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Abstract: Influential observations do posed a major threat on the performance of 

regression model. Different influential statistics including Cook’s Distance and DFFITS 

have been introduced in literatures using Ordinary Least Squares (OLS). The efficiency 

of these measures will be affected with the presence of multicollinearity in linear 

regression. However, both problems can jointly exist in a regression model.  New 

diagnostic measures based on the Two-Parameter Liu-Ridge Estimator (TPE) defined 

by Ozkale and Kaciranlar (2007) was proposed as alternatives to the existing ones. 

Approximate deletion formulas for the detection of influential cases for TPE are 

proposed. Finally, the diagnostic measures are illustrated with two real life dataset. 
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1. Introduction 

In the application of regression analysis, there can be strong or nearly perfect relationship among 

the regressors. When this relationship exists, the regression model is said to suffer the problem of 

multicollineairty. The efficiency of Ordinary Least Square (OLS) estimator when applied to 

multicollinear data is seriously affected. The regression coefficients possess large standard errors and 

sometimes exhibit wrong sign (Johnston, 1972). In literature, some biased estimation techniques are 

introduced to solve this problem. Among them are the ridge regression estimator and Liu estimator 

introduced by Hoerl and Kennard (1970) and Liu (1993) respectively. The effect of influential 

observations on the OLS estimates has been thoroughly investigated over the years but little attention 

has been given to the effect of influential observations on biased estimation techniques. The problem 

of multicollinearity and influential observation on OLS has been addressed by different authors 

(Cook, 1977; Belsley et al., 1980; Cook and Weisberg (1980); Cook and Weisberg (1982); 

Chattergee and Hadi, 1986; Cook, 1986). Belsley (1991) investigated the effect of leverage in ridge 

regression. Walker and Birch (1988) examined the effect of influential points on ridge regression 

using case deletion method. Local influence analysis in principal component analysis and ridge 

regression estimator was investigated by (Shi, 1997; Shi and Wang, 1999). Jahufer and Jianbao (2009) 

used the modified ridge regression to detect influential points. Local influential analysis in Liu 

estimator was studied by Jahufer and Chen (2011). Jahufer (2013) investigated the effect of 

influential points on Liu estimator. Yasin and Murat (2016) studied the impact of influential point on 

two-parameter ridge regression. 

The objective of this paper is to introduce new influence diagnostics based on a Two-parameter 

estimator which combines ridge and Liu estimators defined by Ozkale and Kaciranlar (2007). Also, to 

obtain the generalized versions of Cook’s D, DFFITS and approximate case deletion formulas for this 

estimator. 
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The organization of this paper is as follows: Background information and review of the influence 

measures in OLS is given in section 2.  New diagnostic measures in two-parameter Liu-Ridge 

estimator is introduce in section 3. Section 4 covers application to two real life datasets. Discussion is 

provided in the last session. 

 

2. Background and Definition 

2.1. Background 

Consider the linear regression model 

y= Xβ + 𝜀                                                                               (1)  

where y is an n× 1 vector of response variable, X is an n×p centered and standardized known 

matrix. β is p× 1 vector of the unknown regression coefficients and ε is the nx1 vector of error terms 

with E(ε) = 0 and V(ε)=𝜎2𝐼𝑛  and In is an nxn matrix of identity matrix. 

The OLS estimator is defined as: 

�̂� = (𝑋′𝑋)−1𝑋′𝑦                                                                          (2) 

The corresponding residual vector, 𝑒𝑖, is defined as  

ei = y-ŷ=y-Xβ̂                                                                                                       

= y-(X′X)−1X′y= y(I- X(X′X)−1X′) since β̂ = (X′X)−1X′y               

ei  = (I-H)y where H=X(X′X)−1X′ is the hat matrix                                             

 

2.2 Influential Measures in Least Squares 

2.2.1 DFFITS 

DFFITS is the standardized change in the fitted value when a case is deleted. It is defined as: 

DFFITSi=
𝑥𝑖[�̂�−�̂�(𝑖)]

𝑆(𝑥𝑖�̂�)
                                                                      (3) 

where 𝑆(𝑥𝑖�̂�) is an estimator of standard error of the fitted values, 𝑥𝑖  is the ith row of the 𝑋 

matrix, �̂�(𝑖) is the least squares estimator of 𝛽 when the ith case is omitted in fitting the regression 

function. It can also be expressed algebraically as: 

(𝐷𝐹𝐹𝐼𝑇𝑆)𝑖 = (
ℎ𝑖𝑖

1−ℎ𝑖𝑖
)

1/2 𝜀𝑖

√�̂�2(1−ℎ𝑖𝑖)
  =  (

ℎ𝑖𝑖

1−ℎ𝑖𝑖
)

1/2
𝑡𝑖                                       (4) 

where  �̂�2  is the estimate of  𝜎2 ,  hii  is the diagonal elements of the hat matrix and   𝑡𝑖 =  
𝜀𝑖

√�̂�2(1−ℎ𝑖𝑖)
 is the studentized residual (also called the external studentized residual).   Jahufer (2013) 

suggested that for large data sets any observations for which the absolute value of DFFITS exceeds 

2√
𝑝

𝑛
  warrants attention. Draper (1981) suggested that for small to medium data sets any observations 

for which the absolute value of DFFITS exceeds 1 is influential.  

 

2.2.2 Cook’s Distance Measures  
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Cook’s distance measure denoted by 𝐷𝑖, considers the influence of the ith case on all n fitted 

values.  

𝐷𝑖 =
(�̂�−�̂�(𝑖))

′
(𝑋′𝑋)(�̂�−�̂�(𝑖))

𝑝𝑠2                                                                    (5) 

 

where �̂�(𝑖)  is the least squares estimator of β without the ith case. An equivalent algebraic 

expression of Cook’s D Measure is given by: 

𝐷𝑖 =
𝑟𝑖

2

𝑝
(

ℎ𝑖𝑖

1−ℎ𝑖𝑖
)                                                                         (6) 

where hii is the diagonal elements of the hat matrix and where ri is ith internally studentized 

residual. It was suggested that observations for which Di > 1 warrants attention (Cook, 1977). 

 

3. Influence Measure in Two-Parameter Ridge-Liu Estimator 

3.1. Two-Parameter Liu-Ridge Estimator 

Ridge estimator,�̂�𝑅, was introduced by Hoerl and Kennard (1970) and defined as: 

�̂�𝑅  = (𝑋′𝑋+𝑘𝐼)−1𝑋′𝑦                                                                  (7) 

where I is an identity matrix, k is the ridge parameter or biasing constant and often takes values 

between 0 and 1. 

Liu (1993) introduced the Liu estimator,�̂�𝑅 , which combines the ridge estimator by Hoerl and 

Kennard (1970) with the stein estimator by Stein (1956). It is defined as: 

�̂�𝑑  = (𝑋′𝑋+𝐼)−1(𝑋′𝑦 + 𝑑�̂�)                                                         (8) 

where I is an identity matrix, �̂� is the least square estimator of β, d is referred to as the Liu 

biasing parameter and do takes values between 0 and 1. 

Ozkale and Kaciranlar (2007) introduced a Two-Parameter Ridge-Liu estimator (TPE) given as: 

�̂�𝑇𝑃  = (𝑋′𝑋+𝑘𝐼)−1(𝑋′𝑦 + 𝑘𝑑�̂�)                                                      (9) 

where I is an identity matrix, k is the  ridge parameter and d is Liu biasing parameter. �̂� is the 

least square estimator of 𝛽. TPE is introduced for handling the problem of multicollinaerity in the 

linear regression model. 

 

3.2 Leverage and Residual Measures in Two-Parameter Ridge-Liu Estimator 

The vector of fitted value of TPE is  

�̂�𝑇𝑃  = 𝑋�̂�𝑇𝑃 = 𝑋(𝑋′𝑋+𝑘𝐼)−1(𝑋′𝑦 + 𝑘𝑑�̂�)                                                            (10) 

= 𝑋(𝑋′𝑋+𝑘𝐼)−1(𝑋′𝑦 + 𝑘𝑑(𝑋′𝑋)−1𝑋′𝑦)  where  �̂� = (𝑋′𝑋)−1𝑋′𝑦                

=  𝑋(𝑋′𝑋+𝑘𝐼)−1(I+ 𝑘𝑑(𝑋′𝑋)−1) 𝑋′𝑦         

�̂�𝑇𝑃 = 𝑋(𝑋′𝑋+𝑘𝐼)−1(𝑋′𝑋 + 𝑘𝑑𝐼)(𝑋′𝑋)−1 𝑋′𝑦 = 𝐻𝑇𝑃y                                  (11) 

where  𝐻𝑇𝑃 = 𝑋(𝑋′𝑋+𝑘𝐼)−1(𝑋′𝑋 + 𝑘𝑑𝐼)(𝑋′𝑋)−1 𝑋′ is Two-Parameter Ridge-Liu Estimator hat 

matrix and this performs the same role with the hat matrix (H) in Ordinary Least Square (OLS) 

estimator. The ith fitted value can be written in terms of the elements of 𝐻𝑇𝑃 as ŷiTP=∑ ℎ𝑇𝑃𝑗𝑖
𝑛
𝑗=1 𝑦𝑗. 
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The partial derivative of �̂�𝑖𝑇𝑃 with respect to  𝑦𝑖 is given as 
i

iTP

y

y



ˆ
=ℎ𝑇𝑃𝑖𝑖, which is the ith diagonal 

element of HTP. It should be noted that 𝐻𝑇𝑃  is not idempotent. It is therefore a quasi-projection 

matrix (Walker and Birch, 1988). However, the canonical reduction can be applied by applying 

singular value decomposition (SVD) (Mandel, 1982). Design matrix 𝑋  can be decomposed as 
X=U𝛬𝑉′ where U and V are orthogonal matrices of order n × p and p × p, respectively; and 𝛬 is a 

diagonal matrix of order p ×  p containing the singular values of X. Matrix V are eigenvectors of X 

such that X′X = VΛV′. The ijth element of n ×p matrix U is such that 
jiju  is the projection of the 

ith row, xi, onto the jth eigenvector of X. The ith leverage of TPE can be written as follows: 

hTPii =  x(X′X+kI)−1(X′X + kdI)(X′X)−1 x′                                                    

=  √λjuijvi
′(VΛV′+kI)−1(VΛV′)−1(VΛV′ + kdI) viuij√λj                  

= 
 
 

2

1

ij

p

j j

j
u

kI

kd

 






                                                                                 (12) 

It is observed that ℎ𝑇𝑃𝑖𝑖 values approaches the OLS leverages, ℎ𝑖𝑖, as k and d approaches 0 and 1 

respectively. 

The ith residual of TPE is defined as: 

𝑒𝑖𝑇𝑃 = 𝑦𝑖-�̂�𝑖𝑇𝑃=(1-ℎ𝑇𝑃𝑖𝑖) 𝑦𝑖. 

 

3.3 DFFITS and Cook’s D Measures in Two-Parameter Ridge-Liu Estimator 

Following equation (3), DFFITS for TPE is defined as: 

DFFITSiTP=
𝑥𝑖[�̂�𝑇𝑃−�̂�(𝑖)𝑇𝑃]

𝑆(𝑥𝑖�̂�𝑇𝑃)
 = 

𝑥𝑖[�̂�𝑇𝑃−�̂�(𝑖)𝑇𝑃]

𝑠(𝑖)√∑ ℎ𝑇𝑃𝑖𝑗
2𝑛

𝑗=1  
                                      (13) 

where �̂�𝑖𝑇𝑃 is the TPE in equation (3) without the ith case and the denominator is the estimator of 

the standard error of the TPE fitted value such that 𝑆(𝑥𝑖�̂�𝑇𝑃) = 𝑠(𝑖)√∑ ℎ𝑇𝑃𝑖𝑗
2𝑛

𝑗=1  such that k and d 

are assumed to be non-scholastic and 𝑠(𝑖) =  √
(𝑛−𝑝)𝑠2−𝑒𝑖

2/(1−ℎ𝑖𝑖)

𝑛−𝑝−1
 is the OLS estimator s of σ without 

the ith case. OLS estimators of s and s(i) will be used as measure of scales because they affected by 

multicolinearity. 

Cook’s D version for TPE is defined as in two forms. A direct version of Cook’s D in equation (5) 

is defined as: 

𝐷𝑖𝑇𝑃
∗ =

1

𝑝𝑠2 [�̂�𝑇𝑃−�̂�(𝑖)𝑇𝑃]
′
(𝑋′𝑋)[�̂�𝑇𝑃 − �̂�(𝑖)𝑇𝑃]                                    (14) 

 while the other version is defined as 

𝐷𝑖𝑇𝑃
∗∗ =

1

𝑝𝑠2 [�̂�𝑇𝑃 − �̂�(𝑖)𝑇𝑃]
′
(𝑋′𝑋 + 𝑘𝐼)(𝑋′𝑋+𝑘𝑑𝐼)−1(𝑋′𝑋)(𝑋′𝑋+𝑘𝑑𝐼)−1(𝑋′𝑋 + 𝑘𝐼) [�̂�𝑇𝑃 − �̂�(𝑖)𝑇𝑃] 

(15) 

Based on the fact that var(�̂�𝑇𝑃)= 𝜎2(𝑋′𝑋+𝑘𝐼)−1(𝑋′𝑋 + 𝑘𝑑I)(𝑋′𝑋)−1(𝑋′𝑋+𝑘𝐼)−1(𝑋′𝑋 + 𝑘𝑑𝐼). 

It is not possible to write the measures obtained in equation (13) to (15) as functions of leverage 

and residual because of the scale dependency of TPE. The estimator is not scale invariant, thus, the 

design matrix X with the ith row deleted has to be rescaled before �̂�(𝑖)𝑇𝑃  is computed. The 

approximate versions of these measures are provided through approximate case deletion formulas. 

 



Adewale F. Lukman and Kayode Ayinde    211 

3.4. Approximate Case Deletion Formulas for Two-Parameter Ridge-Liu Estimator 

Deleting ith row from �̂�𝑇𝑃, �̂�(𝑖)𝑇𝑃 can be written as �̂�(𝑖)𝑇𝑃 = (𝑋(𝑖)
′ 𝑋(𝑖)+𝑘𝐼)−1(𝑋(𝑖)

′ 𝑦𝑖 + 𝑘𝑑�̂�(𝑖)).  

where   𝑋(𝑖) is the matrix X ithout the ith row and yi is the vector of response variable without the ith 

entry. 𝑋(𝑖) is scaled so that 𝑋(𝑖)
′ 𝑋(𝑖) is in correlation form. Applying Sherman-Morrison- Woodbury 

(SMW) theorem (Rao, 1973), �̂�(𝑖)𝑇𝑃 can be approximated as: 

�̂�(𝑖)𝑇𝑃 = (𝑋′𝑋−𝑥𝑖
′𝑥𝑖 + 𝑘𝐼)−1(𝑋′𝑦 − 𝑥𝑖

′𝑦𝑖 + 𝑘𝑑�̂�(𝑖)) such that 𝑋′𝑋 + 𝑘𝐼=𝐶𝑘.               

 �̂�(𝑖)𝑇𝑃 = (𝐶𝑘−𝑥𝑖
′𝑥𝑖)−1(𝑋′𝑦 − 𝑥𝑖

′𝑦𝑖 + 𝑘𝑑�̂�(𝑖))                                       

where = (𝐶𝑘−𝑥𝑖
′𝑥𝑖)−1 = 𝐶𝑘

−1 +
𝐶𝑘

−1𝑥𝑖
′𝑥𝑖𝐶𝑘

−1

1−𝑥𝑖𝐶𝑘
−1𝑥𝑖

′  .    

�̂�(𝑖)𝑇𝑃 = (𝐶𝑘
−1 +

𝐶𝑘
−1𝑥𝑖

′𝑥𝑖𝐶𝑘
−1

1−𝑥𝑖𝐶𝑘
−1𝑥𝑖

′ )(𝑋′𝑦 + 𝑘𝑑�̂�𝑖 − 𝑥𝑖
′𝑦𝑖) such that 𝑚𝑖𝑖=𝑥𝑖𝐶𝑘

−1𝑥𝑖
′    

= 𝐶𝑘
−1(𝑋′𝑦 + 𝑘𝑑�̂�𝑖)- 𝐶𝑘

−1𝑥𝑖
′𝑦𝑖+

𝐶𝑘
−1𝑥𝑖

′𝑥𝑖𝐶𝑘
−1

1−𝑚𝑖𝑖
(𝑋′𝑦 + 𝑘𝑑�̂�𝑖)- 

𝐶𝑘
−1𝑥𝑖

′𝑥𝑖𝐶𝑘
−1

1−𝑚𝑖𝑖
𝑥𝑖

′𝑦𝑖     

= �̂�𝑇𝑃+
𝐶𝑘

−1𝑥𝑖
′

1−𝑚𝑖𝑖
(𝑥𝑖𝐶𝑘

−1(𝑋′𝑦 + 𝑘𝑑�̂�𝑖) − 𝑥𝑖𝐶𝑘
−1𝑥𝑖

′𝑦𝑖 − (1 − 𝑚𝑖𝑖) 𝑦𝑖)      

 Recall that                              𝑚𝑖𝑖 =  𝑥𝑖𝐶𝑘
−1𝑥𝑖

′, �̂�𝑇𝑃 = 𝑥𝑖𝐶𝑘
−1(𝑋′𝑦 + 𝑘𝑑�̂�𝑖) 

                                                  = �̂�𝑇𝑃+
𝐶𝑘

−1𝑥𝑖
′

1−𝑚𝑖𝑖
(�̂�𝑇𝑃 − 𝑚𝑖𝑖𝑦𝑖 − (1 − 𝑚𝑖𝑖) 𝑦𝑖) 

                                                  = �̂�𝑇𝑃+
𝐶𝑘

−1𝑥𝑖
′

1−𝑚𝑖𝑖
(�̂�𝑇𝑃 − 𝑦𝑖) 

                                                 = �̂�𝑇𝑃 - 
𝐶𝑘

−1𝑥𝑖
′

1−𝑚𝑖𝑖
(𝑦𝑖 − �̂�𝑇𝑃) where 𝑒𝑖𝑇𝑃 = 𝑦𝑖 − �̂�𝑇𝑃 

�̂�(𝑖)𝑇𝑃 ≅ �̂�𝑇𝑃- 
𝑒𝑖𝑇𝑃𝐶𝑘

−1𝑥𝑖
′

1−𝑚𝑖𝑖
                                                             

�̂�𝑇𝑃-�̂�(𝑖)𝑇𝑃 ≅
𝑒𝑖𝑇𝑃𝐶𝑘

−1𝑥𝑖
′

1−𝑚𝑖𝑖
                                                       (16) 

Based on these result, the approximate version of (13) can be written as: 

𝐷𝐹𝐹𝐼𝑇𝑆𝑖𝑇𝑃 = [
𝑚𝑖𝑖

1−𝑚𝑖𝑖
]

𝑒𝑖𝑇𝑃

𝑆(𝑥𝑖�̂�𝑇𝑃)
=[

𝑚𝑖𝑖

1−𝑚𝑖𝑖
]

𝑒𝑖𝑇𝑃

𝑠(𝑖)√∑ ℎ𝑇𝑃𝑖𝑗
2𝑛

𝑗=1

                              (17) 

where s(i)=√
(𝑛−𝑝)𝑠2−𝑒𝑖

2/(1−ℎ𝑖𝑖)

𝑛−𝑝−1
, 𝑚𝑖𝑖==𝑥𝑖𝐶𝑘

−1𝑥𝑖
′, 𝐶𝑘

−1=(𝑋′𝑋 + 𝑘𝐼)−1                          

The approximate version of (14) can be written as follows: 

𝐷𝑖𝑇𝑃
∗ =

1

𝑝𝑠2 [
𝑒𝑖𝑇𝑃𝐶𝑘

−1𝑥𝑖
′

1−𝑚𝑖𝑖
]

′

(𝑋′𝑋) [
𝑒𝑖𝑇𝑃𝐶𝑘

−1𝑥𝑖
′

1−𝑚𝑖𝑖
]                                                      

=  
1

𝑝𝑠2

𝑥𝑖
′

(1−𝑚𝑖𝑖)2 𝐶𝑘
−1𝑒𝑖𝑇𝑃

2 (𝑋′𝑋)𝐶𝑘
−1𝑥𝑖

′ where 𝐶𝑘
−1=(𝑋′𝑋 + 𝑘𝐼)−1          

𝐷𝑖𝑇𝑃
∗ =  𝐷𝑖𝑇𝑃

∗∗ =
1

𝑝𝑠2 [
𝑒𝑖𝑇𝑃

1−𝑚𝑖𝑖
]

2
𝑥𝑖

′(𝑋′𝑋 + 𝑘𝐼)−1(𝑋′𝑋)(𝑋′𝑋 + 𝑘𝐼)−1𝑥𝑖
′           

= 
1

𝑝𝑠2 [
𝑒𝑖𝑇𝑃

1−𝑚𝑖𝑖
]

2
∑ 𝑚𝑖𝑗

2𝑛
𝑗=1                                                                 (18) 
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The approximate version of (15) can be written as follows:         

𝐷𝑖𝑇𝑃
∗∗ =

1

𝑝𝑠2 [
𝑒𝑖𝑇𝑃

1−𝑚𝑖𝑖
]

2
𝑥𝑖(𝑋′𝑋+𝑘𝐼)−1(𝑋′𝑋 + 𝑘𝑑I)(𝑋′𝑋)−1(𝑋′𝑋 + 𝑘𝑑𝐼)(𝑋′𝑋+𝑘𝐼)−1𝑥𝑖

′  

= 
1

𝑝𝑠2 [
𝑒𝑖𝑇𝑃

1−𝑚𝑖𝑖
]

2
∑ ℎ𝑇𝑃𝑖𝑗

2𝑛
𝑗=1              (19) 

 

4. Application to Real life Dataset 

Real life data sets are used to illustrate the performance of the influential statistics. The results are 

as follows. 

 

4.1. Application to Longley Data 

This was adopted from the study of Longley (1967). The regression model is defined as: 

𝑦 = 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽5𝑋5 + 𝛽6𝑋6 + 𝑒                                            (20) 

where y is the total derived employment, 𝑋1 is the gross national product implicit price deflator,  

𝑋2 is the gross national product, 𝑋3 is unemployment, 𝑋4 is the size of armed forces, 𝑋5 is the 

non-institutional population 14 years of age and over and 𝑋6 is the time. The scaled condition number 

of this data is 43,275 (Walker and Birch, 1988). Several authors had used this data to identify 

influential observations (Cook, 1977; Walker and Birch, 1988; Jahufer and Jianbao, 2009; Jahufer, 

2013; Ullah et al., 2013; Yasin and Murat, 2016). The results are summarized in Table 1. Ridge 

parameter suggested by Hoerl et al. (1975) and classified in the study of Lukman and Ayinde (2015) 

as Fixed Maximum Original is used. It is defined as �̂�𝐻𝐾
𝐹𝑀𝑂 =

�̂�2

𝑀𝑎𝑥(�̂�𝑖
2)

. The value of K and d in this 

study are computed to be 5.36488D-08 and 0.9 respectively. The value of Liu ridge parameter, d, 

used in this study was the one used in the study of Ullah et al. (2013) when applied to the same data 

set. 

 

Table 1: The most five influential observations using leverage, residual, DFFITS and Two versions  

   of Cook’s Distance 

LeverageOLS LeverageiTP DFFITS𝑖𝑇𝑃 𝐷𝑖𝑇𝑃
∗  𝐷𝑖𝑇𝑃

∗∗  

Case Value Case Value Case Value Case Value Case Value 

16 0.6261 16 0.6582 16 1.8237 4 0.7003 16 0.4013 

5 0.5530 2 0.5645 10 1.6448 10 0.6623 5 0.2493 

2 0.5025 8 0.4851 4 1.6406 16 0.6592 4 0.2020 

8 0.4422 12 0.4828 5 1.3824 5 0.4862 15 0.1882 

7 0.4290 1 0.4245 15 1.1696 1 0.3327 1 0.1530 
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Table 2: Summary of most influential diagnostics on Longley datasets compare with propose 

 

Table 1 shows that the leverage based on OLS and the proposed estimator identified observations 

16, 2 and 8 as leverages in common but different in order of ranking. This also agrees with the study 

of Yasar and Murat (2016) where the first three leverages are case number 16, 2 and 8. This is further 

illustrated in Figure 1. Figure 1 is the plot of the hat diagonal matrix against the observations. The 

summary from to Table 2 shows that the proposed statistics DFFITSiTP identified the same value that 

Cook (1997) and Ullah (2013) identified as influential points, though, in a different order. 
*

iTPD  and 

**

iTPD  identified the same cases as identified by other authors except case 1. The result is also 

validated in Figure 2. 

 

4.2. Application to Hald Data 

This has been previously adopted by Cook (1977); Yasin and Murat (2016) in the investigation of 

influential observations. Four regressors were used with thirteen (13) observations. The condition 

number of matrix X is computed to be 249.578 which show that the model suffers the problem of 

strong multicollinearity. Cook (1977) identified observations 8, 3, 11, 6 and 13 as influential points in 

this order. Yasin and Murat (2016) detect the influential points to be 8, 11, 10, 6 and 13 when Cooks 

Distance based on Two-parameter ridge was used. Observations 8, 11, 10, 3 and 6 were identified 

when generalized cooks D was used while observations 8, 11, 6, 10 and 13 were identified with the 

use of DFFITS based on Two-parameter ridge. The value of k and d in this study are computed to be 

0.0076761and 1.18495 respectively. The results obtained in this study are summarized in Table 3. It 

was observed that the Cooks D obtained in this study and previous study performs similarly by 

identifying cases 8, 13, 6 and 11 in common but the order of appearance differs. DFFITS based on 

OLS identified cases 8, 11, 7, 2 and 4 as influential observations. The method of DFFITS suggested 

by Yasin and Murat (2016) identified the cases 8, 11, 6, 10 and 13 as influential while the method 

proposed in this study identified cases 8, 6, 13, 7 and 11 as influential points. Comparing the three 

methods, observation 8 is the most influential. However, the method proposed in this study and that 

of Yasin and Murat (2016) identifies four cases in common, though, the order differs. The new 

diagnostics defined based on Two-parameter Liu ridge estimator competes favorably with the 

existing ones.  

  

Authors Year Influential points in 

order 

Method 

Cook 1977 5, 16, 4, 10, 15 Cooks distance in OLS 

Walker and Birch 1988 16, 10, 4, 15, 1 Cooks distance in ridge regression 

Shi and Wang 1999 10, 4, 15, 16 and 1 Local influence in ridge regression 

Jahufer and Jianbao 2009 16, 4, 1, 10, 15 Modified Ridge regression of the usual diagnostics 

Jahufer 2013 15,4 1, 6, 16 Cooks distance and DFFITs in in Liu regression 

Ullah et al. 2013 16, 10, 4, 6, 1 

16, 10,4,6, 5 and 16, 5, 

4, 10, 15 

Influential points in Liu regression for different d=0.1, 

0.5 and 0.9 respectively 

Yasin and Murat 2016 16, 10, 6, 1 and 4 Influential points in Two–parameter ridge  

DFFITS𝑖𝑇𝑃 Proposed 16, 10, 4, 5 and 15 Influential points in Two–parameter Ridge-Liu 

𝐷𝑖𝑇𝑃
∗  Proposed 4, 10, 16, 5, 1 Influential points in Two–parameter Ridge-Liu 

𝐷𝑖𝑇𝑃
∗∗  Proposed 16, 5, 4, 15, 1 Influential points in Two–parameter Ridge-Liu 
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Table 3: The most five influential observations using leverage, residual, DFFITS and Two versions  of 

Cook’s Distance 

LeverageOLS LeverageiTP DFFITS𝑖𝑇𝑃 𝐷𝑖𝑇𝑃
∗  𝐷𝑖𝑇𝑃

∗∗  

Case Value Case Value Case Value Case Value Case Value 

10 0.7004 10 0.6986 8 1.6854 8 0.4105 8 0.4619 

3 0.5769 1 0.5444 6 0.7431 13 0.1500 13 0.1631 

1 0.5503 3 0.5379 13 0.6606 6 0.0837 11 0.0992 

11 0.4255 7 0.4229 7 0.5858 11 0.0794 2 0.0922 

8 0.4085 11 0.4210 11 0.5614 2 0.0704 7 0.0745 

 

 
 

Figure 1: Plot of hat diagonals based on TPE against its observations 

 

 
 

Figure 2: Plot of Cook’s D based on TPE against its observations 

0.42448

0.56449

0.36134

0.3722
0.40592

0.33733

0.44181

0.48511

0.45583

0.25255

0.28709

0.48278

0.35854

0.22362

0.35933

0.65821

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

H
at

 D
ia

g
o

n
al

s

Case Number

Hat Matrix

Hat Matrix

0.332689

0.073445

0.0085303

0.7002758

0.486206

0.2436556

0.1104715

0.0002143 0.0013568

0.662329

0.00003775

0.008343705

0.08491749

0.0172845

0.2803047

0.659205

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
o

o
k
s'

 D
 b

as
ed

 o
n
 T

P
E

Number of Observations

Cook's D



Adewale F. Lukman and Kayode Ayinde    215 

 
 

Figure 3: Plot of hat diagonals based on TPE against its observations 

 

 
 

Figure 4: Plot of DFFITS based on TPE against its observations 

5. Conclusion 

The problems of multicollinearity and influential points have been jointly considered in this paper. 

A new diagnostic measures using Two-parameter Liu-Ridge Estimator (TPE) was proposed. The 

approximate case deletion formulas in TPE using Sherman-Morrison-Woodbury theorem by Rao 

(1973) were used to obtain the approximate versions of DFFITS, the two versions of COOK distance. 

The performance of these measures was illustrated with two real life dataset. The results show that 

the proposed measures compete favorably with the existing ones in identifying influential 

observations. Index plot adopted in this study is a conventional procedure to identified influential 

cases, even though, no conventional cut off points are introduced or developed for the TPE influence 

diagnostics. These measures will assist practitioners to decide whether to retain, remove or down 

sized influential points using robust estimators when identified in a study. 
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