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Abstract
The probability that the estimator is equal to the value of the estimated pa-

rameter is zero. Hence in practical applications we provide together with the
point estimates their estimated standard errors. Given a distribution of random
variable which has heavier tails or thinner tails than a normal distribution, then
the confidence interval common in the literature will not be applicable. In this
study, we obtained some results on the confidence procedure for the parameters of
generalized normal distribution which is robust in any case of heavier or thinner
than the normal distribution using pivotal quantities approach, and on the basis
of a random sample of fixed size n. Some simulation studies and applications are
also examined.

:Shape parameter, Short tails, exponential power distribution, confi-
dence interval.

1 Introduction
The higher the degree of confidence, t he l arger t he p ercentage o f p opulation values 

that the interval is to contain. Thus, if we want a high degree of confidence a nd a 
high confidence l evel, w e a re g oing f ar o ut i nto t he t ail o f s ome d istribution. For 
example, if the distribution has heavier tails than a normal distribution and we believe 
we are constructing a 99 percent confidence i nterval t o c ontain a t l east 9 9 p ercent of 
the population, the percentage of the time we do that, say, 1000 randomly constructed 
intervals actually contain at least 99 percent of the population, the result obtained 
often times could be far less than 99 percent that we really required. Conversely, 
if the population distribution has much lighter tails than a normal distribution, the 
interval could be much wider than necessary. It is important to remember that if the
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population X is not normal, then sample mean x is not normal as well, and so the
random variable (x − µ)/(s/

√
n) does not have the common t−distribution, implying

that the commonly used t table values are not necessarily correct. In this paper we
developed a robust confidence interval for the univariate family of elliptical density
called exponential power distribution (EPD) which has a normal and laplace as its
sub-family and it is well known for the flexibility of its tails. Using the widely known
pivotal quantities method, the resulting robust confidence interval we anticipated will
replace the common one in literature about the normal distribution especially when
the observed sample data in an experiment has tail heavier or thinner than the usual
normal distribution.

The uni-dimensional exponential power distribution is defined as

f(x;µ, σ, β) =
1

σΓ
(

1 + 1
2β

)
21+ 1

2β

exp

{
−1

2

∣∣∣∣x− µσ
∣∣∣∣2β
}

(1)

where the parameters µ ∈ < and σ ∈ (0,∞) are respectively scale and location param-
eters and β ∈ (0, β) is the shape parameter which regulates the tails of the distribution
such that when β = 1 the density (1) is normal, but for β = 1/2 we have double
exponential distribution. The distribution (1) was first introduced by Subbotin (1923),
it has been used in robust inference (see Box(1953)) where the parameters of the dis-
tribution were estimated via moments.

If a random variable X has the pdf (1) then its mth moments can be obtained from
the relation

E(Xm) =

∫ ∞
0

((
[−1m(σ(2z)

1
2β − µ)m] + (σ(2z)

1
2β + µ)m

)(z 1
2β−1 exp−z

2Γ( 1
2β )

))
dz

(2)
In addition, its central moment estimates Agro (1992, 1995) are:

E(X) = µ ; E |X − E(X)| = σ2
1
2β Γ( 1

β )

Γ( 1
2β )

; V ar(X) =
σ22

2
2β Γ( 3

2β )
Γ( 1

2β )
;

E(X − E(X))3 = 0 ; E(X − E(X))4 =
σ42

4
2β Γ( 5

2β )

Γ( 1
2β )

; and Kurtosis=
Γ( 5

2β )Γ( 1
2β )

Γ2( 3
2β )

.

The results indicate that the sample mean X is the estimate of the true mean µ while
the shape parameter can be numerically obtained from the estimate of the kurtosis.
Substituting shape parameter estimate into Var(X) we estimate the scale parameter σ.
Also the log-likelihood function for random samples x1, x2, .., xn from (1) is:

LogL(µ, σ, β) = n ln

(
1

σΓ(1 + 1
2β )21+ 1

2β

)
−
i=n∑
i=1

1

2

∣∣∣∣xi − µσ

∣∣∣∣2β (3)

The derivatives of (8) with respect to µ, σ, and β are

∂LogL
∂µ = β

σ2β

( ∑
xi≥µ

(xi − µ)−
∑
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(xi − µ)

)
; ∂LogL∂σ = −nσ + β

σ

∣∣x−µ
σ
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∂LogL
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2β2 [Ψ(1 + 1
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Finally the expected fisher information matrix of EPD are

E(−∂
2LogL
∂µ2 ) =

nβ(2β−1)2
1− 1

β Γ(1− 1
2β )

σ2Γ 1
2β

; E(−∂
2LogL
∂σ2 ) = 2βn

σ2 ;

E(−∂
2LogL
∂σ∂β ) = − 1

σβ (1 + Ψ(1 + 1
2β ) ln 2); and

E(−∂
2LogL
∂β2 ) = n

β3

(
1 + Ψ(1 + 1

2β ) +
Ψ
′
(1+ 1

2β )

2β

)
+ n (ln 2)2

4β3

(
Ψ2(1 + 1

2β ) + Ψ
′
(1 + 1

2β )
)

Mineo and Ruggieri (2003a,b) developed codes in R programming environment
to estimate these parameters from any given sample from (1), this also includes the
parameter β which has no explicit solution.

2 Confidence Interval

Definition 2.0.(Confidence Interval). Let X1, X2, ..Xn be a random sample from the
density f(X|θ). Let a = t1(X1, X2, ..Xn) and b = t2(X1, X2, ..Xn) be two statistics
satisfying the relation a ≤ b for which Pr {a < Z(X|θ) < b} ≡ γ, where γ does not
depend on θ; the random interval (a,b) is called 100γ percent confidence interval for
Z(X|θ); γ is called the confidence coefficient; a and b are called the lower and upper
confidence limits, respectively for Z(X|θ). A value (t1, t2) of the random interval (a, b)
is also called a 100γ percent confidence interval for Z(X|θ). Ram et.al. (2010) in
his paper provided new confidence intervals (CIs) based on F-approximations as well
as normal approximations. Riggs (2015), showed from the simulation results which
indicated that the score and likelihood ratio intervals are generally preferable over the
Wald interval.

2.1 Pivotal Quantity
In this present study we used the pivotal quantity approach to derive the confidence
interval for the exponential power distribution.
Definition 2.1.(Pivotal Quantity). A pivotal quantity (Z) for a parameter θ is a
random variable Z(X|θ) whose value depends both on (the data) X and on the value
of the unknown parameter θ but whose distribution is known to be independent of θ.
For the case of the normal distribution N(µ, σ2), the pivotal quantity Z = X−µ

σ and
Z2 = (X−µ)2

σ2 has distribution N(0, 1) and χ2
1 that are independent of µ and σ and as

such both are pivotal quantity for µ and σ respectively. We establish some important
theorem in this section that served as a foundation to the results obtained
Proposition 2.1: Let X has a pdf (1), then

∣∣∣X−µσ ∣∣∣β ∼ Γ( 1
2β , 2). Where µ,σ,and β,

and δ are location, scale and shape parameters respectively. Values for Gamma(.)
for various β can be obtained from Abramowitz and Stegun (1963), Paris (2010) and
Winitzki (2003).

Proof: By transformation techniques, we have that
fY (y) = | ddy g

−1(y)|fX(g−1(y)) = Γ( 1
2β , 2), y > 0; the pdf (1) is a three parameter

family, θ = (µ, σ, β). We can deduce from above proposition 2.1 that
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Corollary 2.1: Let X has a pdf (1) then,

Z =

√
β

n

∣∣∣∣x− µσ
∣∣∣∣β ∼ EPD(0,

1

n
, β) (4)

and
∣∣x−µ
σ

∣∣β ∼ Γ( 1
2β , 2) are pivotal quantities and independent.

Proposition 2.2: If the random variable X has the pdf (1). Then the proposed
pivotal quantity (4) has the pdf

g(Z) =
(nβ )

1
2β

2
1
2βΓ( 1

2β )
Z

1
β−1 exp(− n

2β
Z2); −∞ < Z <∞, β > 0. (5)

Proof. Substituting (4) into (1) and using change of variable techniques; the pdf (5)
obtained is independent of µ and σ and thus (4) is a pivotal quantity for µ and σ.

Remark 2.1: pdf (5) generalizes Normal, Laplace and Weibull distributions. By
simply substituting for β in (5) and simplify then the results obtained reflect the
targeted distribution.

2.1.1 Generalized t1 − distribution

Proposition 2.3: Let Z ∼ EPD(0, 1
n , β) from (5) and let V denotes a random variable

which is Γ( r2 , 2); a new random variable t1 define as

T1 =
Z√
V
r

(6)

has the pdf

fr(t1) =

√
n

βr

{
Γ( r2 + 1

2β )

Γ( r2 )Γ( 1
2β )

}{√
n

βr
t1

} 1
β−1

{
(1 +

(√
n

βr
t1

)2
}−( r2 + 1

2β )

(7)

and is a pivotal quantity.
Proof. Since Z has a symmetric distribution about zero, so does the t1 and its pdf
will satisfy fr(t1) = fr(−t1). Assuming both Z and V are stochastically independent
then for t1 > 0 we have,

P

[
Z√
V/r

> t1

]
=

1

2
P

[
Z2

V/r
> t21

]
=

1

2
P

[
Z2

2
>
V

2

t21
r

]
taking the negative derivative wrt t1. The marginal distribution f(t1) is the pdf in 7
which we called a generalized t1 distribution.
Remarks 2.2:
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1. But (7) is a generalized version of the usual student t−distribution because f(t1)
becomes usual students t-distribution when β = 1 and n = 1 thus reducing (4)
to Z1 =

∣∣x−µ
σ

∣∣. [
Γ( r+1

2 )
√
πrΓ(r/2)

]
1

(1 + t2/r)
(r+1)/2

(8)

because of the present parameter β which further regulate its tails.

2. Since f(t1) is independent of µ and σ then it is a pivotal quantity.

3. fr(t1) ∝
{√

n
βr t1

} 1
β−1

{
(1 +

(√
n
βr t1

)2
}−( r2 + 1

2β )

is symmetric and bell shaped,

but falls off to zero as t → ±∞ more slowly than the normal and exponential
power densities. They have f(.) ≈ e−z2/2 and g(.) ≈ e−|z|β/2 respectively.

4. To get the cdf of (7), the transformation tan θ =
√

n
βrT1 shows that the cdf of

(7) is an incomplete beta Fr(t1) = Beta
(√

n
βrT1; 1

2β ,
r
2

)
.

Corollary 2.2 (Generalized t2): Let Z ∼ EPD(0, 1
n , β) from (4) and let V denotes

a random variable which is Γ( 1
2β , 2) see proposition 2.1; a new random variable T2

given as

T2 =
Z

V
(9)

has the pdf

f(t2) = n
1
2β

Γ( 1
β )

(Γ( 1
2β )2)

t
1
β−1

2

(1 + nt22)
1
β

(10)

Using the transformation tan θ =
√
nT2, we obtain the CDF has F 1

β
(t2) = Beta

(√
nT2; 1

2β ,
1

2β

)
Proof. Substitute r = 1

β into (7) and (10) follows.
Having established that (6) and (9) are pivotal quantities for µ and σ, with their con-

fidence limits distributed as Fr(t1)=Beta
(√

n
βrT1; 1

2β ,
r
2

)
and F 1

β
(t2)=Beta

(√
nT2; 1

2β ,
1

2β

)
respectively then we proceed to obtain its confidence intervals while restricting our ap-
plication to confidence interval via t2.

2.1.2 Confidence Interval for µ for a known σ2

Given the t2 distribution, (and its cdf F 1
β

(t2) which has no close form), for any in-
dependent and identically distributed random sample (x)={x1, ..., xn}∼EPD(µ, σ2, β);

we obtain the sufficient statistics xn =
∑
xi
n , σ̂2

n =
s2n
n =

(
β
n

) 1
β

n∑
i=1

(x− µ)
2 and for

any 0 < γ < 1, we compute t∗2 such that F 1
β

(t∗2) = (1 + γ)/2 from
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γ = P

[
−t∗2 ≤

√
β
n

∣∣x−µ
σ

∣∣β ≤ t∗2] ∼ EPD(0, 1
n , β) owing that F 1

β
(t∗2)=Beta

(
t∗2; 1

2β ,
1

2β

)
Proposition 2.4: The confidence interval for the µ of the EPD when variance

E(σ2) = s2 can be obtained as{
x− s

n

(
n

β

) 1
2β

(t∗2)
1
β < µ < x+

s

n

(
n

β

) 1
2β

(t∗2)
1
β

}
(11)

Proof. Simplify

P

{
−t∗2 <

√
β

n

∣∣∣∣x− µσ
∣∣∣∣β < t∗2

}
≡ γ (12)

for µ.

2.1.3 Confidence Interval for σ2 with µ unknown

Proposition 2.5: Given the interval (−t∗2, t∗2). Then the confidence interval for the σ2

of the EPD is given as

s2

(2beta[(F 1
β

(t∗2)), 1
2β ,

1
2β ])

1
β

;
s2

(2beta[1− (F 1
β

(t∗2)), 1
2β ,

1
2β ])

1
β

(13)

where s2 =

n∑
i=1

(xi−x)2

n−1
Proof. Simplify

Pr

{
(−t∗2)2 <

β

n

{
x− µ
σ

}2β

< (t∗2)2

}
≡ γ (14)

for σ2 and recall from proposition 2.1 that 1
2

∣∣∣X−µσ ∣∣∣β ∼ Γ( 1
2β ) .

3 Numerical Illustration

3.1 Evaluating confidence limits
Given interval (−t∗2, t∗2), we defined the 100γ percent confidence interval for pivot (9)
as

Pr {−t∗2 < T2 < t∗2} ≡ γ (15)

We then evaluate the different values of −t∗2 and t∗2 at various values of γ from
Ft∗2 (t2)=Beta

(√
nT2; 1

2β ,
1

2β

)
for known values of β. Using the codeRbeta.inv(γ, 1

2β ,
1

2β )

written in R environment. We thus have

98 On Interval Estimation for Exponential Power Distribution Parameters



Table 1: Limits (−t∗2, t∗2) for different γ values from Ft∗2 (t2) at various β values

γ limits Ft∗2 (t2), β = 0.1 Ft∗2 (t2), β = 1
2 Ft∗2 (t2), β = 1 Ft∗2 (t2), β = 1.5 Ft∗2 (t2), β = 2

0.1 -t∗2 0.3009688 0.1 0.0245 0.0055 0.0012
0.9 t∗2 0.6990312 0.9 0.9755 0.99945 0.9988
0.05 -t∗2 0.2513676 0.05 0.0062 0.0007 7.38 × 10−5

0.95 t∗2 0.7486324 0.95 0.9938 0.9993 0.9999
0.025 -t∗2 0.2120085 0.025 0.0015 0.00009 4.616 × 10−6

0.975 t∗2 0.7879915 0.975 0.9985 0.9999 0.99999
0.005 -t∗2 0.1460562 0.005 6.17 × 10−5 9 × 10−7 7.36×10−9

0.995 t∗2 0.8539438 0.995 0.9999 1 1

3.2 Simulation Results
We simulated 1000,000 sample from population having an exponential power distri-

bution with parameters location parameter µ = 4.000, scale parameter σ = 2.500
and shape parameter = 3.546, the simulation is from R package called normalp see
Mineo (2003a,b). With new code written in R environment, we have table 2, the
estimated confidence interval for the mean. In the table 2 we also have confidence
interval for the normal case, that is, suppose we assume the data might have come
from normal population, then the estimated mean µnormal = 4.000863 and the vari-
ance σnormal = 2.112163. We note from the table that the confidence length for the
normal case is bigger compare with exponential power distribution at 90%, 95% and
99%. This shows a better result for the latter.
Table 2: Confidence Interval for the estimate of mean

Limits Exponential Power
Distribution Normal Distribution

90% 1.238116e-05 2.7078e-03
95% 1.238119e-05 4.454e-03
99% 1.238119e-05 0.0104

In Table 3 we have confidence in-

terval for the variance of exponential power compare with normal distribution. Just
like the case of mean, the confidence length for the exponential power is closer compare
with normal

Table 3: Confidence Interval for the estimate of variance
Limits Exponential Power

Distribution Normal Distribution
90% 3.977735-5.741168 2.348020526-44.61239
95% 3.972031-6.717694 2.287814872-89.22478
99% 3.967626-10.208426 2.241828643-446.1239

4 Data sets
Example 1. Forty-eight pairs of poultry birds were fed with inorganic and organic poul-

try feed Olosunde (2013), The comprehensive analysis and summary of the estimated 
parameters have been carried out in, Olosunde (2013). The data set are the average
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weights (wi, wo) and average cholesterol (ci, co) contents of the eggs produced by the
birds, the data are reproduce in the appendix.

Table 4: Confidence interval for the means of egg weights and its cholesterol contents
assuming exponential power distribution when beta is estimated

γ wi Ci wo Co
90% ±0.0972 ±0.0455 ±0.53 ±0.9621
95% ±0.0976 ±0.0456 ±0.5315 ±0.9655
99% ±0.0977 ±0.0457 ±0.532 ±0.9667

Table 3: Confidence i nterval f or t he m eans o f e gg w eights a nd i ts c holesterol con-
tents assuming normal distribution

γ wi Ci wo Co
90% ±0.1233 ±0.0631 ±0.7586 ±1.2847
95% ±0.1469 ±0.0752 ±0.9038 ±1.5307
99% ±0.1930 ±0.0988 ±1.1879 ±2.0117

Table 4: Confidence interval for the variance of egg weights and its cholesterol content
assuming exponential power distribution when β is estimated

γ wi Ci wo Co
0.05 11.726 455.612 3.128 1286.121
0.95 15.156 518.78 3.678 1573.268
0.025 11.715 455.419 3.115 1285.213
0.975 17.061 555.687 4.024 1734.75
0.005 11.707 455.27 3.113 1284.51
0.995 20.622 680.608 5.154 2283.813

Table 5: Confidence interval for the variance of egg weights and i ts cholesterol 
content assuming normal distribution

γ wi Ci wo Co
0.05 9.3313 353.3471 2.4449 1013.3887
0.95 18.3735 695.7474 4.814 1995.3822
0.025 8.8106 333.6285 2.3084 956.8363
0.975 19.7736 748.7651 5.1808 2147.4353
0.005 7.901 299.1850 2.0701 858.0535
0.995 22.9391 868.63 6.0102 2491.2052

Further examples attached.

5 Conclusion
From the application, obviously from practical experience it common to have data with 

density function that has heavier or thinner tail than the usual normal distribution. 
Estimating confidence interval with assumption of normal distribution will always give 
confidence l ength w ider t han n ecessary a nd o ften t he c onfidence be comes unreliable 
in hypothesis, as this is shown in both simulation and real life data from exponential
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power distribution. In this case assuming normal distribution in the estimation of 
confidence i nterval may l ead t o e rroneous conclusion, e specially f or those who will be 
interest in going further to hypothesis testing. This article presented a robust para-
metric method of evaluating confidence i nterval f or t he mean a nd t he variance with 
known shape parameters. The results further generalized what is obtainable in normal 
and the double-exponential case.
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APPENDIX

LIVESTOCK PRODUCTION, TEACHING AND RESEARCH FARM FEDERAL UNIVERSITY OF 

AGRICULTURE ABEOKUTA (Poultry Unit) 

KEY 

w 

C 

i 

o  

– Egg weight 

– Cholesterol /egg  (mg/egg)

– Inorganic subscript 

– Organic subscript

S/NO wi Ci wo Co 

1 52.67 164.23 56.08 60.73 

2 53.17 167.42 56.34 66.03 

3 53.67 170.60 56.61 71.33 

4 54.17 173.78 56.87 76.63 

5 54.67 176.96 57.13 81.93 

6 55.17 180.14 57.39 87.22 

7 55.67 183.32 57.65 92.52 

8 56.17 186.51 57.92 97.82 

9 56.67 189.69 58.18 103.11 

10 57.17 192.87 58.44 108.41 

11 57.67 196.05 58.70 113.70 

12 58.17 199.24 58.96 119.0 

13 58.67 202.42 59.23 124.30 

14 59.17 205.60 59.45 129.60 

15 59.67 208.78 59.75 134.89 

16 60.17 211.96 60.01 140.19 

17 60.67 215.14 60.27 145.48 

18 61.17 218.33 60.54 150.78 

19 61.67 221.52 60.80 156.08 

20 62.17 224.69 61.06 161.37 

21 62.67 224.85 61.32 166.67 

22 63.17 227.88 61.58 171.97 

23 63.43 228.03 61.85 177.26 

24 65.67 231.06 62.34 182.56 

25 65.15 228.01 62.11 182.56 

26 63.43 224.83 61.85 187.86 

27 62.93 221.65 61.58 193.16 

28 62.43 218.46 61.32 187.86 

29 61.93 215.28 61.06 182.56 

30 61.43 212.10 60.80 177.26 

31 60.93 208.92 60.54 171.96 

32 60.43 205.74 60.27 166.66 

33 59.93 202.56 60.01 161.36 

34 59.43 199.37 59.75 156.06 

35 58.93 196.19 59.49 150.76 

36 58.43 193.01 59.23 145.46 

37 57.93 189.83 59.00 140.16 

38 57.43 186.65 58.70 134.86 

39 56.93 183.46 58.44 129.56 

40 56.43 180.28 58.18 124.26 

41 55.93 177.10 57.92 118.96 

42 55.43 173.92 57.65 113.66 

43 54.93 170.74 57.39 108.36 

44 54.43 167.55 57.13 103.06 

45 53.93 164.37 56.87 97.76 

46 53.43 161.19 56.61 92.46 

47 52.93 158.01 56.34 87.16 

48 52.43 154.83 56.08 81.86 

Figure 1: data used
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