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Abstract: Compositional data consist of known compositions vectors whose 

components are positive and defined in the interval (0,1) representing pro- 

portions or fractions of a “whole”. The sum of these components must be 

equal to one. Compositional data is present in different knowledge areas, as 

in geology, economy, medicine among many others. In this paper, we 

propose a new statistical tool for volleyball data, i.e., we introduce a 

Bayesian anal- ysis for compositional regression applying additive log-ratio 

(ALR) trans- formation and assuming uncorrelated and correlated errors. 

The Bayesian inference procedure based on Markov Chain Monte Carlo 

Methods (MCMC). The methodology is applied on an artificial and a real 

data set of volleyball. 
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1. Introduction 

Compositional data are vectors of proportions specifying G fractions as a whole. Such 

data often result when raw data are normalized or when data is obtained as proportions of a 

certain heterogeneous quantity. 

By definition, a vector x in the Simplex sample space is a composition, elements of this 

vector are components and the vectors set is compositional data (Aitchison (1986)). 

Therefore, for x = (x1, x2, ⋯ , xG)′ to be a compositional vector, xi is non negative value, 

for i = 1,⋯ , G and  x1 + x2 + ⋯+ xG = 1. The first model addopted for the analysis of 
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such data was the Dirichlet distribution. However, it requires that the correlation structure is 

wholly negative, a fact that is not observed for compositional data, in which some 

correlations are positive (see for example, Aitchison (1982)). 

Aitchison and Shen (1980) developed the logistic-Normal class of distributions 

transforming the G  component vector x into a vector y in RG−1  and considering the 

Additive Log-Ratio (ALR) function. The use of Bayesian methods is a good alternative for 

the analysis of compositional data, for example Achcar and Obage (2005) considered 

Bayesian analysis using the ALR and Box-Cox transformations in regression models for 

compositional data assuming correlated errors with bivariate normal distributions ; Iyengar 

and Dey (1996) developed a complete Bayesian methodology to analyse such data with the 

implementation of Markov Chain Monte-Carlo methods, comparing with alternative 

methods as maximum likelihood estimates; Iyengar and Dey (1998) extended the last work 

(Iyengar and Dey,(1996)) applying Box-Cox transformations for compositional data; 

Tjelme- land and Lund (2003) defined a spatial model for compositional data in a Bayesian 

framework and discussed appropriate prior distributions; Tsagris (2014) performs 

supervised classification of compositional data using the k-NN algorithm. 

Some researchers have focused on the performance indicators of volleyball, they have 

different objectives and statistical procedures. For example, Campos et al. (2014) studied the 

advantage of playing at home and the influence of performance indicators on the game score 

according to the number of sets, based on Brazilian and Italian elite women’s volleyball 

leagues. Mesquita and Sampaio (2010) compared the volleyball game-related statistics by 

sex and analyzed all games of the male and female World Cup in 2007. Afonso et al. (2012) 

examined predictors of the setting zone in elite-level male volleyball. Rodriguez-Ruiz et al. 

(2011) analyzed the terminating actions (serve, attack, block and opponent errors) that led to 

point scoring. Although these studies were based on voleyball data, none of them considered 

methodology of compositional data. 

Thus, the main purpose is to propose a new statistical tool for volleyball data, that is, a 

compositional regression model assuming correlated and uncorrelated normal errors based 

on Bayesian approach. Usually, the volleyball data (attack, block, serve and opponent error) 

have compositional restrictions, i.e., they have dependence structure, being that standard 

existing methods to analyze multivariate data under the usual assumption of multivariate 
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normal distribution (see for example, Johnson and Wichern (1998)) are not appropriate to 

analyze them. 

We consider a real data set related to the first and second rounds matches of Brazilian 

Men’s Volleyball Super League 2011/2012 obtained from the website (CBV, 2012). The 

data concern the teams that played and won the games in such rounds; more specifically, the 

points of the team that won each game were defined as composition and the proportions of 

each composition are the volleyball skills, as attack, block, serves and errors of the opposite 

team. 

The points of the winning team in each game were obtained by four components. We 

denoted x1 the proportion of points in the attack, x2 the proportion of points in the block, x3 

the proportion of points in the serve and x4 the proportion of points in the errors of the 

opposite team. 

The paper is organized as follows: Section 2 introduces the formulation of regression 

model applied through the Additive Log-Ratio (ALR) transformation Bayesian analysis of 

the proposed model assuming correlated and uncorrelated Normal errors; Section 3 provides 

the results of the application to an artificial and a real data set related to the Brazilian Men’s 

Volleyball Super League 2011/2012; finally, Section 4 concludes the paper with some final 

remarks. 

2. Methodology 

We can consider yij = H(
xij

xiG
),j = 1,⋯ , n and j = 1,⋯ , g , being H(•) the chosen 

transformation function that assures resulting vector has real components, where xij 

represents the i − th observation for the j − th component, such thatxi1 > 0,⋯ , xiG > 0 

and ∑ xij
G
j=1 = 1, for i = 1,⋯ , n. 

The ALR transformation for the analysis of compositional data is given by 

𝑦𝑖𝑗 = (
𝑥𝑖𝑗

𝑥𝑖𝐺
) = log(

𝑥𝑖𝑗

𝑥𝑖𝐺
)                               (1) 

The regression model assuming ALR transformation for the response variables is given 

by 

𝑦𝑖 = 𝛽𝑧𝑖 + 𝜀𝑖                                   (2) 

where yi = (yi1,⋯ , yig)
Τ is a vector (g × 1) of response variables where g = G − 1 and 

G  is the number of components (compositional data); β = (β0, β1,⋯ , βg)  is a matrix 
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(g × (p + 1)) of regression coefficients where p denotes the number of covariates; zi is a 

vector ((𝑝 + 1) × 1) of associated covariates to the i − th  sample and 𝜀𝑖  are random 

errors, for 𝑖 = 1,⋯ , 𝑛.The matrix formulation of the model 

(2) is , 

[

𝑦𝑖1

𝑦𝑖2

⋮
𝑦𝑖2

] =

[
 
 
 
𝛽01 𝛽11 ⋯ 𝛽𝑝1

𝛽02 𝛽12 ⋯ 𝛽𝑝2

⋮ ⋮ ⋱ ⋮
𝛽0𝑔 𝛽1𝑔 ⋯ 𝛽𝑝𝑞]

 
 
 

𝑔×(𝑝+1)

[

1
𝑧𝑖1

⋮
𝑧𝑖𝑝

] + [

𝜀𝑖1

𝜀𝑖2

⋮
𝜀𝑖𝑔

]

𝑔×1

 

In this paper, we are interested in a Bayesian analysis of model (2) with ALR 

transformation (1) applied to response variables and assuming a multivariate Normal 

distribution for the correlated and uncorrelated errors. 

First of all, we assume uncorrelated errors for the model (2), i,e the error vector εi1 

follows a multivariate normal distribution  N1(0,∑1), where 0 is a vector of zeros and ∑1 

is a variance-covariance matrix given by 

∑1 =

(

 

𝜎1
2 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎𝑔

2
)

  

The likelihood function of parameters v1 = (β0j, βlj, σj
2) is given by 

L(v1) ∝ ∏(σj
2)−n/2 exp(−

2

2σj
2 ∑ϵij

2

n

i=1

)，                                     (3)

g

j=1

 

where∑ ϵij
2n

i=1 = ∑ (yij − βoj − βljzi)
2n

i=1 , for i = 1,⋯ , n, j = 1,⋯ , g and l = 1,⋯ , p . 

An alternative approach for the analysis of compositional data is the use of Bayesian 

methods (see for example, Iyengar and Dey (1996); or Tjelmeland and Lund (2003)), 

especially considering Markov Chain Monte Carlo (MCMC) methods (see for example, 

Gelfand and Smith (1990)). 

The Bayesian inference allows to associate previous knowledge of the parameters 

through a prior distribution. The Bayesian inference procedure for regression model (3) 

considers proper prior distributions guaranteeing proper posterior distributions. Furthermore, 

it was ensuring non-informative prior distributions according to the fixed hyperparameters. 

Thus, we assume the following prior distributions for the parameters v1 
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𝛽𝑜𝑗  ~ 𝑁(𝑎0𝑗, 𝑏𝑜𝑗
2 ), 

𝛽𝑙𝑗 ~ 𝑁(𝑎𝑙𝑗, 𝑏𝑙𝑗
2 ),                              (4) 

𝜎𝑗
2 ~ 𝐼𝐺(𝑐𝑗, 𝑑𝑗), 

where IG(c, d) denotes an Inverse-Gamma distribution with meand/(c − 1) and variance 

d2/[(c − 1)2(c − 2)], forc > 2; a0j, b0j, alj, blj, cj  and dj  are known hyperparameters,j =

1,⋯ , p. 

All the parameters were assumed independent a priori. 

Posterior summaries of interest for the model (3) assuming prior distributions (4) are 

given using simulated samples of the joint posterior distribution for v1 obtained using the 

Bayes formula, that is, 

π(𝛽0𝑗, 𝛽𝑙𝑗, 𝜎𝑗
2|𝑦)𝛼 ∏exp [−

1

2𝑏0𝑗
2 (𝛽0𝑗 − 𝑎0𝑗)

2]

𝑔

𝑗=1

× ∏∏exp [−
1

2𝑏𝑙𝑗
2 (𝛽0𝑗 − 𝑎0𝑗)

2]

𝑝

𝑙=1

𝑔

𝑗=1

× ∏(𝜎𝑗
2)−(𝑐𝑗+1)exp (−𝑑𝑗/𝜎𝑗

2) × ∏(𝜎𝑗
2)−

𝑛
2exp (−

1

2𝜎𝑗
2 ∑ 𝜖𝑖𝑗

2
𝑛

𝑖=1
)

𝑔

𝑗=1

𝑔

𝑗=1

 

The full conditional densities using Gibbs sampling algorithm (Gelfand and Smith, 

(1990)) for each parameter are given by, 

𝑖) 𝜋(𝛽0𝑗|𝛽𝑙𝑗, 𝜎𝑗
2, 𝑦) ~ 𝑁 [

𝑎𝑜𝑗𝑏𝑜𝑗 ∑ 𝜇𝑖
(𝑗)𝑛

𝑖=1

𝜎𝑗
2 + 𝑛𝑏𝑜𝑗

2 ,
𝑏0𝑗

2 𝜎𝑗
2

𝜎𝑗
2 + 𝑛𝑏0𝑗

2 ],                              (5) 

𝑖𝑖)𝜋(𝛽𝑙𝑗|𝛽0𝑗, 𝛽−𝑙 , 𝜎𝑗
2, 𝑦) ~ 𝑁 [

𝑎𝑙𝑗𝜎𝑗
2 + 𝑏𝑙𝑗 ∑ 𝑧𝑖𝑙𝜃𝐼

(𝑗)𝑛
𝑖=1

𝜎𝑗
2 + 𝑏𝑙𝑗

2 ∑ 𝑧𝑖𝑙
2𝑛

𝑖=1

,
𝑏𝐿𝑗

2 𝜎𝑗
2

𝜎𝑗
2 + 𝑏𝑗

2 ∑ 𝑧𝑖𝑙
2𝑛

𝑖=1

] 𝑎𝑛𝑑,           (6) 

𝑖𝑖𝑖)𝜋(𝜎𝑗
2|𝛽0𝑗, 𝛽𝑙𝑗, 𝑦) ~ 𝐼𝐺 [𝑐𝑗 +

𝑛

2
, 𝑑𝑗 +

1

2
∑ 𝜖𝑖𝑗

2
𝑛

𝑖=1
] ,                             (7) 

where μi
(j)

= yij − ∑ βljzil, θi
(j)

= yij − β0j
p
l=1  and ϵij = yij − 0j − ∑ βljzil

p
l=1 , for i =

1,⋯ , n , j = 1⋯ , g and l = 1,⋯ , p. 

The estimation procedure considered joint estimation where all the model parameters are 

generated in the MCMC algorithm simultaneously. The above conditional densities (5), (6), 

(7) belong to known parametric density families. Posterior summaries of interest for each 

model are simulated through the Just Another Gibbs Sampler (JAGS) program (Plummer 

(2003)). 
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Another approach for the regression model is modeling the structure of covariance 

matrix. Here, we consider correlated errors for the model given in (3), i.e., ϵi represents the 

errors vector assumed to be dependent random variables with a multivariate normal 

distribution Ng(0,∑2), where 0 is a vector of zeros and ∑2 is a variance-covariance matrix 

given by 

∑2 =

(

 
 

σ1
2 ρ12σ1σ2 ⋯ ρ1gσ1σg

ρ12σ1σ2 σ2
2 ⋯ ρ2gσ2σg

⋮ ⋮ ⋱ ⋮
ρgσ1σg ρ2gσ2σg ⋯ σg

2
)

 
 

,                                (8) 

where ρ12  is the correlation coefficient between ϵi1  and ϵi2； ρ1g  is the correlation 

coefficient  between ϵi1 and ϵig  and ρ2g is the correlation coefficient between ϵi2  and 

ϵig. 

Considering the assumptions above, the likelihood function of parameters v2 =

(β0, βl, ∑2) is given by 

 L(v2) ∝
1

|∑2|𝑛/2 exp {−
1

2
∑ [(𝑦𝑖 − 𝛽0 − 𝛽𝑙𝑧𝑖

)
Τ

 | ∑ (𝑦𝑖 − β0 − βlzi)
−1
2 ]𝑛

𝑖=1 } 

for i = 1,⋯ , n and l = 1,⋯ , p. 

The following prior information is used for the Bayesian analysis, 

𝛽𝑜 ~ 𝑁(𝑎0, 𝑏𝑜
2𝐼), 

𝛽𝑙  ~ 𝑁(𝑎𝑙 , 𝑏𝑙
2𝐼),                              (9) 

∑2
−1 ~  𝑊𝑔(𝑚, 𝑀), 

where Wg(m,M) denotes a Wishart prior distribution, m is the number of degrees of 

freedom and M  is a prespecified precision matrix. Therefore, all the parameters were 

assumed independent a priori. 

Posterior summaries of interest for the model defined by (3), but with correlated errors 

assuming priors distributions (9) are given using simulated samples of the joint posterior 

distribution for v2 obtained using the Bayes formula, that is 

π(β0, βl, ∑2|y)α exp [−
1

2
(β0 − a0)

Τb0
−2(β0 − a0)] × exp [−

1

2
(βl − al)

Τbl
−2(βl −

al)] × |∑2
−1|

m−g−1

2  exp {−
1

2
tr(∑2

−1M−1)} × | ∑2|
−

n

2  exp {−
1

2
∑ [(yi − β0 −n

i=1

βlzi
)
Τ 
∑2

−1(yi − β0 − βlzi)]}.  
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The full conditional densities for each parameter are given by 

𝑖) 𝜋(𝛽0|𝛽𝑙, ∑2, 𝑦) ~ 𝑁 [(∑2
−1 [∑𝑦𝑖 − 𝛽𝑙𝑧𝑖

𝑛

𝑖=1

] +
𝐼

𝑏0
𝑎0) [𝑛∑2

−1 +
𝐼

𝑏0
2]

−1

, [𝑛∑2
−1 +

𝐼

𝑏0
2]

−1

], 

𝑖𝑖) 𝜋(𝛽0|𝛽−𝑙 , ∑2, 𝑦) ~ 𝑁 [(∑2
−1 ∑𝑧𝑖

𝑛

𝑖=1

[𝑦𝑖 − 𝛽𝑙] +
𝑎𝑙

𝑏𝑙

𝐼) [∑𝑧𝑖
Τ

𝑛

𝑖=1

𝑧𝑖∑2
−1 +

𝐼

𝑏𝑙
2]

−1

, [∑𝑧𝑖
Τ𝑧𝑖∑2

−1

𝑛

𝑖=1

+
𝐼

𝑏𝑙
2]

−1

], 

𝑖𝑖𝑖) 𝜋 (∑2|𝛽0, 𝛽𝑙 , 𝑦) ~ 𝑊𝑔 [𝑛 + 𝑚, [𝜖𝑖
Τ𝜖𝑖 + 𝑀−1]

−1
] 

where 𝜖𝑖 = [𝑦𝑖1 − 𝛽01 − ∑ 𝛽𝑙1𝑧𝑖𝑙 , 𝑦𝑖2 − 𝛽02 − ∑ 𝛽𝑙2𝑧𝑖𝑙 ,⋯ , 𝑦𝑖𝑔 − 𝛽0𝑔 − ∑ 𝛽𝑙𝑔𝑧𝑖𝑙 ,
𝑝
𝑙=1

𝑝
𝑙=1

𝑝
𝑙=1 ],  for 

𝑖 = 1,⋯ , 𝑛 and 𝑙 = 1,⋯ , 𝑝. 

For the estimation procedure we consider joint estimation where all the model 

parameters are estimated simultaneously in the MCMC algorithm. Posterior summaries of 

interest for each model are simulated using standard MCMC methods through the Just 

Another Gibbs Sampler (JAGS) program (Plummer (2003)). 

3. Application 

This section reports a simulation study for the compositional data and illustrates an 

application of the proposed methodology through ALR transformation. 

3.1 Simulation Study 

A simulation study was conducted to illustrate the proposed methodology. The data was 

generated from multivarite normal distributions for both models (with uncorrelated and 

correlated errors). Assuming uncorrelated errors, the parameter values were fixed as β0 =

(0.5, −1,−1), β1 = (0.5,0.5,0.5), β2 = (0.5,0.5,0.5)  and σ2 = (1,1,1).  For the case of 

correlated errors, we  assumeρ12 = ρ13 = ρ23 = 0.5. The covariates were generated by  

z 1  ~  Bernoulli (0.5)  and z 2  ~  Normal (0.5, 0.1). We took the sample sizes n =

70, 100, 150 and 300 where for each sample size we conducted 1,000 replicates. It was 

simulated 40,000 Gibbs samples using the rjags package (Plummer (2011)) interacting with R 

software (R (2011)), with a burn in of 25% of the size of the chain and we considered every 

10th sample among the 30,000 Gibbs samples. Table shows the simulation results, i.e, mean, 

standard deviation (SD), bias, mean squared error (MSE) and credibility interval (CI). The CI 

was stable and close to the nominal coverage of 90%. The MSE of all the parameters decay 

towards zero as the sample size increases.  
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Table 1: Simulation Data. Summary of the posterior distributions for the models parameters 

assuming uncorrelated and correlated errors. 
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Table 2 shows the Bayesian criteria for the model assuming uncorrelated and correlated 

errors. The model assuming correlated errors is better when compared to the other model in all 

considered criteria.  

Table 2: Simulation Data. Bayesian Criteria. 

 

In order to verify the behavior of the MCMC implementation we provide some plots in the 

Appendix 1 (Additional Matter). 

3.2 Real Data Application 

In this section, we consider a Bayesian analysis of the real data set presented in the 

website Brazilian Volleyball Confederation (CBV) (2012) to illustrate an application of the 

proposed methodology, in particular, data related to proportions of the points volleyball teams. 

We apply the compositional data methodology to such set considering as components the 

proportions of the winning team points in 128 games of Brazilian Men’s Volleyball Super 

League 2011/2012. This study was based on the four components: proportion of points in the 

attack(𝑥1 ), pro- portion of points in the block (𝑥2 ), proportion of points in the serve (𝑥3 ) 

and proportion of points in the errors of the opposite team (𝑥4 ). 

On the other hand, it was considered five independent variables (covariates): player who 

scored more points in the game belongs to the winning team (𝑧1 ), the winning team has won 

League at least once in the last twelve years (𝑧2 ) , percentage of excellent reception of the 

winning team in the game (𝑧3 ) and percentage of excellent defense of the loser team in the 

game (𝑧4 ). 

We assume an additive log-ratio (ALR) transformation given by 𝑦𝑖1 = log(𝑥𝑖1/

𝑥𝑖4), 𝑦𝑖2 = log(𝑥𝑖2/𝑥𝑖4) and 𝑦𝑖3 = log(𝑥𝑖3/𝑥𝑖4). 

The likelihood function for the models with uncorrelated and correlated errors are given 

by 𝐿(𝑣1) and 𝐿(𝑣2), respectively  
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L(𝑣1) ∝ ∏(𝜎𝑗
2)

−
𝑛
2  

3

𝑗=1

exp (−
1

2𝜎𝑗
2 ∑𝜀𝑖𝑗

2

𝑛

𝑖=1

),                               (10) 

and 

𝐿(𝑣2) ∝ |∑2|
−

𝑛
2  exp {−

1

2𝑅
[
(1 − 𝜌23

2 )

𝜎1
2 ∑𝜀𝑖1

2 +
(1 − 𝜌13

2 )

𝜎2
2

𝑛

𝑖=1

+ ∑𝜀𝑖2
2 +

(1 − 𝜌12
2 )

𝜎3
2 ∑𝜖𝑖3

2

𝑛

𝑖=1

𝑛

𝑖=1

]}

×  exp {−
1

2𝑅
[2𝑅12 ∑𝜖𝑖1𝜖𝑖2 + 2𝑅13 ∑𝜖𝑖1𝜖𝑖3 + 2𝑅23 ∑𝜖𝑖2𝜖𝑖3

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

]},           (11) 

where 𝑅 = 2𝜌12𝜌13𝜌23 − (𝜌12
2 + 𝜌13

2 + 𝜌23
2 )﹐𝑅12 =

(𝜌13𝜌23−𝜌12)

𝜎1𝜎2
﹐𝑅13＝

(𝜌12𝜌23−𝜌13)

𝜎1𝜎3
﹐ 𝑅23

＝
(𝜌12𝜌13−𝜌23)

𝜎2𝜎3
 and ∑ 𝜀𝑖𝑗

2𝑛
𝑖=1 = ∑ (𝑦𝑖𝑗 − 𝛽0𝑗 − 𝛽1𝑗𝑧𝑖1 − 𝛽2𝑗𝑧𝑖2 − 𝛽3𝑗𝑧𝑖3 − 𝛽4𝑗𝑧𝑖4)

𝑛
𝑖=1

2
﹐for 

𝑗 = 1,2,3 𝑎𝑛𝑑 𝑖 = 1,⋯ ,128. 

The proposed model in (10) and the following independent non-informative prior 

distributions (4) were considered: 𝛽0𝑗 ~ N(0, 103)﹐𝛽𝑙𝑗 ~ N(0, 103)﹐𝜎𝑗
2 ~ 𝐼𝐺(0.1,100) , 

where 𝑙 = 1,2,3,4 𝑎𝑛𝑑 𝑗 = 1,2,3. For proposed regression model with correlated errors (11),  

we  considered ∑ ~−1
2 𝑊3(3, 𝑅) (where R is ) and the same independent proper prior 

distributions for c, 𝛽𝑙𝑗 , for 𝑙 = 1,2,3,4 𝑎𝑛𝑑 𝑗 = 1,2,3. It was simulated 100,000 Gibbs 

samples using the rjags package (Plummer (2011)) interacting with R software (R (2011)), in 

which the first 10,000 simulated samples were discarded to eliminate the effects of the initial 

values and we considered every 20th sample among the 90,000 Gibbs samples. The 

convergence was verified through Gelman-Rubin diagnostic. It shows values very close to 1 

indicating convergence of the simulation algorithm. 

According to Carlin and Louis (2009), the most basic tool for investigating model 

uncertainty is the sensitivity analysis, that is, making reasonable modifications to the 

assumption, recomputing the posterior quantities of interest and seeing if they have changed 

in a way that has practical impact on interpretations. Thus, we checked the sensitivity analysis 

for different choices of prior parameters (β0j, βlj, and σj
2, for l = 1,2,3,4) on the mean 

components by changing only on parameter at a time and keeping all other parameters 

constant to their default values. We observe that posterior summaries of the parameters do not 

present considerable difference and not affect the results. 
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Table 3 shows the posterior summaries for the parameters of the model (10) assuming 

uncorrelated and correlated errors. The convergence was verified through Gelman-Rubin 

diagnostic. It showed values very close to 1 indicating convergence of the simulation 

algorithm. Note that there is significant difference regarding to the proportions attack, block 

and serve points indicating by the estimated 𝛽11﹐𝛽31﹐𝛽42 and 𝛽43 for both models 

(uncorrelated and correlated errors), i.e., the player who scored in the game belongs to 

the winning team, percentage of excellent reception of the winning team and 

percentage of excellent defense of the loser team help it in these skills. Moreover, the 

estimated posterior means and standard deviations present similarity values for the 

both models (uncorrelated and correlated errors). We also observe that more 

parameters were significant in the correlated model than uncorrelated model, i.e., 

𝛽12﹐𝛽13﹐𝛽21﹐𝛽22﹐𝛽32 and 𝛽41. 

 

Table 3: Summary of the posterior distributions for the models parameters assuming uncorrelated and 

correlated errors. 

 

Table 4 presents the Bayesian model selection criteria expected Akaike information 

criterion (EAIC), expected Bayesian information criterion (EBIC ) and deviance information 
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criterion (DIC). These results are suggesting that fitted regression model assuming correlated 

errors is the best choice (lower values EAIC, EBIC and DIC). 

Table 4: Bayesian Criteria for the models parameters assuming uncorrelated and correlated errors. 

 

Some plots to examine the behaviour of the chains of MCMC implementation are 

avaliable in the Appendix 2 (Additional Matter). 

4. Concluding Remarks 

In this paper, we present a Bayesian analysis for compositional regression model 

considering ALR transformation and assuming uncorrelated and correlated errors. The 

inferencial procedure for the parameters based on MCMC methods. The Bayesian approach 

has some advantages over other inference methods. We have that it allows to incorporate prior 

information about the parameter, it pro- vides results without reliance on asymptotic 

approximation, the great number of covariates and missing data are easily handed in the 

Bayesian framework. 

Since studies about volleyball data do not consider the compositional data strucuture for 

the fundaments, here we applied the proposed methodology in order to verify, in the context 

of regression models, the relationship between fundaments of volleyball (without discarding 

the multivariate structure) and covariates observed on the volleyball games. 

We analysed a real data set from percentages of winning volleyball team’s points, in which 

it was considered multivariate data structure. A comparison study of models was carried out 

through model selection procedures based on a statistical criteria, i.e, the complete covariance 

matrix was estimated to evaluate the importance of correlations among the fundaments. Thus, 

the results indicate that the compositional regression model with correlated errors outperforms 

the model with uncorrelated errors, besides pointing out the advantage of considering the 

natural multivariate structure of the data.  
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Additional Matter of the paper: 

Modeling Compositional Regression with 

Uncorrelated and Correlated Errors 

Shimizu, T.K.O., Louzada, F., Suzuki, A.K. and Ehlers, R.S. 

Here we provide some plots about the MCMC implementation in both the simulation 

study (Section 3.1) and the application (Section 3.2) to volleyball data. 

3.1 Appendix 1：Plots of MCMC implementation - Section 

In this appendix we present a graphic visualization about the implementation in the simu- 

lation study for models assuming uncorrelated and correlated errors. The plots were about 

the last sample generated with sample size of ｎ＝70. 
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Figure 1：Trace plots and density for posterior distribution of parameters (model with uncorrelated errors - 

Section 3.1).
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Figure 2：Trace plots and density for posterior distribution of parameters (model with uncorrelated errors - 

Section 3.1).
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Figure 3：Trace plots and density for posterior distribution of parameters (model with correlated errors - 

Section 3.1). 
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Figure 4：Trace plots and density for posterior distribution of parameters (model with correlated errors - 

Section 3.1). 
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Figure 5：Trace plots and density for posterior distribution of parameters (model with correlated 

errors - Section 3.1). 

 

Figures 1, 2, 3, 4 and 5 show the behaviour of MCMC implementation for the param- 

eters of model with uncorrelated and correlated errors for simulation studies. We observe 

that the chains converged for all the parameters (see trace plots).  Also, the convergence was 

monitored through by Gelman-Rubin diagnostic, being that the values for all the parameters 

were around 1. 
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3.2  Appendix 2：Plots of MCMC implementation - Section 

In this appendix we present a graphic visualization about the implementation in the application of 

volleyball data (Section 3.2) for models assuming uncorrelated and correlated errors.

 

Figure 6：Trace plots and density for posterior distribution of parameters (model with uncorrelated errors - 

Section 3.2). 
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Figure 7：Trace plots and density for posterior distribution of parameters (model with uncorrelated errors - 

Section 3.2). 
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Figure 8：Trace plots and density for posterior distribution of parameters (model with uncorrelated errors - 

Section 3.2).  
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Figure 9：Trace plots and density for posterior distribution of parameters (model with 

correlated errors - Section 3.2). 
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Figure 10：Trace plots and density for posterior distribution of parameters (model with correlated errors - 

Section 3.2).  
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Figure 11：Trace plots and density for posterior distribution of parameters (model with correlated errors - 

Section 3.2) 
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Figure 12：Trace plots and density for posterior distribution of parameters (model with correlated errors - 

Section 3.2). 

Figures 6, 7, 8, 9, 10, 11 and 12 present the behaviour of MCMC implementation for the 

parameters of model with uncorrelated and correlated errors for application of volleyball data. We 

observe that the chains converged for all the parameters (see trace plots). Also, the convergence 

was monitored through by Gelman-Rubin diagnostic, being that the values for all the parameters 

were around 1. 
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