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Abstract: Families of distributions are commonly used to model insurance claims 

data that require flexible distributional forms in a satisfactory manner, but the 

specification problem to assess the goodness-of-fit of the hypothesized model can 

sometimes be a challenge due to the complexity of the likelihood function of the 

family of distributions involved. The previous work shows that these specification 

problems can be attacked by means of semi-parametric tests based on generalized 

method of moment (GMM) estimators. While the approach can be directly applied 

to both discrete and continuous families of distributions, the paper focuses on 

developing a testing strategy within a framework of discrete families of 

distributions. Both the local power analysis and the approximate slope method 

demonstrate the excellent performance of these tests. The finite-sample 

performance of the tests, based on both asymptotic and bootstrap critical values, 

are also discussed and are compared with established methods that require the 

complete specification of likelihood functions. 
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1. Introduction

A fundamental issue in the actuarial study is selecting a probability model for the insurance

claim data. Both overestimation and underestimation result in a loss for an insurance company. 

An overestimate implies an idle fund, whereas an underestimate may lead to higher borrowing 

costs and large reputational risk. Thus, an accurate estimation of the claims distribution, 

especially in its tail area, is crucial. To model insurance claims data, one can use parametric 

families of distributions, which allow considerable flexibility to provide reasonable fit to the 

data (see, for example, recent studies by Ahn et al. 2012; Lee et al. 2012; Eling 2012; Jeon and 

Kim, 2013). However, distinguishing among families of distributions can be challenging 

because of the complexities of the distribution functions involved. In this article, we consider a 

GMM-based test strategy to solve these specification problems. 

The use of families of distributions to represent observed data can be traced back to the 

work of Karl Pearson on evolution in the 1890s. Pearson came across data sets that often 

exhibited substantial skewness and other systematic departures from normality. These 

discrepancies led to the development of the Pearson system of frequency curves. Characterizing 

the probability density function with a four-parameter differential equation, the family permits 
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the flexibility critical for a wide range of empirical studies. Families of discrete distributions 

are also widely used in analyses of count data that may not be adequately described by simpler 

models. Such cases typically occur in modeling insurance claim data in actuarial literature 

(Klugman et al., 2004). 

The topic of specification tests for distributions has been studied extensively. Various 

methods exist for testing whether a particular distribution adequately describes a set of 

observed data.  For instance, given a hypothesized distribution, several classical tests such as 

the likelihood ratio (LR), the Wald, and score tests can be developed (Cox and Hinkley 1974). 

Testing procedures for discriminating between two continuous distributions (so-called separate 

families of hypotheses) have been studied by Cox (1961) and further considered by, for 

example, Dyer (1974) with principle emphasis on procedures invariant under location and scale 

transformations. Another widely used test is Pearson’s chi-square (χ2) goodness-of-fit test. As a 

general purpose test of goodness-of- fit, Pearson’s χ2 test is easy to understand in principle and 

remains a useful tool for testing the null hypothesis that the data are from a certain probability 

distribution, though the asymptotic distribution of the Pearson statistic depends on the 

estimators employed and may lead to difficulties related to computing a non-standard limit 

distribution (Stuart, Ord and Arnold 1999). 

The previous work discusses how these specification problems can be attacked by means of 

semi-parametric tests based on GMM estimators. The approach provides a general framework 

for dealing with a wide range of specification problems, with particular attention on choosing 

among discrete families of distributions. Unlike the widely applied testing procedures that rely 

primarily on the assumption of the density or likelihood function of the hypothesized 

distribution, this test does not require this sort of full knowledge; rather, it only demands the 

specification of a set of moment conditions the model should satisfy. Consequently, it is 

relatively easy to implement, particularly when the plausible hypothesized model has a 

complex distributional form for which likelihood-based methods are not easy to apply. 

Furthermore, testing results from GMM tests can often provide information regarding which 

models may be appropriate for data that cannot be satisfactorily modeled by alternative 

distributions (see, for example, Fang 2003, which used GMM-based tests to discriminate 

between the Poisson and (negative) binomial distributions). 

To motivate and demonstrate the proposed specification tests for families of distributions, 

we use the Katz family of distributions as the null hypothesis in this study. The main reason for 

choosing the Katz family is that this two-parameter family includes the most basic counting 

distri- butions as special cases: the Poisson, negative binomial, and binomial distributions. This 

family usually serves as the embryonic model in the initial data analysis stage. Since the chosen 

model should provide a balance between simplicity and conformity to the available data, it is 

often of interest to know whether one of these simple distributions can adequately describe the 

observed data before considering more complex families of distributions. As illustrated by the 

empirical examples discussed in Section 5, the Katz family is relatively simply, but is also 

flexible enough to provide a good fit, especially to the tail area of the data. 

The article is organized as follows. Section 2 provides some background on the Katz family 

of distributions and presents the GMM-based test strategy.  Sections 3 and 4 discuss the 
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asymptotic and finite-sample properties of the proposed test, respectively. Two empirical 

examples are given to demonstrate the usefulness of the test strategy in Section 5. In Section 6, 

we draw conclusions. 

2. Specification Tests for Families of Discrete Distributions

2.1 Characteristics for Families of Discrete Distributions 

We first examine the characteristics of the Katz family of distributions and related 

distributions that all belong to the more general Ord’s family. Let X be a discrete random 

variable and Pj = Pr(X = j) be the probability that X takes the value j. The Ord’s family of 

distributions is defined by the following relationship: 

where a0, b0, b1 and b2 are distribution parameters. The difference equation (1) is a discrete  

analogue of the Pearson system of continuous distributions, and has been thoroughly explored 

and studied (see, for example, Johnson, Kemp and Kotz, 2005). The special case b0 = b2 = 0 

yields the Katz family of distributions, which is specified by the following difference equation: 

where α = (a0 + b1 − 1)/b1 > 0 and β = (b1 − 1)/b1 < 1. The Katz family (2) is one of the most 

prominent families of discrete distributions whose successive probabilities satisfy first-order 

recurrence relations. The Katz family regards three commonly used discrete distributions as its 

special cases: (i) negative binomial, for 0 < β < 1; (ii) Poisson, for β = 0; and (iii) binomial, for 

β < 0 and a positive integer −α/β (or generalized binomial, for β < 0 , α > 0, and a non-integer 

α/β). When b2 ≠ 0, κ = (b1 − b2 − 1)2/4(a + b0)b2 is defined with restriction κ ≥ 0 and I = µ2/µ1 

(µ r is the r-th central moment) is considered to yield other well-known distributions, including 

(iv) hypergeometric, for I < 1 and κ > 1; (v) beta-binomial (negative hypergeometric), for κ < 0;

and (vi)beta-Pascal, for I > 1 and κ = 1. Note that distributions (iv), (v), and (vi) are not

members of the Katz family.

Define µ r as the r-th central moment (moment about the mean) of (1) and 𝜇𝑠
′  as the s-th 

moment about the origin of (1).  It is of interest to identify the characteristics of the Katz family      

in terms of moments to achieve the goal of developing specification tests. Although 

distributions in the Katz family have the property of being equi-, under-, or over-dispersed, all 

distributions in this family can be characterized by the following relation: 

where I = µ2/µ1, S = µ3/µ2, and µ1 = 𝜇1
′  is the mean. Note that the beta-binomial distribution 

arises as S < 2I − 1, and S > 2I − 1 gives the hypergeometric or the beta-Pascal distributions 
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depending on whether S < 1 or S > 1. Such differences in moment conditions between the Katz 

family and the non-Katz family distributions have fundamental implications for GMM-based 

statistics which, as shown in later sections, play a central role in developing specification test 

statistics. 

To gain further insight into the Katz family, it is helpful to rewrite (1) as 

When b0 = b2 = 0, the right-hand side of (4) is a linear function of j. Hence, for the Katz 

family of distributions, the plot of uj against j gives a straight line with a slope less than, equal 

to, or greater than zero for the binomial, Poisson, and negative binomial, respectively. When b0 

≠ 0 or b2 ≠ 0, the uj curve is no longer a straight line, indicating that the underlying data-

generating distribution is not a member of the Katz family. 

In fact, several authors have suggested the use of (4) or its varieties in selecting a 

distribution from a given family. For instance, Katz (1965) pointed out that plotting uj can help 

discriminate among the three distributions in the Katz family. Ord (1967) is an example of 

using graphical methods based on (4) for identifying distributions among the Ord’s family. 

Note that different shapes of uj curves for different distributions appear to be useful for 

developing strategies to deter- mine whether the data are generated from the Katz family vis-`a-

vis other families and distributions. However, as demonstrated in Jinkinson and Slater (1981) 

and Hoaglin (1985), results based only on the uj curve can be quite illusive. Therefore, these 

graphical methods should only be used as a starting-point for more rigorous and sophisticated 

inference procedures, such as the GMM-based specification test that we developed in this paper. 

2.2 Test Statistics 

Consider the null hypothesis H0 specified by the following moment restrictions: 

where 
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As long as the focus of our attention is on the moment restrictions defined by (6), it may be 

convenient to define θ = (𝜇1
′ , µ2), rather than with the parameters α and β. Under the hypothesis 

of the Katz family, 𝜇1
′  = α/(1 − β) and µ2 = α/(1 − β)2. All other higher order moments can be 

expressed in terms of 𝜇1
′  and µ2: 

where 

When the number of orthogonality moment restrictions in (5) exceeds the number of 

parameters (denoted by p; p = 2 in our case), the model is over-identified. In the over-identified 

case, (5) implies substantive restrictions. If the hypothesis of the model that leads to (5) is 

incorrect in the first place, some of the sample moment restrictions will be systematically 

violated, providing a basis for developing a specification test. Here, we consider the following 

statistic to test the validity of the moment restrictions in (5): 

where  ; Vn is a consistent estimator of ; and θ 

is evaluated at the GMM estimate 𝜃, the value of θ that minimizes the quadratic form

The test statistic (8) has an asymptotic χ2 distribution with (q − 2) degrees of freedom under 

the null hypothesis of the model (Hansen, 1982). To obtain the q × q matrix Vn, we first 

compute the weighting matrix V . It can be shown that the (i, j)-th element of V is (µ i+j − µiµ j), 

where the µ rs are given by (7).  Then, 𝑉�̂�  is obtained when the two parameters 𝜇1
′   and µ2 in V

are evaluated at the GMM estimates  and  , 

respectively.  With f(𝑥𝑖, θ) defined in (6) and V given above, the test statistic Jn(q) in (8) can

now be calculated. 

Routine matrix calculations provide little insight into the GMM test statistic. To gain a 

proper understanding of the test statistic, it is helpful to have the closed-form expression of 

Jn(q). As a demonstration, we provide the closed-form expression of Jn(3) here. When q = 3, 

there are three moment restrictions in E[f(𝑥𝑖, θ)] = 0. By the construction of  f(𝑥𝑖, θ) and the

choice of the model parameterization, the first two equations in E[f(𝑥𝑖, θ)] = 0 are identifying

moment restrictions. They are satisfied by families of distributions under both the null and 

alternative hypotheses. The third equation is the over-identifying restriction, which is satisfied 
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by the Katz family but not by others such as the non-Katz family distributions.  As such, fn(θ) 

becomes , where  and . Hence,  

where 𝑤33̂ is the (3, 3)-th element of 𝑉𝑛
−1̂ given by

and  𝜇�̂�  (r =  3, · · · , 6)  are  functions  of  𝜇1
′̂   and  𝜇2

′̂ .   Observe that the condition  (m3 −𝜇3̂)

= 0 is the sample analogue of (3) under the null hypothesis of the Katz family (albeit with a 

factor µ2). Hence, the equation (9) suggests that Jn(3) has power against violation of (3) for any 

departures from the Katz family. As long as (3) is not satisfied, Jn(3) will not follow the central 

χ2 distribution. 

3. Asymptotic Efficiency of Specification Tests

In this section, we use two alternative approaches to investigate the asymptotic properties

of Jn(q): the local power analysis and the approximate slope method. The first approach 

examines local or contiguous alternatives, while the second considers a non-local analysis by 

employing large deviation theory. These two approaches provide different insights into the 

asymptotic properties of the tests. 

3.1 Local Power Analysis 

Define 

and 

where D = M(M′ M)−1𝑀′  and . We consider the local power 

analysis by introducing the following sequences of local alternatives to𝐻0
𝐼  and 𝐻0

𝑂:

and 

where V𝐼 ≠ 0 and V𝑂 ≠ 0. Since it is always possible to decompose  into 
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𝐻0
𝐼  and 𝐻0

𝑂 translate directly into sequences of local alternatives to , which

is equivalent to E[f(𝑥𝑖, θ)] = 0. Hall (1999) showed that for local alternatives given in (11) and

(12), Jn(q) follows asymptotically a non-central χ2  distribution. Furthermore, if the data satisfy

. This result suggests that when 𝑉𝑂
′ 𝑉𝑂 > 0 , Jn(q) has power

against the alternative 𝐻𝐴
𝑂, which is  or, equivalently, S ≠ (2I − 1) when q

= 3 in our previous example. The result also implies that the local power of Jn(q) depends on 

both 𝑉𝑂
′ 𝑉𝑂 and (q − 2). In particular, although additional moment conditions are used in Jn(q)

with higher value q, this does not necessarily imply that large values of q are more desirable, 

even asymptotically: increasing q increases both 𝑉𝑂
′ 𝑉𝑂 (causing an increase in power) and the

variance of  (causing a decrease in power). More rigorously, as n → ∞ and q → ∞, 

with q = q(n) = o(n), 

and 
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where βα(q, νO) is the power of the size-α test. The theoretical results (15) and (16) directly 

indicate the following, as q → ∞: the asymptotic local power of the test statistic Jn(q) increases 

if , and  decreases  to  α if   Moreover, the  

results  emphasize that the local power of the test may differ substantially for different values of 

q and across alternatives. The proof of these results is based on the asymptotic normality of the 

properly normalized statistic Jn(q) and can be derived along the lines of Kallenberg, Oosterhoff, 

and Schriever (1985). 

3.2 Approximate Slope Method 

An alternative approach to analyzing the power of tests is to study its approximate slope, 

which has been proposed by Bahadur (1960) and further studied by Bahadur (1967) and 

Geweke (1981), among others. The approximate slope of a test is defined to be the rate at 

which the logarithm of its asymptotic marginal significance level decreases as the sample size 

increases. Geweke (1981) has shown that if the test statistic’s limiting distribution under the 

null hypothesis is a χ2 distribution, the approximate slope of the test equals the probability limit 

of the statistic divided by the sample size n. Let cq be the approximate slope of Jn(q). Applying 

the results in Geweke (1981), we have 

For any given q, one may apply the above results to calculate cq under a specified 

alternative hypothesis. Take the example in Section 2.2 and consider the case q = 3, for which 

the approximate slope is 

where w33 is the (3,3)-th element of V−1  and is the population moment analogue to (10) under     

the alternative hypothesis. For the non-Katz family distributions, one can derive the required µ rs 

(Johnson, Kemp and Kotz, 2005). Figure 1 also provides a comparison of approximate slopes of 

cq across different q for various hypergeometric, beta-binomial and beta-Pascal distributions. 

Two observations emerge from Figure 1. First, given q, cq depends on both the probability 

structures (hypergeometric, beta-binomial or beta-Pascal) and levels of model parameters. In 

general, cq increases with µ1 for each of three distribution types. Additionally, cq increases with 

q, where the increase can be considerable. This implies that including additional moment 

restrictions will not reduce the asymptotic efficiency of the test. For example, consider the 

hypergeometric distribution with parameterization N = 20, M = 15 and l = 5. The ratio of the 

approximate slopes for q = 3 and q = 4 is approximately 8 percent. This implies that about 12 

times as many observations are needed to reject the alternative hypothesis when q is chosen to 

be 3. 
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With respect to the GMM approach discussed in this paper, it is possible to calculate the 

approximate slopes of Jn(q) for any q. This allows us to quantify the potential for efficiency 

gain in power from additional moment restrictions. Furthermore, the ratio of these slopes 

between any two test statistics, denoted A and B, will be 𝑇∗
𝐵/𝑇∗

𝐴, where T∗ is the minimum

number of observations needed to reject the alternative hypothesis for a given power. 

4. Monte Carlo Simulation Studies

In this section, the finite sample properties of Jn(q) are investigated via Monte Carlo 

simulations. Since various previous studies suggest that GMM tests based on their asymptotic 

critical values often have true sizes that differ greatly from the nominal sizes (Brown and 

Newey, 1995; Hall and Horowitz, 1996; see also Table 1 of the present paper), tests based on 

both asymptotic and bootstrap critical values are examined. More technical details on GMM 

tests based on bootstrap critical values are provided in the Appendix. For comparison, we 

generated simulated data from both the Katz family of distributions (negative binomial, Poisson, 

and binomial distributions; formats are listed underneath Table 1) and other non-Katz family 

distributions (hypergeometric, beta-binomial, and beta-Pascal distributions; formats are listed 

underneath Table 2). For the simulations, the sample size is taken to be 50, 100, and 200. Then, 

simulation experiments are performed for the tests of Jn(q) for three values of q: 3, 4, and 5. The 

nominal significance level is chosen to be 5 percent. To compare the finite sample performance 

of the GMM tests with those of commonly used likelihoodbased test procedures, we perform 

simulation experiments for the LR tests based on the constrained (the Katz family) and non-

constrained likelihood functions. For brevity, we will report results of the LR tests only for n = 

100. 

Table 1 presents the results of sizes of tests for the Poisson, binomial and negative binomial 

distributions with various parameterizations that yield means ranging from approximately 1 to 

20. As shown, the empirical sizes of the tests based on the asymptotic critical values are

generally below their nominal values (5%), except for the Jn(3) and Jn(4) statistics for the

binomial distribution. It appears that the quality of the asymptotic approximations of the

distributions of the tests deteriorates as q, the number of moment conditions, increases. One

reason for this is that in the Monte Carlo study, q affects the size via two routes. First, it

controls the degree of overidentification. The quality of the asymptotic approximation tends to

deteriorate as the degree of overidentification increases. Second, q controls the order of

moments included, and it is known that higher sample moments converge more slowly than

lower moments do (Hall, 2005).

The results in Table 1 show that with the bootstrap critical values, the empirical sizes of the 

tests are much close to the nominal levels. This is especially true for the Jn(5) test. However, the 

bootstrap does not completely remove the size distortion; as the case of 50 observations demon- 

strates, the size of Jn(3) is still only 1.8 percent for the negative-binomial with α = 1.25 and β = 

0.25. The behavior of the LR tests appears to be comparable to that of the GMM tests in the 

case of the Poisson distribution. However, the sizes of the LR tests are quite a bit too large for 

the binomial and negative-binomial distributions, a phenomenon that has been noticed before 
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(Vu and Maller, 1996). It may be worth noting that the algorithm used for computing the 

maximum likelihood estimates cannot always converge; hence, the sizes of the LR tests 

reported in Table 1 (and also the power in Table 2) are based on converged replications, which 

may be less than 3,000. Table 2 contains the results of the empirical power of tests against the 

hypergeometric, beta-binomial, and beta-Pascal distributions. We chose parameters that yield 

means similar to those of distributions investigated in the null hypothesis. As can be seen from 

Table 2, the tests have satisfactory performance for moderate sample sizes, but may not 

perform particularly well in small samples under certain situations. For both beta-binomial and 

beta-Pascal distributions, tests based on the bootstrap critical values appear to have greater 

power than corresponding tests based on the asymptotic critical values, regardless of the sample 

sizes. However, tests based on the asymptotic critical values seem to be more powerful than 

those based on the bootstrap critical values, especially when the sample size is 50 or 100. We 

note that by selecting the value q appropriately, the power of the GMM tests is comparable to 

that of the LR tests. 

Finally, we remark that, in general, the actual finite-sample power performance agrees well 

with the approximate slopes of the tests in Figure 1, especially for relatively large sample sizes. 

However, the results also suggest that, although additional moment conditions are used in Jn(q) 

as q increases, large values of q (i.e. q > 4) may not necessarily be more desirable, even with a 

relatively large sample size (n = 200). This is an anticipated outcome following the local 

asymptotic results in Section 3. 

5. Two Empirical Examples

Two empirical examples will serve to illustrate the types of situation in which the proposed 

test is useful. 

Example 1. The number of claims on automobile insurance policies in Australia 

The data in the second column of Table 3 are taken from Hossack at al. (1983) and 

describes the distribution of the number of claims on automobile insurance policies in Australia; 

the average number of claims per policy is 0.125 and the variance is 0.130. Although the MME 

of β is 0.0385, which suggests that the negative binomial may be a candidate model for the data,  

Klugman et al. (2004) have shown that the negative binomial is a poor fit because of its short 

tail (see the third column of Table 3). We apply our GMM test Jn(q) to the data set for q = 3, 

4, ..., 9. As can be seen from Table 3, the test statistics with q = 3 and 4 are not significant at 

any commonly used significance levels. The test statistic with q = 5 is significant at the 10 

percent level, but not at 1 or 5 percent. The test statistics based on  q > 5 are significant at the 1 

percent level. The results provide strong evidence against the Katz family of distributions, 

which includes the negative binomial as a special case. Note that the data set is very large and, 

hence, requires a a close-fitting model. The test statistic based on higher moments (i.e. q ≥ 5) 

provides considerable power, making a convincing case that one must look for alternative 

models beyond the three basic distributions in the Katz family. See Klugman et al. (2004) for 

more discussions on fitting the data to the Poisson-inverse Gaussian and the Poisson-ETNB 

distributions. 
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Example 2. The number of claims on automobile insurance policies in Switzerland 

The second example considers data describing the number of claims on automobile 

insurance policies in Switzerland  taken  from  B�̈�hlmann  (1970). The  data  are  given  in  the 

second  column in  Table  4.  Gathy  and  Lef�̀�vre  (2010)  have  shown  that  both  the  Poisson 

and  negative  binomial distributions are bad fits (see the third and fourth columns of Table 4). 

The Poisson is clearly a poor fit, especially for large values; while the negative binomial 

distribution is a slight improvement, the distribution still underestimates the heavy tail of the 

data. Here, we fit the data to the Katz family of distributions. As can be seen from the results 

reported in Table 4, the p−values of Jn(q) for all considered q are much higher than the 

commonly used significance levels, suggesting that the Katz family is an acceptable model to 

the data. Although both the Poisson and negative binomial distributions are rejected as two 

separate null hypotheses, the Katz family provides enough flexibility to capture the heavy tail 

of the data. 

6. Conclusion

This paper develops a semi-parametric specification test for discrete families of 

distributions from recent developments in GMM. The testing procedure provides flexibility 

while maintaining simplicity. The test can be constructed systematically, making it easy to 

implement using matrix languages in statistical software.  By studying the Katz family null vis-

`a-vis the non-Katz family alternative, we demonstrate that the asymptotic properties of the test 

can be analyzed using standard asymptotic theory. Additionally, the finite sample properties of 

the test were investigated via Monte Carlo simulations. The simulation results suggest that the 

distribution of the test is well approximated by the asymptotic theory, and that the test has 

satisfactory performance for moderate size samples. Two empirical examples illustrate the 

practical relevance of the proposed tests. In conclusion, the flexibility, simplicity and reliability 

of this semi-parametric GMM-based test make it a valuable tool for modeling insurance claim 

data. 

Appendix: Procedure of GMM Specification Tests Based on Boot- strap Critical 

Values 

For each experiment, we specify a data-generation process from the Katz family of 

distributions, and then carry out the following steps: (1) sample the data-generation process and 

compute Jn(q); (2) obtain bootstrap samples from equ. (2) based on the estimated parameters α 

and β, and compute the bootstrap critical values; (3) estimate the empirical sizes of the tests 

using the bootstrap critical values by repeating steps (1)–(3) 3,000 times. The bootstrap critical 

values are based on 100 replications of the bootstrap sampling processes. Note that greater 

number of replications does not affect the results substantially (Hall, 1986; Hall and Horowitz, 

1996). 
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