, 

respectively. As a third example, we consider the cdf 𝐺(𝑥)  =  (1 −  𝑒−𝑥)𝛼  of the 

exponentiated unit exponential (EE) with power parameter 𝛼 >  0,and mgf given by 𝑀𝑌(𝑡)  =

 𝛤(𝛼 +  1) 𝛤(1 −  𝑡)/𝛤(𝛼 −  𝑡 +  1) 𝑓𝑜𝑟 − 1 <  𝑡 <  1. Then, the mgf of the TL-EE with 

unit parameter is given by 

M(t) = ∑ bk+1
(k+1)!Γ(1−t)

Γ(k−t+2)
∞
k=0 ,      -1<t<1. 

4.5 Quantile Power Series 

The qf is very useful to obtain various mathematical properties of a distribution and it is widely 

used in Statistics to generate values of a random variable having F (x) as its distribution function. 

By inverting F (x) = u in equation (3) with respect to x for some fixed u ∈ (0, 1), the qf of the 

TLG family is given by 

QX(u) = QG[1 − (1 − u
1

α)
1

2],                          (11)  

where 𝑄𝐺(𝑢)  = 𝐺−1(𝑢) denotes the qf of the baseline model. 

We can derive some properties of the TLG family based on a power series for (11), which 

requires an expansion for the argument of 𝑄𝐺(·), namely  𝑧(𝑢) = 1 − (1 − 𝑢
1

𝛼)

1

2
. 
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By using the generalized binomial expansion three times, we can write 

𝑧(𝑢)  = ∑ 𝛿𝑘𝑢𝑘

∞

𝑘=0

 

Where 𝜹𝟎 = 𝟏 − ∑ (−𝟏)𝒊+𝒋 (
𝟏

𝟐
𝒊
) (

𝟏

𝜶
𝒋
)∞

𝒊,𝒋=𝟎  and, for 𝑘 ≥ 1, 

𝛿𝑘 = ∑ ∑(−1)𝑖+𝑗+𝑘+1

∞

𝑗=𝑘

(

1
2
𝑖

)

∞

𝑖=0

(

1
𝛼
𝑗

) (
𝑗

𝑘
). 

Then, the qf of  X can be expressed as 

𝑄𝑋(𝑢) = 𝑄𝐺(∑ 𝛿𝑘𝑢𝑘∞
𝑡=0 ).        (12)                      

If  𝑄𝐺(u) has a closed-form expression, we can derive a power series for 𝑄𝑋(u). However, if 

𝑄𝐺(u) does not have a closed-form expression, it can be written in terms of a power series 

𝑄𝐺(𝑢) = ∑ 𝑎𝑖𝑢𝑖∞
𝑖=0 ,        (13)                    

where the coefficients ai′s are functions of the parameters of the G distribution. For several 

important distributions, such as the normal, Student t, gamma and beta distributions, 𝑄𝐺(u) does 

not have explicit expressions but it can be expanded as in equation (13). 

Henceforth, we use a result by Gradshteyn and Ryzhik (2000) for a power series raised to a 

positive integer n (for n ≥ 1) 

𝑄𝐺(𝑢)𝑛 = (∑ 𝑎𝑖𝑢𝑖

∞

𝑖=0

)𝑛 = ∑ 𝑐𝑛,𝑖

∞

𝑖=0

𝑢𝑖 ,     (14) 

where the coefficients cn,i (for i = 1, 2, . . .) are obtained from the recurrence equation (with 

cn,0 = 𝑎0
𝑛) 

cn,i = (ia0)−1 ∑ [m(n + 1) − i]amcn,i−m
i
m=1 .       (15)  

Clearly, the quantity cn,i can be determined from 𝑐𝑛,0,…, cn,i and then from the quantities 

𝑎0, . . . , 𝑎𝑖. 

For any baseline G distribution, we combine (12) and (13) to obtain 

𝑄𝑋(𝑢) = ∑ 𝑎𝑖(∑ 𝛿𝑘𝑢𝑘

∞

𝑡=0

)𝑖

∞

𝑖=0

, 

                       



 
M.H.Tahir 1,Gauss M.Cordeiro 2, M.Mansoor1,3, Ayman Alzaatreh4 and M.Zubair1,5    263 

  

and then using (14) and (15) 

𝑄𝑋(𝑢) = ∑ 𝑒𝑡𝑢𝑡

∞

𝑡=0

,                  (16)  

Where 𝑒0 = ∑ 𝑎𝑖
∞
𝑖=0 , 𝑒𝑡 = ∑ 𝑎𝑖𝑑𝑖,𝑡𝑓𝑜𝑟 𝑡 ≥ 1, 𝑑𝑖,0 = 𝛿0

𝑖∞
𝑖=0  and, for 𝑡 >  1, 𝑑𝑖,𝑡 =

(𝑡𝛿0)−1 ∑ [𝑚(𝑖 + 1) − 𝑡]𝛿𝑚
𝑡
𝑚=1 𝑑𝑖,𝑡−𝑚. 

Equation (16) is the main result of this section. It allows to derive various mathematical 

quantities for the TLG family. Let W (·) be any integrable function in a real line. We can write 

∫ 𝑊(𝑥)𝑓(𝑥; 𝛼, )𝑑𝑥 = ∫ 𝑊[𝑄𝑋(𝑢)]𝑑𝑢.
1

0

∞

−∞
   (17)     

Thus, several mathematical quantities for special models of the TLG family can be reduced to 

integrals over (0,1) by combining (16) and (17). 

4.6 Incomplete Moments 

The nth incomplete moment of X is defined as 𝑚𝑛(𝑦) = 𝐸(𝑋𝑛|𝑋 < 𝑦) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥.
𝑦

−∞
 

Here, we propose two methods to calculate the incomplete moments of the new family.First, the 

nth incomplete moment of X can be expressed as    

𝑚𝑛(𝑦) = ∑ 𝑏𝑘+1 ∫ 𝑄𝐺(𝑢)𝑛𝑢𝑘𝑑𝑢
𝐺(𝑦;)

0
∞
𝑘=0 .           (18)   

The integral in (18) can be computed at least numerically for most baseline distributions. A 

second method to obtain the incomplete moments of X follows from (14), (15) and (18). We can 

write 

𝑚𝑛(𝑦) = ∑
(𝑘+1)𝑏𝑘+1𝑐𝑛,𝑚

𝑚+𝑘+1
∞
𝑘.𝑚=0 𝐺(𝑦; )𝑚+𝑘+1,    (19)   

where the coefficients 𝑐𝑛,𝑚 can be obtained recursively from (15). 

4.7  Mean deviations 

The amount of scatter of the TLG family can be measured by the totality of deviations from the 

mean and the median. The mean deviations about the mean (𝛿1) and about the median (𝛿2) of X  

 

are given by 

𝛿1 = 𝐸(|𝑋 − 𝜇1
′ |) = 2𝜇1

′ 𝐹(𝜇1
′ ) − 2𝑚1(𝜇1

′ ) 
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and 

𝛿2 = 𝐸(|𝑋 − 𝑀|) = 𝜇1
′ − 2𝑚1(𝑀), 

respectively, where μ1
′ = E(X), F(μ1

′ ) is obtained from (3),M = Median(X) denotes the median 

evaluated from the nonlinear equation  F (M ) = 1/2, and m1(z) =∫ 𝑥
z

−∞
f(𝑥)dx is the basic 

quantity to determine δ1 and δ2 above. Setting u = G (𝑥;ξ)∞in the linear representation (8) 

gives 

𝑇(𝑧)  = ∑ (𝑘 + 1)𝑏𝑘+1𝑇𝑘(𝑧)∞
𝑟=0 ,                 (20)    

where 

𝑇𝑘(𝑧) = ∫ 𝑢𝑘𝑄𝐺(𝑢)𝑑𝑢
𝐺(𝑍;)

0

. 

Equation (20) is useful to obtain the Bonferroni and Lorenz curves defined (for a given 

probability π) by 𝐵(𝜋)  =  𝑇 (𝑞)/(𝜋𝜇1
′ ) and 𝐿(𝜋)  =  𝑇 (𝑞)/𝜇1

′ , respectively, where 𝜇1
′ =

 𝐸(𝑋) and 𝑞 = 𝐹−1(𝜋) is the qf of X given in Section 4.5. 

 

5. Entropies 

An entropy is a measure of variation or uncertainty of a random variable X.Two popular 

entropy measures are the R ényi and Shannon entropies (R ényi,1961;Shannon,1948).The 

R ényi entropy of a random variable with pdf f (x) is defined as 

𝐼𝑅() =
1

1 − 
𝑙𝑜𝑔 (∫ 𝑓(𝑥)𝑑𝑥

∞

0

), 

for γ > 0 and γ ≠ 1. The Shannon entropy of a random variable X is defined by 𝜂𝑥 =

 −𝐸 {𝑙𝑜𝑔 [𝑓 (𝑋)]}. It is the special case of the R´enyi entropy when γ ↑ 1. 

Lemma 4.1 Let X be a random variable with pdf (4). Then, 

𝐸{𝑙𝑜𝑔[1 − 𝐺(𝑋)]} =
𝛼

2
∑

(−1)𝑖+1

(𝑖 + 1)2
(

𝛼 − 1

𝑖
)

∞

𝑖=0

, 

𝐸{𝑙𝑜𝑔{1 − [1 − 𝐺(𝑥; ]2}} = 𝛼 ∑
(−1)𝑖

𝑖+1

𝜕

𝜕𝑡
∞
𝑖=0 (𝛼+𝑡−1

𝑖
)|

𝑡=0
. 
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Proposition 4.3 If X follows the TLG family, then the Shannon entropy of X is given by 

𝜂𝑥 = − 𝑙𝑜𝑔(𝛼) − 𝜂𝑔 −
𝛼

2
∑

(−1)𝑖+1

(𝑖+1)2 (𝛼−1
𝑖

) + 𝛼(1 − 𝛼) ∑
(−1)𝑖

𝑖+1
∞
𝑖=0

∞
𝑖=0

𝜕

𝜕𝑡
(𝛼+𝑡−1

𝑖
)|

𝑡=0
,  

where 𝜂𝑔 is the parent Shannon entropy. 

Proof. Direct calculation yields 

𝜼𝒙 = − 𝒍𝒐𝒈(𝟐𝜶) − 𝜼𝒈 − 𝑬{𝒍𝒐 𝒈[𝟏 − 𝑮(𝒙; )]} +  (𝟏 − 𝜶)𝑬[𝒍𝒐𝒈{𝟏 − [𝟏 − 𝑮(𝒙; )]𝟐}]. 

The rest of the proof follows from Lemma 4.1. 

 

Proposition 4.4  If X follows the TLG family, then: 

1.The R ényi entropy can be written as 

𝐼𝑅() =
1

1−
𝑙𝑜𝑔(2𝛼) +

1

1−
𝑙𝑜𝑔[∑ 𝑤𝑖,𝑗𝐴(, 𝑗)∞

𝑖,𝑗=0 ],  

Where 𝑤𝑖,𝑗 = (−1)𝑖+𝑗((𝛼−1)
𝑖

) (+2𝑖
𝑗

) 𝑎𝑛𝑑 𝐴(, 𝑗) = ∫ 𝑔(𝑥)𝐺(𝑥)𝑗∞

0
𝑑𝑥. 

2.The q-entropy,𝐻𝑞(𝑓) =
1

𝑞−1
𝑙𝑜𝑔[1 − ∫ 𝑓𝑞∞

0
(𝑥)𝑑𝑥] , can be written as  

𝐻𝑞(𝑓) =
1

𝑞−1
[1 − ∑ 𝑞𝑖,𝑗𝐴(𝑞, 𝑗)∞

𝑖,𝑗=0 ],  

Where 𝑞𝑖,𝑗 = (2𝛼)𝑞(−1)𝑖+𝑗(𝑞(𝛼−1)
𝑖

) (𝑞+2𝑖
𝑗

). 

  

6. Estimation 

Several approaches for parameter estimation have been proposed in the literature but the 

maximum likelihood method is the most commonly employed.The maximum likelihood 

estimators (MLEs) enjoy desirable properties and can be used to construct confidence intervals 

for the model parameters and also in test statistics.The normal approximation for these 

estimators in large sample theory is easily handled either analytically or numerically.So,we 

consider the estimation of the unknown parameters for the new distribution from complete 

samples only by maximum likelihood.Let 𝑥1, … , 𝑥𝑛  be the observed values from the TLG  

distribution  with  parameters α and  ξ. Let 𝛩 =  (𝛼, 𝑇)𝑇be the 𝑟 × 1 parameter vector.The  
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total log-likelihood function for Θ is given by 

𝑙𝑛 = 𝑙𝑛(𝛩) = 𝑛𝑙𝑜𝑔(2𝛼) + ∑ 𝑙𝑜𝑔[𝑔𝑅(𝑥𝑖; )]

𝑛

𝑖=1

+ ∑ 𝑙𝑜𝑔[1 − 𝐺𝑅(𝑥𝑖; )]

𝑛

𝑖=1

 

                                          +(𝛼 − 1) ∑ 𝑙𝑜𝑔{1 − [1 − 𝐺𝑅(𝑥𝑖; )]2}𝑛
𝑖=1 . (21)     

The log-likelihood (21) can be maximized either directly by using the NMaximize command in 

Mathematica,R(optim function),SAS(PROC NLMIXED), Ox program (sub-routine MaxBFGS), 

or by solving the nonlinear likelihood equations obtained by differentiating (21). 

The components of the score function 𝑈𝑛(𝛩)  = (𝜕𝑙𝑛/𝜕𝛼, 𝜕𝑙𝑛/𝜕𝑇)𝑇 are 

𝜕𝑙𝑛

𝜕𝛼
=

𝑛

𝛼
+ ∑ 𝑙𝑜𝑔 {1 − [1 − 𝐺𝑅(𝑥𝑖; )]2}

𝑛

𝑖=1

 

And 

𝜕𝑙𝑛

𝜕
= ∑

𝑔
()
𝑅

(𝑥𝑖,)

𝑔𝑅(𝑥𝑖,)
𝑛
𝑖=1 − ∑

𝐺
()
𝑅

(𝑥𝑖,)

𝐺𝑅(𝑥𝑖,)
𝑛
𝑖=1 + 2(𝛼 − 1) ∑

𝐺
()
𝑅

(𝑥𝑖,)[1−𝐺𝑅(𝑥𝑖,)]

1−[1−𝐺𝑅(𝑥𝑖;)]2
𝑛
𝑖=1  , 

where ℎ ()
𝑅

(·) means the derivative vector of the function h with respect to ξ. 

Then, the MLEs of the model parameters can be determined iteratively as the solution of the 

nonlinear equations U (Θ) = 0 leading to the maximum value for (21). 

 

7. Simulations 

We evaluate the performance of the maximum likelihood method for estimating the parameters 

of the new family by using Monte Carlo simulations. We choose the TLW model for this purpose 

and select a total of twelve parameter combinations. We fix four sample sizes n=20, 50, 100 and 

300. The process is repeated 1,000 times and the biases (estimate minus true value) and the mean 

square errors (MSEs) of the parameter estimates are reported in Table 1. The values of the biases 

and MSEs decrease when the sample size n increases in agreement with first-order asymptotic 

theory. These results indicate that the maximum likelihood method performs quite well to 

estimate the parameters in Θ.
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          Table 1: Biases and MSEs for various parameter values. 

Sample size True value Bias MSE 

n α b a α̃ b̃ ã α̃ b̃ ã 

20 0.5 0.5 1.0 0.439 0.355 1.799 2.745 0.551 2.023 

 0.5 1.5 2.0 0.637 0.963 -0.161 2.283 4.759 1.834 

 1.5 0.5 1.0 1.031 0.282 0.122 2.618 0.825 2.477 

 1.5 1.5 2.0 3.633 0.823 2.170 2.100 0.246 2.177 

50 0.5 0.5 1.0 0.029 0.187 2.390 0.106 0.223 3.502 

 0.5 1.5 2.0 0.116 0.392 -1.134 0.304 1.260 1.393 

 1.5 0.5 1.0 1.228 0.106 3.508 1.611 0.179 2.310 

 1.5 0.5 1.0 1.228 0.106 3.508 1.611 0.179 2.310 

100 0.5 0.5 1.0 0.031 0.072 2.142 0.069 0.054 0.632 

 0.5 1.5 2.0 0.033 0.239 -1.202 0.090 0.557 1.474 

 1.5 0.5 1.0 0.343 0.046 1.629 1.947 0.037 1.323 

 1.5 1.5 2.0 0.283 0.119 -1.190 1.552 0.227 1.454 

300 0.5 0.5 1.0 0.007 0.018 0.306 0.016 0.009 0.476 

 0.5 1.5 2.0 0.001 0.064 -0.231 0.015 0.079 0.520 

 1.5 0.5 1.0 0.097 0.010 0.450 0.285 0.007 0.851 

 1,5 1.5 2.0 0.127 0.016 -0.214 0.311 0.060 0.484 

 

8. Applications 

In this section, we provide applications of the TLG family by fitting some of its members to 

three real life data sets.
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Data set 1: Carbon ftbres.  The first data set (Crowder et al., 1991) refers to the failure stresses 

of single carbon fibres (length 1mm).The data are : 2.247, 2.64, 2.842, 2.908, 3.099, 3.126, 

3.245, 3.328, 3.355, 3.383, 3.572, 3.581, 3.681,3.726, 3.727, 3.728, 3.783, 3.785, 3.786, 3.896, 

3.912,  3.964, 4.05, 4.063, 4.082,4.111, 4.118, 4.141, 4.216, 4.251, 4.262, 4.326, 4.402, 4.457, 

4.466, 4.519, 4.542,4.555, 4.614,4.632, 4.634, 4.636, 4.678, 4.698, 4.738, 4.832, 4.924, 5.043, 

5.099, 5.134, 5.359, 5.473, 5.571, 5.684, 5.721, 5.998, 6.06. A summary of these data is: 

n = 57, x̅ =4.2350, s = 0.8352, skewness=0.0710, kurtosis=2.7098. 

Data set 2: Guinea pigs.   The second data set consists of the survival times (in days) of 72 

guinea pigs infected with virulent tubercle bacilli reported by Bjerkedal (1960).The data are: 12, 

15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48,52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 

60,60, 61, 62,  63, 65, 65, 67, 68,70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 

99, 109, 110, 121, 127,129, 131, 143, 146, 146, 175, 175,211, 233, 258, 258, 263, 297, 341, 341, 

376.A summary of these data is: n = 72,  x̅ = 99.8200, s=81.1180, skewness=1.7590, 

kurtosis=5.4596. 

Data set 3: Wheaton river.  The third data set refers to the 72 exceedances for the years 1958–

1984 (rounded to one decimal place) of flood peaks (in 𝑚3/𝑠)  of the Wheaton River near 

Carcross in Yukon Territory, Canada.Bourguignon et al. (2014) have recently analyzed these 

data. The data are: 1.7, 2.2, 14.4,1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 

11.6, 14.1, 22.1, 1.1,2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 

0.6, 9.0,1.7, 7.0,20.1,0.4, 2.8, 14.1,9.9,10.4,10.7,30.0,3.6,5.6,30.8,13.3, 4.2, 25.5,3.4, 11.9, 21.5, 

27.6, 36.4, 2.7, 64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7,27.5, 2.5, 27.0. A summary of 

these data is:n = 72, x̅=12.2041, s = 12.2972, skewness=1.4725, kurtosis=2.8895. 

The Akaike information criterion(AIC),Bayesian information criterion(BIC),  

Anderson-Darling (A∗) and Kolmogrov-Smirnov (K-S) statistics are used to compare the fitted 

models. In general, the smaller the values of these statistics, the better the fit to the data.The 

required computations are carried out using the R-software.
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Table 2: MLEs and their standard errors (in parentheses) for the carbon fibres data. 

Distribution α b a c s 

TLW 2.6939 3.4614 0.2171 - - 

 (0.1737) (0.2874) (0.0261) - - 

TLGa 0.4873 33.6042 0.1555 - - 

 (0.5566) (3.8248) (0.1324) - - 

TLL 0.9655 - - 7.4445 4.7819 

 (0.5101) - - (1.9498) (0.3321) 

 

Table 3: The statistics l̂, AIC, BIC, A∗ and K-S for the fitted models to the carbon fibres data. 

Distribution l̂ AIC BIC A∗ K-S p-value 

TLW −70.049 146.098 152.228 0.1580 0.0591 0.9817 

TLGa −70.066 146.133 152.263 0.1686 0.0616 0.9727 

TLL −70.349 146.698 152.827 0.1351 0.0490 0.9981 

       

 

Table 4: MLEs and their standard errors (in parentheses) for guinea pigs data. 

Distribution α b a c s 

TLW 3.4343 1.0381 0.0054 - - 

 (1.5162) (0.2057) (0.0011) - - 

TLGa 0.1723 12.6371 29.2307 - - 

 (0.020) (0.0041) (0.0041) - - 

TLL 1.0460 - - 2.4305 218.9469 

 (0.4285) - - (0.4779) (6.6943) 
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Table 5: The statistics l̂, AIC, BIC, A∗ and K-S for the fitted models to guinea pigs data. 

Distribution l̂ AIC BIC A∗ K-S p-value 

TLW −425.760 857.519 864.349 0.5254 0.0890 0.618 

TLGa −428.575 863.151 869.981 1.2137 0.0986 0.4854 

TLL −425.144 856.288 863.118 0.4361 0.0795 0.7533 

       

 

Table 6: MLEs and their standard errors (in parentheses) for the Wheaton river data. 

Distribution α b a c s 

TLW 0.4961 1.4337 0.0308 - - 

 (0.2717) (0.5568) (0.0066) - - 

TLGa 0.1065 6.8109 6.2596 - - 

 (0.0125) (0.0025) (0.1091) - - 

TLL 0.1997 - - 3.1532 34.5107 

 (0.0931) - - (1.1828) (4.9361) 

 

Table 7: The statistics l̂, AIC, BIC, A∗ and K-S for the fitted models to the Wheaton river data. 

Distribution l̂ AIC BIC A∗ K-S p-value 

TLW −251.055 508.109 514.939 0.6424 0.1039 0.4190 

TLGa −250.521 507.042 513.872 0.5641 0.1054 0.4002 

TLL −251.187 508.373 515.203 0.6434 0.1112 0.3354 

       

 

Tables 2, 4 and 6 give the MLEs and their corresponding standard errors (in parentheses) of  

the model parameters.The values of the statistics l̂, AIC, BIC, A∗, K-S and K-S p-values are 

listed in Table 3, 5 and 7. For the first data  set, we note that the three fitted models provide good 

fits. For the second data set, the TLW and TLL models provide the best fits.Finally, for the third 

data set, the TLW and TLGa models provide more adequate fits. The histogram and estimated 

cdfs are displayed in Figure 3, 4 and 5, which also support the results in Table 3, 5 and 7. 
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9. Concluding Remarks 

In this paper, we propose the Topp-Leone-G family. We study some mathematical properties of 

the new family including a linear representation for the density function, explicit expressions for 

the ordinary and incomplete moments, generating and quantile functions, mean deviations and 

entropies. The maximum likelihood method is employed to estimate the model parameters. We 

fit three members of the family to real data sets to demonstrate the usefulness of the new family. 

These special models provide adequate fits to the data sets. 
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(a) Estimated pdfs for data set 1 (b) Estimated cdfs for data set 1. 

 

 

 

 

 

(c) Estimated pdfs for data set 2 (d) Estimated cdfs for data set 2. 

 

 

 

 

 

(e) Estimated pdfs for data set 3 (f) Estimated cdfs for data set 3. 

 

 

 

 

 

Figure 5: Plots of the estimated pdfs and cdfs of the TLW, TLGa, and TLL models for data sets 1, 2 & 3. 
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