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Abstract: Compositional data consist of known compositions vectors whose
components are positive and defined in the interval (0,1) representing pro-
portions or fractions of a “whole”. The sum of these components must be
equal to one. Compositional data is present in different knowledge areas, as
in geology, economy, medicine among many others. In this paper, we
propose a new statistical tool for volleyball data, i.e., we introduce a
Bayesian anal- ysis for compositional regression applying additive log-ratio
(ALR) trans- formation and assuming uncorrelated and correlated errors.
The Bayesian inference procedure based on Markov Chain Monte Carlo
Methods (MCMC). The methodology is applied on an artificial and a real
data set of volleyball.
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1. Introduction

Compositional data are vectors of proportions specifying G fractions as a whole. Such
data often result when raw data are normalized or when data is obtained as proportions of a
certain heterogeneous quantity.

By definition, a vector x in the Simplex sample space is a composition, elements of this
vector are components and the vectors set is compositional data (Aitchison (1986)).
Therefore, for x = (x4,x%5,*+,%g)" to be a compositional vector, x; is non negative value,

fori=1,---,Gand x; +Xx, + -+ x5 = 1. The first model addopted for the analysis of
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such data was the Dirichlet distribution. However, it requires that the correlation structure is
wholly negative, a fact that is not observed for compositional data, in which some
correlations are positive (see for example, Aitchison (1982)).

Aitchison and Shen (1980) developed the logistic-Normal class of distributions
transforming the G component vector x into a vector y in RS~ and considering the
Additive Log-Ratio (ALR) function. The use of Bayesian methods is a good alternative for
the analysis of compositional data, for example Achcar and Obage (2005) considered
Bayesian analysis using the ALR and Box-Cox transformations in regression models for
compositional data assuming correlated errors with bivariate normal distributions ; lyengar
and Dey (1996) developed a complete Bayesian methodology to analyse such data with the
implementation of Markov Chain Monte-Carlo methods, comparing with alternative
methods as maximum likelihood estimates; lyengar and Dey (1998) extended the last work
(lyengar and Dey,(1996)) applying Box-Cox transformations for compositional data;
Tjelme- land and Lund (2003) defined a spatial model for compositional data in a Bayesian
framework and discussed appropriate prior distributions; Tsagris (2014) performs
supervised classification of compositional data using the k-NN algorithm.

Some researchers have focused on the performance indicators of volleyball, they have
different objectives and statistical procedures. For example, Campos et al. (2014) studied the
advantage of playing at home and the influence of performance indicators on the game score
according to the number of sets, based on Brazilian and Italian elite women’s volleyball
leagues. Mesquita and Sampaio (2010) compared the volleyball game-related statistics by
sex and analyzed all games of the male and female World Cup in 2007. Afonso et al. (2012)
examined predictors of the setting zone in elite-level male volleyball. Rodriguez-Ruiz et al.
(2011) analyzed the terminating actions (serve, attack, block and opponent errors) that led to
point scoring. Although these studies were based on voleyball data, none of them considered
methodology of compositional data.

Thus, the main purpose is to propose a new statistical tool for volleyball data, that is, a
compositional regression model assuming correlated and uncorrelated normal errors based
on Bayesian approach. Usually, the volleyball data (attack, block, serve and opponent error)
have compositional restrictions, i.e., they have dependence structure, being that standard

existing methods to analyze multivariate data under the usual assumption of multivariate
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normal distribution (see for example, Johnson and Wichern (1998)) are not appropriate to
analyze them.

We consider a real data set related to the first and second rounds matches of Brazilian
Men’s Volleyball Super League 2011/2012 obtained from the website (CBV, 2012). The
data concern the teams that played and won the games in such rounds; more specifically, the
points of the team that won each game were defined as composition and the proportions of
each composition are the volleyball skills, as attack, block, serves and errors of the opposite
team.

The points of the winning team in each game were obtained by four components. We
denoted x1 the proportion of points in the attack, x2 the proportion of points in the block, x3
the proportion of points in the serve and x4 the proportion of points in the errors of the
opposite team.

The paper is organized as follows: Section 2 introduces the formulation of regression
model applied through the Additive Log-Ratio (ALR) transformation Bayesian analysis of
the proposed model assuming correlated and uncorrelated Normal errors; Section 3 provides
the results of the application to an artificial and a real data set related to the Brazilian Men’s
Volleyball Super League 2011/2012; finally, Section 4 concludes the paper with some final

remarks.

2. Methodology

Xij

We can consider yj; = H( ),j =1,--,nand j=1,--,g , being H(s) the chosen

XiG
transformation function that assures resulting vector has real components, where x;;
represents the i — th observation for the j — th component, such thatx;; > 0, -, x;G > 0
and 21G=1Xij =1,fori=1,-,n.

The ALR transformation for the analysis of compositional data is given by

Xij Xij
Yij = (ﬁ) =log()

The regression model assuming ALR transformation for the response variables is given

by
Vi = Bz + &

where y; = (yil,---,yig)T is a vector (g x 1) of response variables where g = G — 1 and

G is the number of components (compositional data); B = (Bo,B1, "+, Bg) IS @ matrix

e

)
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(g x (p + 1)) of regression coefficients where p denotes the number of covariates; z; isa
vector ((p +1) x 1) of associated covariates to the i —th sample and ¢; are random

errors, for i = 1,---,n.The matrix formulation of the model

(2 s,
Vi1 [.301 P11 - .Bpl] 1 &1
Iyﬂl _ Boz Biz - Pp2 Zi1 + €iz
Yiz lﬁog Blg ﬁqugX(p+1) Zip €ig gx1

In this paper, we are interested in a Bayesian analysis of model (2) with ALR
transformation (1) applied to response variables and assuming a multivariate Normal
distribution for the correlated and uncorrelated errors.

First of all, we assume uncorrelated errors for the model (2), i,e the error vector g;;
follows a multivariate normal distribution N, (0, 1), where 0 is a vector of zeros and ), 1

IS a variance-covariance matrix given by

/0-12 0o - 0\
21: 0 022 0
\0 0 - o

The likelihood function of parameters v; = (By;, Blj,ojz) is given by

g n
2
L(v;) « 1_[(6]-2)_“/2 exp (_2_0-22 eﬁ) 3)
j=1 ]

i=1
whereXiL; e = XL 1(yij — Boj — Byjzi)®, fori=1,--,n,j=1,--,gand1=1,--,p.

An alternative approach for the analysis of compositional data is the use of Bayesian
methods (see for example, lyengar and Dey (1996); or Tjelmeland and Lund (2003)),
especially considering Markov Chain Monte Carlo (MCMC) methods (see for example,
Gelfand and Smith (1990)).

The Bayesian inference allows to associate previous knowledge of the parameters
through a prior distribution. The Bayesian inference procedure for regression model (3)
considers proper prior distributions guaranteeing proper posterior distributions. Furthermore,
it was ensuring non-informative prior distributions according to the fixed hyperparameters.

Thus, we assume the following prior distributions for the parameters v,
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Boj ~ N(aoj, b;),
Bij ~ N(a;, bj), (4)
of ~1G(c;, dy),
where 1G(c,d) denotes an Inverse-Gamma distribution with meand/(c — 1) and variance
d?/[(c = 1)*(c — 2)], forc > 2;ag;j, b, ay;, by, ¢; and d; are known hyperparameters,j =
1,,p.
All the parameters were assumed independent a priori.
Posterior summaries of interest for the model (3) assuming prior distributions (4) are
given using simulated samples of the joint posterior distribution for v, obtained using the
Bayes formula, that is,

g g p
2 1 2 1 5

(Boj, Bij» 0f |y)a1_[exp — = (Boj — ag;)°| X nnexp — = (Boj — aoj)

! 2b0j [ 2b}

Jj=1 j=1 =1 J

g g

2y—(cj+1) 2 2% 1 "
j=1 j=1 J N

The full conditional densities using Gibbs sampling algorithm (Gelfand and Smith,
(1990)) for each parameter are given by,

0)] 2 2
) aojbon?zlﬂi bOJ'O-J'
l)”(ﬁojmlj’ajz’y)NN 2 2 2 2 |’ ()
of +nb;; of +nbg;
2 n 0)) 2 2
a;io; +bl -=1Z”9 bL'O"
.. 2 jY% j Li 1 j%%
iNm(ByilBoiyB-1,07,y) ~N , and, 6
) (.BljllgOJ .3 b Yj y) [ O_jz_l_blzj ?=1Zi21 O_jz_l_bjz ?=1Zi21 ( )
) n I,
iiyn(of |Boj. By y) ~ IG [Cf+5'df+5 E _ leij]. (7)
1=

where u? =y; — 3P 82,00 =y;; —Bo; and e; =y — 0j— XP, Byzy, for i=
1,-+,n,j=1--,gand 1 =1,-,p.

The estimation procedure considered joint estimation where all the model parameters are
generated in the MCMC algorithm simultaneously. The above conditional densities (5), (6),
(7) belong to known parametric density families. Posterior summaries of interest for each

model are simulated through the Just Another Gibbs Sampler (JAGS) program (Plummer
(2003)).
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Another approach for the regression model is modeling the structure of covariance
matrix. Here, we consider correlated errors for the model given in (3), i.e., € represents the
errors vector assumed to be dependent random variables with a multivariate normal

distribution Ng(0,Y,), where 0 is a vector of zeros and }’, is a variance-covariance matrix

given by
G% P120102 ** P1g010g
v, = | P12(.’102 G% ng?ZGg [, (8)
\pgclcg P2g020g oz /

where p,, is the correlation coefficient between €;; and €, ; pqg is the correlation
coefficient between €;; and €;; and p,g is the correlation coefficient between €;, and
€ig-

Considering the assumptions above, the likelihood function of parameters v, =
(Bo, B X2) is given by

L(v2) o = exp (=350, [ = Bo = Biz) | 22" = Bo — Bizo) |}

fori=1,--,nand I=1,--,p.
The following prior information is used for the Bayesian analysis,
Bo ~ N(ao, b3D),
B~ N(a;, b1), 9)
Y2t~ Wy(m, M),

where Wg(m, M) denotes a Wishart prior distribution, m is the number of degrees of
freedom and M is a prespecified precision matrix. Therefore, all the parameters were
assumed independent a priori.

Posterior summaries of interest for the model defined by (3), but with correlated errors
assuming priors distributions (9) are given using simulated samples of the joint posterior

distribution for v, obtained using the Bayes formula, that is

(B0, B, aly)aexp [~ (Bo — 20) b5 2(Bo — 20)| X exp [~ 3 (B — a by 2(B; —

g—1

al)] ¥ EE

exp{~2tr(Zz M)} x| 22172 exp{~ 28I [ (v — Bo —

Bir)' T2 (i — Bo — Bz}
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The full conditional densities for each parameter are given by
. I I ey O]
22 +b_0a0 ny; +b_§ ,[n22 +b_§ )

n n -1
- a; 1 I
(Zzlzzi [}’i—ﬁz]+b—ll> [;z?ziz +b_12 ‘

i=1
where €; = [yi1 — Bo1 — Xheq BunZiv, iz — Boz — Zie1 BiaZit -+ Vig — Bog — 2ieq Bigzin,], for
i=1-nandl=1-,p.

n

z Vi — Bz

i=1

l) n(.BOI.Bl' ZZ'y) ~N

i) m(Bolf-1, X2 ¥) ~N

[Z 2535 + 1
i=1 L

i) T (22180, B y) ~ Wy [+ m, e + M1] ]

For the estimation procedure we consider joint estimation where all the model
parameters are estimated simultaneously in the MCMC algorithm. Posterior summaries of
interest for each model are simulated using standard MCMC methods through the Just
Another Gibbs Sampler (JAGS) program (Plummer (2003)).

3. Application

This section reports a simulation study for the compositional data and illustrates an
application of the proposed methodology through ALR transformation.

3.1 Simulation Study

A simulation study was conducted to illustrate the proposed methodology. The data was
generated from multivarite normal distributions for both models (with uncorrelated and
correlated errors). Assuming uncorrelated errors, the parameter values were fixed as By =
(0.5,—1,-1),B; = (0.5,0.5,0.5), 8, = (0.5,0.5,0.5) and o2 = (1,1,1). For the case of
correlated errors, we assumepq, = p13 = p23 = 0.5. The covariates were generated by
z1 ~ Bernoulli (0.5) and z, ~ Normal (0.5, 0.1). We took the sample sizes n =
70,100,150 and 300 where for each sample size we conducted 1,000 replicates. It was
simulated 40,000 Gibbs samples using the rjags package (Plummer (2011)) interacting with R
software (R (2011)), with a burn in of 25% of the size of the chain and we considered every
10th sample among the 30,000 Gibbs samples. Table shows the simulation results, i.e, mean,
standard deviation (SD), bias, mean squared error (MSE) and credibility interval (CI). The CI
was stable and close to the nominal coverage of 90%. The MSE of all the parameters decay

towards zero as the sample size increases.
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assuming uncorrelated and correlated errors.

Table 1: Simulation Data. Summary of the posterior distributions for the models parameters

Uncorrelated Correlated
Sample

Gge Errors Errors
Parameter Mean SD  Bias MSE  CI |Parameter Mean SD  Bias MSE (I
Bot 0.5103 01793 00103 00322 0900 fy 0.5100 01794 0.0100 0.0322 088
Bop  -10028 00725 -0.0028 00297 094 | fp 09972 01733 0.0028 0.0300 0.908
Bog 09943 00793 00057 00320 0899 | oy -0.9907 0179 0.0003 0.0323 0.902
B 04008 0.2287 -0.0092 00524 0925 | By 04011 02288 -0.0080 00524 092
bz 05063 02322 00063 00539 0912 fp 05008 02272 00008 0.0515 0926
Bis 04906 02352 -0.0094 00554 0914 fyg 04304 02346 -00106 0.051 0.906
n="10 Bot 05025 01240 00025 00154 0801 | Py 05026 0.1241 0.0026 0.0154 0800
Pa 05012 01300 00012 00169 0.884| fp 03023 01275 00023 0.0163 0300
fas 05053 01224 00053 00150 0891 fyy 05058 01244 00058 0.0155 0.896
0 10232 01675 00232 00286 0913 o 10235 01674 00230 0.026 0916
i 10255 01775 00255 00320 08%| o 1.0256 0.1800 0.0256 0.0333 0.808
a3 10167 01735 0.0167 00303 0899 | o3 10134 01725 00134 0.0209 0911
P12 0.4947 0.0892 -0.0053 0.0080 0912
P13 04941 0.0808 -0.0059 0.0081 0.906
I3 04931 0.0875 -0.0069 00077 0012
Bui 04972 0.1476 -0.0028 00218 0903 |  fu 04967 0.1475 -0.0033 0.0218 0905
Bo -10048 0.1527 -0.0048 00233 0898 | G -L0056 01545 -0.0056 0.0239 0.898
Bog - -10120 0.1430 -0.0120 00220 0909 | fps  -L0123 01523 -0.0123 0.0233 0.8%
Bit 04081 02043 -0.0019 00417 0808 | fy 0.4985 0.2042 -0.0015 0.0417 0.901
bz 0.5060 01996 0.0060 00399 0.900| B 05042 0194 00042 0.038 0915
Bis 05048 01976 0.0043 00390 0905 By 05045 0190 00045 0.0384 0913
n=100 | By 05024 0.0080 00024 00098 0912 fy 05024 0.0080 0.0024 00098 0.910
Pa 05020 01021 00020 00104 0898 | fp 03020 0102 00020 0.0105 0.908
fas 0.5100 01034 00100 00108 0883 | fy 05099 01042 0.0099 0.0109 0.808
0 L0174 01500 00174 00228 087 o L0178 0.1499 0.0178 0.028 0.887
7 10265 01403 00265 00204 0904 | o 10201 0.1407 0.0200 0.0206 0910
gl 10101 01426 00191 0027 0913 | 13 10246 01492 0.0246 0.0228 0.8%
P12 0498 0.0744 -0.0014 00055 0.903
P13 04996 0.0746 -0.0004 0.0056 0.897
I3 04982 0.0782 -0.0018 00061 0.802
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Uncorrelated Correlated
FErrors Errors
Parameter  Mean SD Bias MSE CI Parameter  Mean SD Bias MSE CI

Sample
Size

B 0.4984 0.1183 -0.0016 00140 0911|  f 0.4980 0.1183 -0.0020 0.0140 0.910
foo L0012 01183 -0.0012 00140 0921 | fe  -L0018 01191 -0.0018 0.0142 0912
Bog - -L0O0T5> 01200 -0.0075 00144 0903 |  fpy  -L0070 0.1184 -0.0070 0.0141 0918
i 05016 0.1391 0.0016 00253 0905 | fn 05019 0.1591 0.0019 0.0253 0.904
B 05043 01350 0.0043 0.0240 0908 |  frp 05045 0.1539 0.0045 0.0237 0.918
B 05127 01608 00127 00260 0900 | fz 05122 01578 0.0122 0.0250 0.909
=150 | fn 0.4936 0.0819 -0.0014 0.0067 0.907 |  fa 04987 0.0819 -0.0013 0.0067 0.903
P 0.4983 0.0830 -0.0017 0.0069 0.891| fp 04978 00819 -0.0022 0.0067 0.801
P 0.5019 0.0303 0.0019 0.0064 0914 oy 05003 0.0813 0.0003 0.0066 0.910
a1 10121 01133 0.0120 00130 0906 | oy 10125 01132 00125 0.0130 0.906
g} 1.0063 0.1166 0.0063 0.0136 0.911 g} 1.0060 0.1143 0.0060 0.0131 0.910
03 10112 01130 0.0112 00131 0.905 T3 10115 01171 00115 0.0138 0897
2 04974 0.0622 -0.0026 0.0039 0.391
s 04986  0.0592 -0.0014 0.0035 0.908
2 0.4963 0.0599 -0.0037 0.0036 0.905

B 04974 0.0868 -0.0026 00075 0892 fy 04970 0.0869 -0.0030 0.0075 0.89%
g 09975 0.0861 00025 00074 0903 |  fop  -0.9990 0.0860 0.0010 0.0074 0.905
fog - -1.0000 0.0848 0.0001 00072 0903 |  fog  -1.0003 0.0845 -0.0003 0.0071 0.910
i 05011 01164 0.0011 00135 0904 |  fn 05014 0.1164 0.0014 0.0135 0905
b2 04987 01004 -0.0013 00120 0926 | frp 04992 0.1135 -0.0008 0.0129 0.897
B 04975 01128 -0.0025 00127 0907 | fg 04979 01153 -0.0021 0.0133 0.804
n=300 | fn 0.4936 0.0583 -0.0014 0.0034 0896 |  fa 04986 0.0583 -0.0014 0.0034 0.8%
fy 0.5010 0.0579 0.0010 0.0033 0.900 |  fyp 05001 00576 0.000L 0.0033 0.899
P 0.5020 0.0377 0.0020 0.0033 0894  foy 05019 00380 0.0019 0.0034 0.905
01 1.0059  0.0822 0.0059 0.0068 0.901 a1 1.0063 0.0822 0.0063 0.0068 0.902
g} 1.0018 0.0815 0.0018 00066 0893 | o9 1.0024 0.0847 00024 0.0072 0883
3 1.0048  0.0842 0.0048 0.0071 0.898 73 1.0048  0.0811 0.0048 0.0066 0.903
2 0.4990  0.0436 -0.0010 0.0019 0.903
s 04982 0.0427 -0.0018 0.0018 0.897
P2 0.4992  0.0447 -0.0008 0.0020 0.386
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Table 2 shows the Bayesian criteria for the model assuming uncorrelated and correlated
errors. The model assuming correlated errors is better when compared to the other model in all
considered criteria.

Table 2: Simulation Data. Bayesian Criteria.

Sample Model Bayesian criteria

Size EAIC EBIC DIC

ne"0 Uncorrelated errors G17.788 644.770 609.041
Correlated errors 572.298 609.026 562.107

1—100 Uncorrelated errors 875.026 906.288 866.172
Correlated errors 811.754 850.831 799.9908

150 Uncorrelated errors | 1299.335 1335.462 1290.421
Correlated errors 1201.428 1246.588 1193.225

=300 Uncorrelated errors | 2575.710 2620.15656  2566.762
Correlated errors 2373.897 2429.453 2384.760

In order to verify the behavior of the MCMC implementation we provide some plots in the

Appendix 1 (Additional Matter).
3.2 Real Data Application

In this section, we consider a Bayesian analysis of the real data set presented in the
website Brazilian Volleyball Confederation (CBV) (2012) to illustrate an application of the
proposed methodology, in particular, data related to proportions of the points volleyball teams.
We apply the compositional data methodology to such set considering as components the
proportions of the winning team points in 128 games of Brazilian Men’s Volleyball Super
League 2011/2012. This study was based on the four components: proportion of points in the
attack(x, ), pro- portion of points in the block (x, ), proportion of points in the serve (x3)
and proportion of points in the errors of the opposite team (x4 ).

On the other hand, it was considered five independent variables (covariates): player who
scored more points in the game belongs to the winning team (z; ), the winning team has won
League at least once in the last twelve years (z, ) , percentage of excellent reception of the
winning team in the game (z3 ) and percentage of excellent defense of the loser team in the
game (z,).

We assume an additive log-ratio (ALR) transformation given by y;; = log(x;;/
Xia), Yiz = l0g(xi2/xi4) and yiz = log(x;z/x4).

The likelihood function for the models with uncorrelated and correlated errors are given

by L(v;) and L(v,), respectively
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1 n
L(v;) « 1_[(02) 2 exp (—FZ & ), (10)

J =1
and
a- P23) (1 - P 3) 1- P12)
L(wy) o [5] 72 exp == [ P2 1 Z z
2R of , £
i=1

1 n n n
X exp {— R [2R12 Z €i1€i2 + 2Rq3 Z €i1€i3 T 2R3 Z 5i2€i3n: (11)

i=1 i=1 i=1
where R = 2p1,p13p23 — (32 + p3 + p33), Rip = (P13p2s —P1z) , Ry3 = (Pazb2s—piz) , Ry

010, 0103

__(p12P13—P23) ?
1201?:73 ““and YL 1‘g = i- 1(3’1] Boj = P1jZin — Bajzia — B3jZiz — B4jzi4)

j=123andi=1,-,128.

The proposed model in (10) and the following independent non-informative prior
distributions (4) were considered: Bo; ~ N(0,10%), B;; ~N(0,10%), ¢/ ~16(0.1,100),
where [ = 1,2,3,4 and j = 1,2,3. For proposed regression model with correlated errors (11),
we considered Y51~ W;5(3,R) (where R is ) and the same independent proper prior
distributions for c, [)’lj, for [ =1,234andj=1,23. It was simulated 100,000 Gibbs
samples using the rjags package (Plummer (2011)) interacting with R software (R (2011)), in
which the first 10,000 simulated samples were discarded to eliminate the effects of the initial
values and we considered every 20th sample among the 90,000 Gibbs samples. The
convergence was verified through Gelman-Rubin diagnostic. It shows values very close to 1
indicating convergence of the simulation algorithm.

According to Carlin and Louis (2009), the most basic tool for investigating model
uncertainty is the sensitivity analysis, that is, making reasonable modifications to the
assumption, recomputing the posterior quantities of interest and seeing if they have changed
in a way that has practical impact on interpretations. Thus, we checked the sensitivity analysis
for different choices of prior parameters (Bo;, Bjj, and 0]-2, for 1 = 1,2,3,4) on the mean
components by changing only on parameter at a time and keeping all other parameters
constant to their default values. We observe that posterior summaries of the parameters do not

present considerable difference and not affect the results.
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Table 3 shows the posterior summaries for the parameters of the model (10) assuming
uncorrelated and correlated errors. The convergence was verified through Gelman-Rubin
diagnostic. It showed values very close to 1 indicating convergence of the simulation
algorithm. Note that there is significant difference regarding to the proportions attack, block
and serve points indicating by the estimated By;, B31, Baz and B,3; for both models
(uncorrelated and correlated errors), i.e., the player who scored in the game belongs to
the winning team, percentage of excellent reception of the winning team and
percentage of excellent defense of the loser team help it in these skills. Moreover, the
estimated posterior means and standard deviations present similarity values for the
both models (uncorrelated and correlated errors). We also observe that more

parameters were significant in the correlated model than uncorrelated model, i.e.,

Bz, Biz» Ba1, B2z, PBazand fuy.

Table 3: Summary of the posterior distributions for the models parameters assuming uncorrelated and

correlated errors.

Uncorrelated Correlated
Errors Errors
Parameter  Mean Standard Credihility Parameter  Mean Standard Credibility
Deviation Interval (90%) Deviation Interval (90%)
Bo1 0.5471 0.2047 (0.2104; 0.8850) Bov 0.5500 0.2036 (0.2118; 0.8873)
Bo2 -1.9755  0.3496 (-2.5542; -1.4051) Bo2 -1.9696  0.3453 (-2.5384; -1.3936)
Bos -0.9446  0.4724 (-1.7182; -0.1713) Boz -0.9415 04771 (-1.7364; -0.1609)
B11 0.1741 0.0469 (0.0972; 0.2515) B 0.1730 0.0474 (0.0957; 0.2508)
B2 0.1444  0.0802  (0.0132; 0.2767) B2 0.1415  0.0805  (0.0102; 0.2746)
B13 0.1905 0.1097 (0.0080; 0.3702) Bz 0.1916 0.1098 (0.0096; 0.3703)
Ba21 -0.0714  0.0450 (-0.1453; 0.0032) Bar -0.0720  0.0457 (-0.1464; 0.0039)
22 -0.1536  0.0764 (-0.2806; -0.0289) Baz -0.1532  0.0760 (-0.2786; -0.0297)
Ba3 -0.0275  0.1047 (-0.1996; 0.1436) Bag -0.0273  0.1066 (-0.2029; 0.1473)
Fa1 0.4285 0.1876 (0.1175; 0.7336) Ba1 0.4297 0.1872 (0.1233; 0.7381)
Ba2 0.5257 03171  (0.0019; 1.0472) Ba2 0.5211  0.3185  (0.0001; 1.0465)
a3 -0.2634  0.4346 (-0.9775; 0.4523) Bag -0.2656  0.4405 (-0.9912; 0.4606)
Ba1 -0.5392  0.3034 (-1.0360; -0.03853) Ba1 -0.5440  0.3007 (-1.0380; -0.0436)
Baa 1.2414  0.5134  (0.3903; 2.0931) Ba2 1.2391 05072 (0.4001; 2.0750)
Ba3 -1.9115  0.6980 (-3.0575; -0.7713) Bag -1.9177  0.6959 (-3.0666; -0.7668)
oy 0.0594 0.0078 (0.0478; 0.0731) 71 0.0594 0.0078 (0.0478; 0.0731)
fop) 0.1701 0.0222 (0.1372; 0.2089) o) 0.1706 0.0219 (0.1378; 0.2093)
a3 0.3231 0.0425 (0.2606; 0.3936) a3 0.3233 0.0420 (0.2611; 0.3992)
P12 0.3596 0.0789 (0.2262; 0.4845)
P13 0.2373 0.0851 (0.0939; 0.3746)
P23 0.1653 0.0878 (0.0169; 0.3068)

Table 4 presents the Bayesian model selection criteria expected Akaike information

criterion (EAIC), expected Bayesian information criterion (EBIC ) and deviance information
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criterion (DIC). These results are suggesting that fitted regression model assuming correlated
errors is the best choice (lower values EAIC, EBIC and DIC).

Table 4: Bayesian Criteria for the models parameters assuming uncorrelated and correlated errors.

Bayesian Criteria
EAIC EBIC DIC
Uncorrelated errors 343.621 394.674 334.112
Correlated errors 342,964 394.017 333.469

Model

Some plots to examine the behaviour of the chains of MCMC implementation are

avaliable in the Appendix 2 (Additional Matter).
4. Concluding Remarks

In this paper, we present a Bayesian analysis for compositional regression model
considering ALR transformation and assuming uncorrelated and correlated errors. The
inferencial procedure for the parameters based on MCMC methods. The Bayesian approach
has some advantages over other inference methods. We have that it allows to incorporate prior
information about the parameter, it pro- vides results without reliance on asymptotic
approximation, the great number of covariates and missing data are easily handed in the
Bayesian framework.

Since studies about volleyball data do not consider the compositional data strucuture for
the fundaments, here we applied the proposed methodology in order to verify, in the context
of regression models, the relationship between fundaments of volleyball (without discarding
the multivariate structure) and covariates observed on the volleyball games.

We analysed a real data set from percentages of winning volleyball team’s points, in which
it was considered multivariate data structure. A comparison study of models was carried out
through model selection procedures based on a statistical criteria, i.e, the complete covariance
matrix was estimated to evaluate the importance of correlations among the fundaments. Thus,
the results indicate that the compositional regression model with correlated errors outperforms
the model with uncorrelated errors, besides pointing out the advantage of considering the

natural multivariate structure of the data.
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Additional Matter of the paper:
Modeling Compositional Regression with
Uncorrelated and Correlated Errors
Shimizu, T.K.O., Louzada, F., Suzuki, A.K. and Ehlers, R.S.

Here we provide some plots about the MCMC implementation in both the simulation

study (Section 3.1) and the application (Section 3.2) to volleyball data.

3.1 Appendix 1 : Plots of MCMC implementation - Section

In this appendix we present a graphic visualization about the implementation in the simu-
lation study for models assuming uncorrelated and correlated errors. The plots were about

the last sample generated with sample size of n =70.



238 Modeling Compositional Regression With Uncorrelated and Correlated Errors: A Bayesian Approach

Trace of By, Density of Byq
- w
ol i
ER 2]
o T T T T T T T o T T T \‘ -
10000 15000 20000 25000 30000 35000 40000 0o 0s 10 15
kerations N=3000 Bandwidth=0.03622
Trace of By Density of By,
- 2
@ ] ER
o =7
-] 2 4
=
! T T T T T T T A T T \-""
10000 15000 20000 25000 30000 35000 40000 -15 -1.0 -05
kerations N=3000 Bandwidth = 0.03649
Trace of B3 Density of g3
o
2 @
<] ER
@] o
= S T T T
10000 15000 20000 25000 30000 35000 40000 -20 -15 -10 -05
lterations N=3000 Bandwidth = 0.03856
Trace of By, Density of B4
@
« o ]
s |
=
- o T T T T
10000 15000 20000 25000 30000 35000 40000 -1.0 -05 00 0s
kerations N=3000 Bandwidth = 00435
Trace of By Density of B2
=l
v -
g
e ]
A T = T T Il
10000 15000 20000 25000 30000 35000 40000 -05 0.0 0s 10 15
kerations N=3000 Bandwidth = 0.04433
Trace of Py3 Density of B4
a ] 2]
w |
2
2 C T - T T T T
10000 15000 20000 25000 30000 35000 40000 05 0o 0s 10 15
lterations N=3000 Bandwidth = 0.04861

Figure 1: Trace plots and density for posterior distribution of parameters (model with uncorrelated errors -

Section 3.1).
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Figure 2 : Trace plots and density for posterior distribution of parameters (model with uncorrelated errors -

Section 3.1).
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Figure 3 : Trace plots and density for posterior distribution of parameters (model with correlated errors -

Section 3.1).
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Figure 4 : Trace plots and density for posterior distribution of parameters (model with correlated errors -

Section 3.1).
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Figure 5 : Trace plots and density for posterior distribution of parameters (model with correlated

errors - Section 3.1).

Figures 1, 2, 3, 4 and 5 show the behaviour of MCMC implementation for the param-
eters of model with uncorrelated and correlated errors for simulation studies. We observe
that the chains converged for all the parameters (see trace plots). Also, the convergence was
monitored through by Gelman-Rubin diagnostic, being that the values for all the parameters

were around 1.
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3.2 Appendix 2 : Plots of MCMC implementation - Section

In this appendix we present a graphic visualization about the implementation in the application of
volleyball data (Section 3.2) for models assuming uncorrelated and correlated errors.
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Figure 6 : Trace plots and density for posterior distribution of parameters (model with uncorrelated errors -
Section 3.2).
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Figure 7 : Trace plots and density for posterior distribution of parameters (model with uncorrelated errors -

Section 3.2).
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Figure 8 : Trace plots and density for posterior distribution of parameters (model with uncorrelated errors -

Section 3.2).
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Figure 9 : Trace plots and density for posterior distribution of parameters (model with

correlated errors - Section 3.2).
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Figure 10 : Trace plots and density for posterior distribution of parameters (model with correlated errors -

Section 3.2).
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Figure 11 : Trace plots and density for posterior distribution of parameters (model with correlated errors -
Section 3.2)
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Figure 12 : Trace plots and density for posterior distribution of parameters (model with correlated errors -
Section 3.2).

Figures 6, 7, 8, 9, 10, 11 and 12 present the behaviour of MCMC implementation for the
parameters of model with uncorrelated and correlated errors for application of volleyball data. We
observe that the chains converged for all the parameters (see trace plots). Also, the convergence
was monitored through by Gelman-Rubin diagnostic, being that the values for all the parameters
were around 1.
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