
1. Introduction

Statistical models that address the count data have been implemented in many areas 

such as insurance, dental epidemiology, health care facilities, risk classification, medicine, etc. 

The Poisson model is a standard approach to analyze the count data. The most annoying 

property of Poisson model is equality of mean and variance, which is known as equidispersion. 

In real practice, the sample data often has variance which exceeds its mean. The phenomenon 

of excess variability is called overdispersion and has been widely studied in the literature (Dean 

and Lawless (1989) and Dean (1992). Failure to properly address existing overdispersion leads 

to serious underestimation of standard errors and misleading inference for the regression 
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parameters. Consequently, several models and associated estimation methods have been 

proposed for handling overdispersed data. These models include the two popular versions of 

negative binomial (NB) model referred to as the NB-1 and NB-2 regression model and are 

discussed by McCullagh and Nelder (1989). 

Other common distribution to handle overdispersion/under dispersion is generalized 

Poisson distribution (GPD) introduced by Consul and Jain (1973). The classical GP regression 

model is introduced by Consul (1989) and is referred as the GP-1 model. Further, this model 

is deeply studied by Consul and Famoye (1992) and used by Wulu, Singh, Famoye, McGwin 

(2002) to analyse farm injury data. Famoye (1993) introduced restricted GPR model and is 

referred to as a GP-2 regression model. The GP-1 and GP-2 regression models are the natural 

extensions of the Poisson regression model. Thus, the NB and GP model are used to handle 

dispersion in the data. 

Another cause of overdispersion is excess zeroes in the data which is detected when the 

frequency of ‘zero’ observation is significantly higher than the one predicted by the Poisson 

model. Neyman (1939) followed by Feller (1945) introduces the concept of zero-inflation 

where the data contains more zeros. This concept leads to zero-inflated versions of basic 

distributions such as ZIP, ZINB.  Particularly, the zero-inflated Poisson (ZIP) model is not 

appropriate to handle the issue of excess zeros with overdispersion. To deal with such a data, 

the most commonly used zero-inflated model is zero-inflated negative binomial (ZINB) model, 

which is a mixture of distribution degenerate at zero with a baseline negative binomial 

distribution. This model is used to fit overdispersed data with zero-inflation and has been 

discussed in detail by Cameron and Trivedi (1986) and Gurmu, Rilstone, Stern (1999).  

An alternative to ZINB model is zero-inflated generalized Poisson (ZIGP) model, 

which is a mixture of distribution degenerate at zero with a baseline GPD. The ZIGP regression 

model is applied in different fields to model zero-inflated and overdispersed count data. Some 

of the studies include analysis of patent outsourcing data (Czado, Erhardt, Min 2007), the fetal 

movement data (Gupta, Gupta, Tripathi 1996), an injury and accident related data, motor 

insurance data (Yip and Yau 2005), domestic violence data (Famoye and Singh 2006), 

Mosquito count data (Lawal 2012), an auto insurance claim data (Wagh and Kamalja 2017a) 

etc. Other models in the literature include the hurdle model (Mullahy 1986), the two-part model 

(Heibron 1994) the semi-parametric model (Gurmu 1997) etc.  

Comparison between the GPD and Negative Binomial Distribution (NBD) reveals 

slight differences in many aspects. The GPD has a heavier tail while the NBD has a larger mass 

at zero. However, their respective zero-inflated distributions with masses at zero and fixed 
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mean and variance can differ even more from each other (see Joe and Zhu 2005). There is a 

relatively unknown number of situations in which the iterative estimation technique for 

parameters of ZINB regression model fail to converge. While estimation in case of ZIGP model 

converges more often.  

In models used for count data, the assessment of over or under dispersion and zero-

inflation is very important. Gupta, Gupta and Tripathi (2004) developed a score test to assess 

both zero-inflation and dispersion in a ZIGP model. Xiang, Lee, Yau and McLachlan (2007) 

proposed a score test for assessing overdispersion in the ZIP mixed regression model against a 

ZINB mixed alternative. Yang, Hardin and Addy (2009) proved that the score statistic for 

testing overdispersion in ZIP against the ZIGP is the same as that of the score statistic for 

testing overdispersion in ZIP against ZINB. Yang, Hardin and Addy (2010) developed the 

score statistic for testing zero-inflation with respect to two forms of GP model. Zamani and 

Ismail (2013) proposed the score test for testing overdispersion in the ZIP model against ZIGP 

alternatives.

When overdispersion within zero-inflated data are ignored, it results in poor estimation 

and inflated Type I error. Failure to accurately model existing overdispersion leads to severe 

underestimation of standard errors and misleading results for regression parameters  (Yang, 

Hardin and Addy 2009). Chaney, Charity, David, and Aban (2013) simulated data from 

ZIP/ZINB distribution and fitted Poisson, NB, ZIP, and ZINB models and studied the 

consequences of misspecifying the statistical model.  

In most of the research problems, it has been observed that the ZIP regression model is 

inadequate to model excess zeros and the ZINB regression model could not be a suitable fit to 

such a count data. The major problem is non-convergence of iterative technique to estimate the 

parameters of ZINB model. Such models do not successfully fit the data. The alternative to ZIP 

and ZINB model is ZIGP model. We motivated to study the effect of fitting different count 

data models to the data simulated from ZIGP model. Further, we aim to propose new estimators 

of parameters of ZIGP model which would be simple in terms of calculation and estimation 

can be done without specific software. This lead to the new estimator MOZE. The paper is 

organized as follows. 

In section 2, we briefly overview different GP models and their respective zero-inflated 

models, which are most common for modeling overdispersed and zero-inflated count data. We 

present a simulation study in Section 3 for choosing between standard zero-inflated models by 

comparing the performance of the estimates of Poisson, GPD, ZIP, ZIGP and ZINB models 

when the data come from ZIGP distribution. In Section 4, we demonstrate the behavior of the 
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zero-inflation index with respect to the inflation parameter. In Section 5, we propose estimator 

of parameters of ZIGP distribution based on moments and the proportion of zeros and compare 

their performances with respective MLEs through a simulation study in Section 6. In Section 

7, we present a numerical study in which different count data models are fitted to some real-

life datasets. 

2. An overview of overdispersed and zero-inflated count data models

Several forms of GP model have been introduced by the researchers. The primary 

interest to introduce the different functional forms of GP model is to use the proper mean-

variance interrelation in a regression context. The other objective is to achieve flexibility in the 

development of various test procedures and inferential advantages.  

Consul and Jain (1973), Consul (1989), Consul and Famoye (1992) and Famoye (1993) 

introduced various forms of GP model and studied these models. Zamani and Ismail (2012) 

introduced a new functional form of the GP regression model, which is referred to as the GP-

P model, that parametrically nests the Poisson and two well-known GP regression models (GP-

1 and GP-2).  We summarize the functional forms of GP regression model in Table 2.1  

If the count data contains excess zeros along with overdispersion, one may consider 

ZIGP or ZINB model to fit the data. Parallel to the functional forms of GP models, functional 

forms of ZIGP models are also generated. Further, Zamani and Ismail (2014) proposed a ZIGP 

regression model, which mixes a distribution degenerate at zero along with the GP-P 

distribution. The ZIGP-1 and ZIGP-2 regression models are particular cases of ZIGP-P model 

with 𝑃𝑃 = 1 and  𝑃𝑃 = 2  respectively. The functional forms of ZIGP regression models are 

summarized in Table 2.2.  
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Table 2.1 Different Poisson based regression models and their mean and variance 

Sr. 
No. 

Poisson and different types of 
GPR model with introducer 

Parameter 
of the regression 

model  
𝒑𝒑𝒑𝒑𝒑𝒑 𝒐𝒐𝒑𝒑 𝒀𝒀: 𝑷𝑷(𝒀𝒀𝒊𝒊 = 𝒚𝒚𝒊𝒊|𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑),   𝒚𝒚𝒊𝒊 = 𝟎𝟎, 𝟏𝟏, 𝟐𝟐, …,  𝜽𝜽𝒊𝒊 > 0 (Mean, variance) 

1. 
Poisson 

(Frome, Kutner, Beauchamp 
(1973)) 

𝜃𝜃𝑖𝑖 
𝜃𝜃𝑖𝑖

𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖!
 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝜃𝜃𝑖𝑖) 

𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖 
𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖 

2. GP-1 
(Consul and Jain (1973)) (𝜃𝜃𝑖𝑖 , 𝜑𝜑)  𝜃𝜃𝑖𝑖(𝜃𝜃𝑖𝑖+𝜑𝜑𝑦𝑦𝑖𝑖)𝑦𝑦𝑖𝑖−1

(1+𝜑𝜑)𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖!
𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜃𝜃𝑖𝑖+𝜑𝜑𝑦𝑦𝑖𝑖

1+𝜑𝜑
� 

𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖 
𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖(1 + 𝜑𝜑)2 
Here 𝜑𝜑 is dispersion parameter 

3. GP-1 
(Consul (1989)) (𝜃𝜃𝑖𝑖 , 𝜑𝜑) �(1 − 𝜑𝜑)𝜃𝜃𝑖𝑖 + 𝜑𝜑𝑦𝑦𝑖𝑖�𝑦𝑦𝑖𝑖−1 (1 − 𝜑𝜑)𝜃𝜃𝑖𝑖

𝑦𝑦𝑖𝑖!
𝑒𝑒𝑒𝑒𝑒𝑒(−(1 − 𝜑𝜑)𝜃𝜃𝑖𝑖 − 𝜑𝜑𝑦𝑦𝑖𝑖) 

𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖 
𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜙𝜙𝐸𝐸(𝑌𝑌𝑖𝑖), 
Here 𝜙𝜙  = 1

(1−𝜑𝜑)2  is dispersion factor 

4. GP-1 
(Consul (1989)) (𝜃𝜃𝑖𝑖 , 𝜑𝜑) 𝜃𝜃𝑖𝑖(𝜃𝜃𝑖𝑖 + 𝜑𝜑𝑦𝑦𝑖𝑖)𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑖𝑖!
𝑒𝑒𝑒𝑒𝑒𝑒(−𝜃𝜃𝑖𝑖 − 𝜑𝜑𝑦𝑦𝑖𝑖), 𝑚𝑚𝑚𝑚𝑒𝑒 �−1, −

𝜃𝜃𝑖𝑖

4
� < 𝜑𝜑 < 1 

𝐸𝐸(𝑌𝑌𝑖𝑖) =
𝜃𝜃𝑖𝑖

(1 − 𝜑𝜑) 

𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜙𝜙𝐸𝐸(𝑌𝑌𝑖𝑖) 
Here 𝜙𝜙 = 1

(1−𝜑𝜑)2 is dispersion factor 

5. GP 
(Consul and Famoye (1992)) 

(𝜃𝜃𝑖𝑖 , 𝜑𝜑) 𝜃𝜃𝑖𝑖�𝜃𝜃𝑖𝑖 + 𝑦𝑦𝑖𝑖(𝜑𝜑 − 1)�𝑦𝑦𝑖𝑖−1 𝜑𝜑−𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖!
 𝑒𝑒𝑒𝑒𝑒𝑒�−�𝜃𝜃𝑖𝑖 + 𝑦𝑦𝑖𝑖(𝜑𝜑 − 1)�/𝜑𝜑� 

𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖 

𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖𝜑𝜑2 

6. 
GP-2 

 (Famoye (1993)) (𝜃𝜃𝑖𝑖 , 𝜑𝜑) �
𝜃𝜃𝑖𝑖

1 + 𝜑𝜑𝜃𝜃𝑖𝑖
�

𝑦𝑦𝑖𝑖 (1 + 𝜑𝜑𝑦𝑦𝑖𝑖)𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑖𝑖!
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝜃𝜃𝑖𝑖(1 + 𝜑𝜑𝑦𝑦𝑖𝑖)
1 + 𝜑𝜑𝜃𝜃𝑖𝑖

� 𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖 
𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖(1 + 𝜑𝜑𝜃𝜃𝑖𝑖)2 

7. 
GP-P 

(Zamani and Ismail (2012)) (𝜃𝜃𝑖𝑖 , 𝜑𝜑, 𝑃𝑃)  𝜃𝜃𝑖𝑖�𝜃𝜃𝑖𝑖+𝜑𝜑𝜃𝜃𝑖𝑖
𝑃𝑃−1𝑦𝑦𝑖𝑖�

𝑦𝑦𝑖𝑖−1

�1+𝜑𝜑𝜃𝜃𝑖𝑖
𝑃𝑃−1�

𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖!
𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜃𝜃𝑖𝑖+𝜑𝜑𝜃𝜃𝑖𝑖

𝑃𝑃−1𝑦𝑦𝑖𝑖
1+𝜑𝜑𝜃𝜃𝑖𝑖 𝑃𝑃−1 � 𝐸𝐸(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖 

𝑉𝑉(𝑌𝑌𝑖𝑖) = 𝜃𝜃𝑖𝑖(1 + 𝜑𝜑𝜃𝜃𝑖𝑖
𝑃𝑃−1)2 
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Table 2.2 Various forms of zero-inflated Poisson based regression models with their mean and variance 

Sr. 
No. 

Type of Zero-
Inflated 

regression model 
and 

introducer/user 

Parameters 
of the 

regression 
model 

𝒑𝒑𝒑𝒑𝒑𝒑 𝒐𝒐𝒑𝒑 𝒀𝒀: 𝑷𝑷(𝒀𝒀𝒊𝒊 = 𝒚𝒚𝒊𝒊|𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑),  𝒚𝒚𝒊𝒊 = 𝟎𝟎, 𝟏𝟏, 𝟐𝟐, … 

 𝜽𝜽𝒊𝒊 > 0, 𝟎𝟎 ≤ 𝝎𝝎𝒊𝒊 < 1  
(Mean, variance) Remark 

1. ZIP 
(Lambert (1992)) (𝜃𝜃𝑖𝑖 , 𝜔𝜔𝑖𝑖) �

𝜔𝜔𝑖𝑖 + (1 − 𝜔𝜔𝑖𝑖)𝑒𝑒−𝜃𝜃𝑖𝑖 , 𝑦𝑦𝑖𝑖 = 0

(1 − 𝜔𝜔𝑖𝑖)
𝜃𝜃𝑖𝑖

𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖!
𝑒𝑒−𝜃𝜃𝑖𝑖 , 𝑦𝑦𝑖𝑖 > 0

𝐸𝐸(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖  
𝑉𝑉(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖(1 + 𝜔𝜔𝑖𝑖𝜃𝜃𝑖𝑖) 

Reduces to 
Poisson for 
𝜔𝜔𝑖𝑖 = 0 

2. 
ZIGP 

(Czado and Min 
(2005)) 

(𝜃𝜃𝑖𝑖 , 𝜑𝜑, 𝜔𝜔𝑖𝑖) �
𝜔𝜔𝑖𝑖 + (1 − 𝜔𝜔𝑖𝑖) 𝑒𝑒−𝜃𝜃𝑖𝑖/𝜑𝜑  𝑦𝑦𝑖𝑖 = 0 

(1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖�𝜃𝜃𝑖𝑖 + 𝑦𝑦𝑖𝑖(𝜑𝜑 − 1)�𝑦𝑦𝑖𝑖−1 𝜑𝜑−𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖!
 𝑒𝑒𝑒𝑒𝑒𝑒 �−

�𝜃𝜃𝑖𝑖 + 𝑦𝑦𝑖𝑖(𝜑𝜑 − 1)�
𝜑𝜑

�    𝑦𝑦𝑖𝑖 > 0
𝐸𝐸(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖  
𝑉𝑉(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖(𝜑𝜑2 + 𝜔𝜔𝑖𝑖𝜃𝜃𝑖𝑖) 

Reduces to 
ZIP for  𝜑𝜑 = 1 
(Here 𝜑𝜑  is 
dispersion 
parameter) 

3. 
ZIGP-1 

(Yang, Hardin and 
Addy (2009)) 

(𝜃𝜃𝑖𝑖 , 𝜑𝜑, 𝜔𝜔𝑖𝑖) �
𝜔𝜔𝑖𝑖 + (1 − 𝜔𝜔𝑖𝑖)𝑒𝑒−(1−𝜑𝜑)𝜃𝜃𝑖𝑖              𝑦𝑦𝑖𝑖 = 0

(1 − 𝜔𝜔𝑖𝑖)�(1 − 𝜑𝜑)𝜃𝜃𝑖𝑖 + 𝜑𝜑𝑦𝑦𝑖𝑖�𝑦𝑦𝑖𝑖−1 (1 − 𝜑𝜑)𝜃𝜃𝑖𝑖

𝑦𝑦𝑖𝑖!
𝑒𝑒𝑒𝑒𝑒𝑒(−(1 − 𝜑𝜑)𝜃𝜃𝑖𝑖 − 𝜑𝜑𝑦𝑦𝑖𝑖)   𝑦𝑦𝑖𝑖 > 0

𝐸𝐸(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖  

𝑉𝑉(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖 �
1

(1 − 𝜑𝜑)2

+ 𝜔𝜔𝑖𝑖𝜃𝜃𝑖𝑖�

Reduces to 
ZIP for  𝜑𝜑 = 0 
(Here 1

(1−𝜑𝜑)2  is 
dispersion 
factor) 

4. 
ZIGP-2 

(Yang, Hardin 
and Addy (2009)) 

(𝜃𝜃𝑖𝑖 , 𝜑𝜑, 𝜔𝜔𝑖𝑖) 

⎩
⎪
⎨

⎪
⎧𝜔𝜔𝑖𝑖 + (1 − 𝜔𝜔𝑖𝑖) 𝑒𝑒𝑒𝑒𝑒𝑒 �− � 𝜃𝜃𝑖𝑖

1+𝜑𝜑𝜃𝜃𝑖𝑖
��  𝑦𝑦𝑖𝑖 = 0

(1 − 𝜔𝜔𝑖𝑖) � 𝜃𝜃𝑖𝑖

1+𝜑𝜑𝜃𝜃𝑖𝑖
�

𝑦𝑦𝑖𝑖 �1+𝜑𝜑𝑦𝑦𝑖𝑖�
𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑖𝑖!
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝜃𝜃𝑖𝑖�1+𝜑𝜑𝑦𝑦𝑖𝑖�
1+𝜑𝜑𝜃𝜃𝑖𝑖

�   𝑦𝑦𝑖𝑖 > 0

𝐸𝐸(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖  
𝑉𝑉(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖((1 + 𝜑𝜑𝜃𝜃𝑖𝑖)2

+ 𝜔𝜔𝑖𝑖𝜃𝜃𝑖𝑖)

Reduces to 
ZIP for  𝜑𝜑 = 0 
based on GP-2 

 (Famoye 
(1993)) 

5. 
ZIGP-1 

(Zamani and 
Ismail (2014)) 

(𝜃𝜃𝑖𝑖 , 𝜑𝜑, 𝜔𝜔𝑖𝑖) �
𝜔𝜔𝑖𝑖 + (1 − 𝜔𝜔𝑖𝑖) 𝑒𝑒𝑒𝑒𝑒𝑒 � −𝜃𝜃𝑖𝑖

1+𝜑𝜑
�  𝑦𝑦𝑖𝑖 = 0

(1 − 𝜔𝜔𝑖𝑖)
𝜃𝜃𝑖𝑖�𝜃𝜃𝑖𝑖+𝜑𝜑𝑦𝑦𝑖𝑖�

𝑦𝑦𝑖𝑖−1

(1+𝜑𝜑)𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖!
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝜃𝜃𝑖𝑖+𝜑𝜑𝑦𝑦𝑖𝑖
1+𝜑𝜑

�   𝑦𝑦𝑖𝑖 > 0

𝐸𝐸(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖  
𝑉𝑉(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖((1 + 𝜑𝜑)2

+ 𝜔𝜔𝑖𝑖𝜃𝜃𝑖𝑖) 

Reduces to 
ZIP for  𝜑𝜑 = 0 

6. 
ZIGP-P 

(Zamani and 
Ismail (2014)) (𝜃𝜃𝑖𝑖 , 𝜑𝜑, 𝜔𝜔𝑖𝑖 , 𝑃𝑃)  �

𝜔𝜔𝑖𝑖 + (1 − 𝜔𝜔𝑖𝑖) 𝑒𝑒𝑒𝑒𝑒𝑒 � −𝜃𝜃𝑖𝑖

1+𝜑𝜑𝜃𝜃𝑖𝑖
𝑃𝑃−1�  𝑦𝑦𝑖𝑖 = 0

(1 − 𝜔𝜔𝑖𝑖)
𝜃𝜃𝑖𝑖�𝜃𝜃𝑖𝑖+𝜑𝜑𝜃𝜃𝑖𝑖

𝑃𝑃−1𝑦𝑦𝑖𝑖�
𝑦𝑦𝑖𝑖−1

�1+𝜑𝜑𝜃𝜃𝑖𝑖
𝑃𝑃−1�

𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖!
𝑒𝑒𝑒𝑒𝑒𝑒 �−𝜃𝜃𝑖𝑖+𝜑𝜑𝜃𝜃𝑖𝑖

𝑃𝑃−1𝑦𝑦𝑖𝑖
1+𝜑𝜑𝜃𝜃𝑖𝑖

𝑃𝑃−1 �  𝑦𝑦𝑖𝑖 > 0

𝐸𝐸(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖  
𝑉𝑉(𝑌𝑌𝑖𝑖) = (1 − 𝜔𝜔𝑖𝑖)𝜃𝜃𝑖𝑖 × 

��1 + 𝜑𝜑𝜃𝜃𝑖𝑖
𝑃𝑃−1�2 + 𝜔𝜔𝑖𝑖𝜃𝜃𝑖𝑖�

Reduces to 
ZIGP-1 for 
 𝑃𝑃 = 1  and 
ZIGP-2 for 
𝑃𝑃 = 2 
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3. A Simulation Study

 In this section, we perform a simulation study to perceive the impact of choosing an 

inappropriate model on MLE, given that the data is generated from ZIGP distribution. We present the 

results of a simulation study, which fits Poisson (P), GP, ZIP, ZIGP and ZINB model to the sample 

data from ZIGP distribution. We compare the MSE, bias and standard error (SE) of the mean 

parameter for these fits. We observe a clear picture of the poor performance of the estimates of the 

mean parameter when the overdispersion and/or zero-inflation in a simulated data from ZIGP is 

ignored. We briefly discuss the methodology to estimate the mean parameter and give a systematic 

algorithm for a simulation study performed. 

3.1  Algorithm for comparison of performance of mean parameter estimate 

Let 𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑛𝑛 be a random sample from ZIGP distribution. To fit Poisson, GP, ZIP, ZIGP 

and ZINB distribution to this data, we use ZIGP, VGAM and 𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝 packages in R, which actually fit, 

the intercept model and estimate the intercept parameter 𝛽𝛽0 of the corresponding regression model. 

Let 𝜃𝜃�𝑑𝑑  be the MLE of 𝜃𝜃  (mean parameter) when model 𝑑𝑑  is fitted to the random sample, 𝑑𝑑 =

𝑃𝑃, 𝐺𝐺𝑃𝑃, 𝑍𝑍𝑍𝑍𝑃𝑃, 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃, 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 . Then 𝜃𝜃�𝑑𝑑  is estimated as 𝜃𝜃�𝑑𝑑 = 𝑒𝑒𝛽𝛽�0 . The systematic algorithm for 

comparison of the performance of estimate of mean parameter of the different distributions is given 

below. 

Generate 𝑚𝑚 = 500  random samples each of size 𝑛𝑛  from 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃(𝜃𝜃, 𝜑𝜑, 𝜔𝜔)|𝜃𝜃=2,   𝜑𝜑=1.5,   𝜔𝜔=𝜔𝜔0, 

distribution for zero-inflation parameter 𝜔𝜔0, 𝜔𝜔0 = 0.1,0.2, … ,0.8. 

i) Fit Poisson, GP, ZIP, ZIGP and ZINB models to the 𝑖𝑖𝑡𝑡ℎrandom sample and obtain MLE of 𝜃𝜃

as 𝜃𝜃�𝑖𝑖
𝑃𝑃, 𝜃𝜃�𝑖𝑖

𝐺𝐺𝑃𝑃, 𝜃𝜃�𝑖𝑖
𝑍𝑍𝑍𝑍𝑃𝑃, 𝜃𝜃�𝑖𝑖

𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃, 𝜃𝜃�𝑖𝑖
𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍respectively for 𝑖𝑖 = 1,2, … , 𝑚𝑚.

ii) Evaluate Mean square error (MSE) and bias of 𝜃𝜃�𝑑𝑑  as 𝑀𝑀𝑀𝑀𝐸𝐸�𝜃𝜃�𝑑𝑑�, 𝑏𝑏𝑖𝑖𝑚𝑚𝑝𝑝�𝜃𝜃�𝑑𝑑� using following

formulae.

𝑀𝑀𝑀𝑀𝐸𝐸�𝜃𝜃�𝑑𝑑� =
∑ �𝜃𝜃�𝑖𝑖

𝑑𝑑−𝜃𝜃�
2𝑚𝑚

𝑖𝑖=1

𝑚𝑚
  and  𝑏𝑏𝑖𝑖𝑚𝑚𝑝𝑝�𝜃𝜃�𝑑𝑑� =

∑ �𝜃𝜃�𝑖𝑖
𝑑𝑑−𝜃𝜃�𝑚𝑚

𝑖𝑖=1

𝑚𝑚
, 𝑑𝑑 = 𝑃𝑃, 𝐺𝐺𝑃𝑃, 𝑍𝑍𝑍𝑍𝑃𝑃, 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃, 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍. 

iii) Obtain 𝑀𝑀𝐸𝐸�𝜃𝜃�𝑑𝑑� = �𝑣𝑣𝑚𝑚𝑣𝑣�𝜃𝜃�𝑑𝑑� where 𝑣𝑣𝑚𝑚𝑣𝑣�𝜃𝜃�𝑑𝑑� =
∑ �𝜃𝜃�𝑖𝑖

𝑑𝑑−𝜃𝜃�
𝑑𝑑

�
2

𝑚𝑚
𝑖𝑖=1

𝑚𝑚−1
and  𝜃𝜃�

𝑑𝑑
= ∑ 𝜃𝜃�𝑖𝑖

𝑑𝑑𝑚𝑚
𝑖𝑖=1

𝑚𝑚
. 

iv) Repeat Steps (i), (ii) and (iii) across different values of 𝜔𝜔0 = 0.1,0.2, … ,0.8 to get the 𝑀𝑀𝑀𝑀𝐸𝐸�𝜃𝜃�𝑑𝑑�,

𝑏𝑏𝑖𝑖𝑚𝑚𝑝𝑝�𝜃𝜃�𝑑𝑑� and 𝑀𝑀𝐸𝐸�𝜃𝜃�𝑑𝑑� for each 𝜔𝜔0.

v) Plot  𝑀𝑀𝑀𝑀𝐸𝐸�𝜃𝜃�𝑑𝑑��
𝜔𝜔=𝜔𝜔0

, 𝑏𝑏𝑖𝑖𝑚𝑚𝑝𝑝�𝜃𝜃�𝑑𝑑��
𝜔𝜔=𝜔𝜔0

and 𝑀𝑀𝐸𝐸�𝜃𝜃�𝑑𝑑��
𝜔𝜔=𝜔𝜔0

 versus 𝜔𝜔0 = 0.1,0.2, … ,0.8. 
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The results of a simulation study of random samples of size  𝑛𝑛 = 50, 100 are given in Table 

3.1 and Figure 3.1-3.10. To observe the validity of results, a parallel simulation study is performed 

for 𝜃𝜃 = 5 and 𝑛𝑛 = 250  which lead to the similar conclusions. Hence, these results are not included 

in the paper.  

Table 3.1: MSE, SE and bias for mean parameter 𝜽𝜽 for 𝒁𝒁𝒁𝒁𝒁𝒁𝑷𝑷(𝟐𝟐, 𝟏𝟏. 𝟓𝟓, 𝝎𝝎𝟎𝟎) 

𝝎𝝎𝟎𝟎
𝒏𝒏 = 𝟓𝟓𝟎𝟎 𝒏𝒏 = 𝟏𝟏𝟎𝟎𝟎𝟎 

P GP ZIP ZIGP ZINB P GP ZIP ZIGP ZINB 

0.1 
MSE 0.1395 0.1395 0.3026 0.1836 0.1677 0.0797 0.0797 0.3136 0.0931 0.0880 
SE 0.3020 0.3020 0.4204 0.4192 0.4060 0.2086 0.2086 0.2848 0.3016 0.2968 

BIAS -0.2200 -0.2200 0.4828 0.0905 0.0566 -0.1904 -0.1904 0.4823 0.0487 0.0081 

0.2 
MSE 0.2449 0.2449 0.4047 0.2160 0.2145 0.2067 0.2067 0.3127 0.1116 0.1168 
SE 0.2836 0.2836 0.4330 0.4639 0.4635 0.2058 0.2058 0.3059 0.3339 0.3398 

BIAS -0.4058 -0.4058 0.4665 0.0360 -0.0121 -0.4055 -0.4055 0.4683 0.0195 -0.0401

0.3 
MSE 0.4210 0.4210 0.4545 0.2641 0.2660 0.3984 0.3984 0.3814 0.1542 0.1700 
SE 0.2757 0.2757 0.4752 0.5092 0.5161 0.2053 0.2053 0.3501 0.3910 0.4112 

BIAS -0.5874 -0.5874 0.4787 0.0731 0.0156 -0.5970 -0.5970 0.5090 0.0411 -0.0353

0.4 
MSE 0.6977 0.6977 0.5058 0.3441 0.3637 0.6762 0.6762 0.3336 0.1904 0.2258 
SE 0.2824 0.2824 0.5235 0.5858 0.6030 0.1875 0.1875 0.3642 0.4361 0.4639 

BIAS -0.7862 -0.7862 0.4820 0.0412 -0.0290 -0.8007 -0.8007 0.4486 -0.0236 -0.1050

0.5 
MSE 1.0505 1.0505 0.5111 0.3888 0.4282 1.0375 1.0375 0.4069 0.2352 0.2767 
SE 0.2674 0.2674 0.5438 0.6232 0.6536 0.1890 0.1890 0.4206 0.4850 0.5221 

BIAS -0.9895 -0.9895 0.4647 0.0345 -0.0437 -1.0009 -1.0009 0.4800 0.0210 -0.0681

0.6 
MSE 1.5167 1.5167 0.5952 0.5171 0.5582 1.4512 1.4512 0.4266 0.2902 0.3466 
SE 0.2312 0.2312 0.6385 0.7190 0.7470 0.1629 0.1629 0.4267 0.5382 0.5862 

BIAS -1.2097 -1.2097 0.4340 0.0349 -0.0368 -1.1936 -1.1936 0.4949 0.0337 -0.0602

0.7 
MSE 1.9783 1.9783 0.7880 0.6492 0.7051 1.9944 1.9944 0.5084 0.4155 0.4975 
SE 0.2123 0.2123 0.7288 0.8010 0.8405 0.1448 0.1448 0.5401 0.6452 0.7003 

BIAS -1.3904 -1.3904 0.5079 0.0944 0.0093 -1.4048 -1.4048 0.4661 0.0085 -0.0899

0.8 
MSE 2.6249 2.6249 1.0453 0.9724 0.8532 2.5724 2.5724 0.6319 0.5626 0.6557 
SE 0.1644 0.1644 0.9396 0.9870 0.9859 0.1267 0.1267 0.6471 0.7507 0.8059 

BIAS -1.6118 -1.6118 0.4052 0.0139 -0.0946 -1.5989 -1.5989 0.4626 0.0108 -0.0867

In terms of MSE, the MLE of 𝜃𝜃 for Poisson and GP model performs much poorer than the 

ZIP, ZIGP and ZINB model irrespective of the values of zero-inflation parameter 𝜔𝜔 (Fig.3.1-3.2). Fig. 

3.3 and 3.4 depicts that ZIGP model has least MSE among the three zero-inflated models and hence 

ZIGP  is the most suitable model to fit the data than ZIP and ZINB for both situations 𝑛𝑛 = 50,100. 

Similar results are observed for 𝜃𝜃 = 5  and  𝑛𝑛 = 250.  
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Figure 3.1-3.4 MSE of estimated mean (𝜽𝜽) for 𝒁𝒁𝒁𝒁𝒁𝒁𝑷𝑷 distribution 

On the contrary, the SE of the estimate of the mean parameter in Fig. 3.5-3.6 shows that 

Poisson distribution (PD) and GPD have almost equal and lowest SE. Among zero-inflated models, 

ZIP model has least SE. The average SE for zero-inflated models increases as the value of inflation 

parameter 𝜔𝜔 increases, regardless of the mean/sample size.  

Figure 3.5-3.6 SE of estimated mean of ZIGP distribution 

Further, Fig. 3.7-3.10 shows the behaviour of average bias estimates of the mean parameter. 

It can be seen that, PD and GPD underestimate the mean parameter while the ZIP model 

overestimates it. ZIGP and ZINB model have the least and almost near zero bias among all other 

models. The mean parameter estimates gradually became worse (negatively biased) for PD and GPD 

as the value of the inflation parameter 𝜔𝜔 increases.  
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Figure 3.7-3.10 Bias of estimated mean (𝜽𝜽) of ZIGP distribution 

Although, small SE means a smaller variability, this is not necessarily an advantage, 

especially if the estimator is biased as noted when the PD and GPD were fitted to a zero-inflated data. 

Even though the PD and GPD both have the smallest SE in majority of the situations, both 

dramatically underestimate the mean. That is, the bias is driving the relationship in the statistical 

inference for both the PD and GPD. When the true distribution was ZIGP, the ZIP, ZIGP and ZINB 

models tracked very close to each other in case of all the sample sizes. 

The important observations from a simulation study are reported below. 

The average bias results point out that ignoring the zero-inflated nature of the data may result 

in a substantial underestimation of the mean and subsequently lead to insignificant findings. The bias 

of the mean parameter, by itself, does not allow definite conclusions about the statistical inference. 

Hence, one should not only look at the estimate of the mean parameter, but also at the inflation 

parameter. We explore the scenario through the box-plot of estimated mean and inflation parameter 

for 500 random samples each of size 𝑛𝑛 = 50 from 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃 distribution with 𝜃𝜃 = 2, 𝜑𝜑 = 1.5 and 𝜔𝜔 =

0.5 as in Fig. 3.11 and 3.12 respectively. 
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Figure 3.11-3.14 Boxplot of 𝜽𝜽�𝒅𝒅 and 𝝎𝝎� 𝒅𝒅  of 500 random samples from 𝒁𝒁𝒁𝒁𝒁𝒁𝑷𝑷(𝟐𝟐, 𝟏𝟏. 𝟓𝟓, 𝟎𝟎. 𝟓𝟓) 
distribution. 
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Fig.3.11, 3.12 shows box-plot of estimated mean of 500 random samples of size 𝑛𝑛 = 50, 100 

from 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃(2,1.5,0.5) and 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃(2,1.5,0.4) respectively. It can be seen that, Poisson and GP model 

underestimate whereas ZIP model overestimates the mean. While ZIGP and ZINB model correctly 

identify the mean. Fig. 3.13 and 3.14 shows box-plot of MLE of inflation parameter.  The box-plot 

of the MLE of inflation parameter shows that ZIGP model correctly identify the inflation parameter 

𝜔𝜔  with lots of outliers to the lower side. While ZINB model underestimate and the ZIP model 

overestimate the inflation parameter 𝜔𝜔. 

There are different measures of detecting overdispersion and zero-inflation for the zero-

inflated count data. One such measure is discussed in the following Section.   
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4. Zero-Inflation Index

Puig and Valero (2006) introduced zero-inflation index (ZI index) and dispersion index as a 

measure of detecting zero-inflation and overdispersion respectively from the Poisson distribution. If 

𝑌𝑌 is a nonnegative integer random variable (count variable) with mean 𝜃𝜃 and 𝑒𝑒0 is the proportion of 

zeros in a random sample of size 𝑛𝑛 then ZI index 𝑧𝑧𝑖𝑖 for the sample is defined as, 

𝑧𝑧𝑖𝑖 = 1 + 𝑝𝑝𝑙𝑙𝑙𝑙(𝑒𝑒0)/𝜃𝜃 

For the large sample from Poisson distribution 𝑧𝑧𝑖𝑖 is close to zero with high probability. We 

perform a simulation work to study the behaviour of 𝑧𝑧𝑖𝑖 for different sample sizes across different 

values of zero-inflation parameter. 

Table 4.1 Average zero-inflation index for samples of size 𝒏𝒏 = 𝟏𝟏𝟓𝟓, 𝟐𝟐𝟓𝟓, 𝟓𝟓𝟎𝟎, 𝟏𝟏𝟎𝟎𝟎𝟎  from ZIGP 

distribution across inflation parameter 𝝎𝝎 

Sample size 
 (𝒏𝒏) 

Average zero-inflation index (𝒛𝒛𝒊𝒊) 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

15 0.414470 0.512770 0.611025 0.696613 0.761046 0.818421 0.864039 0.908972 

25 0.418849 0.536377 0.629724 0.703338 0.742960 0.815451 0.872185 0.919649 
50 0.457601 0.548460 0.627525 0.700465 0.764217 0.823715 0.873006 0.917429 

100 0.445320 0.550769 0.638102 0.696761 0.768757 0.823649 0.874969 0.919606 

Table 4.1 shows the ZI index for 500 random samples of size 𝑛𝑛 = 15,25,50,100 from 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃 

distribution with 𝜃𝜃 = 2, 𝜑𝜑 = 1.5  across zero-inflation parameter 𝜔𝜔0 = 0.1,0.2, … ,0.8 . It can be 

observed that ZI index is positive and always overestimates the true parameter for all the sample sizes. 

Figure 4.1 Box plot of ZI index for random samples from 𝒁𝒁𝒁𝒁𝒁𝒁𝑷𝑷(𝜽𝜽, 𝝋𝝋, 𝝎𝝎)|𝜽𝜽=𝟐𝟐,𝝋𝝋=𝟏𝟏.𝟓𝟓,𝝎𝝎=𝝎𝝎𝟎𝟎, across 
zero inflation parameter with 𝒏𝒏 =50,100. 
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Fig. 4.1 shows that ZI index is positive almost for all samples. Even though ZI index is not 

defined as an estimate of inflation parameter, one can use it to get a rough idea about zero-inflation 

parameter 𝜔𝜔. Further, ZI index would always overestimate the true parameter value of 𝜔𝜔0 if treated 

as an estimate of 𝜔𝜔 while for higher values of 𝜔𝜔 it becomes more and more consistent. It can also be 

seen that this behaviour of ZI index is independent of sample size. 

5. Parameter Estimation in ZIGP Distribution

In this section, we briefly review the methods of parameter estimation concerning ZIGP 

distribution and propose estimators for parameters based on the ratio of first two moments and 

proportion of zeros of ZIGP distribution which perform as good as MLE and even more efficient than 

the MLE. 

We consider the zero-inflated GP model introduced by Consul and Famoye (1992) and denote it 

as 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃(𝜃𝜃, 𝜑𝜑, 𝜔𝜔). The  𝑒𝑒𝑚𝑚𝑝𝑝 of  𝑌𝑌~𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃(𝜃𝜃, 𝜑𝜑, 𝜔𝜔) is,  

𝑃𝑃(𝑌𝑌 = 𝑦𝑦|𝜃𝜃, 𝜑𝜑, 𝜔𝜔) = �
𝜔𝜔 + (1 − 𝜔𝜔) 𝑒𝑒−𝜃𝜃/𝜑𝜑         𝑦𝑦 = 0

(1 − 𝜔𝜔)𝜃𝜃�𝜃𝜃 + 𝑦𝑦(𝜑𝜑 − 1)�
𝑦𝑦−1 𝜑𝜑−𝑦𝑦

𝑦𝑦!
 𝑒𝑒𝑒𝑒𝑒𝑒 �−

�𝜃𝜃 + 𝑦𝑦(𝜑𝜑 − 1)�
𝜑𝜑

�   𝑦𝑦 > 0

where 0 ≤ 𝜔𝜔 ≤ 1, 𝜃𝜃 > 0, 𝜑𝜑 ≥ max �1
2

, 1 − 𝜃𝜃
𝑚𝑚

� and 𝑚𝑚(𝑚𝑚 > 4) is a largest natural number for which 

 𝜃𝜃 + 𝑚𝑚(𝜑𝜑 − 1) > 0 when 𝜑𝜑 < 1. 

We discuss methods of estimation of parameters of ZIGP distribution. 

5.1 Maximum Likelihood Estimation 

The log-likelihood function based on a random sample 𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑛𝑛  from 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃(𝜃𝜃, 𝜑𝜑, 𝜔𝜔) 

distribution is, 

𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃, 𝜑𝜑, 𝜔𝜔|𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑛𝑛) = ∑ 𝑍𝑍(𝑦𝑦𝑖𝑖=0) 𝑝𝑝𝑙𝑙𝑙𝑙 �𝜔𝜔 + (1 − 𝜔𝜔)𝑒𝑒−𝜃𝜃
𝜑𝜑�𝑛𝑛

𝑖𝑖=1 + ∑ 𝑍𝑍(𝑦𝑦𝑖𝑖>0) �−�𝜃𝜃+𝑦𝑦𝑖𝑖(𝜑𝜑−1)�
𝜑𝜑

�𝑛𝑛
𝑖𝑖=1  

+ ∑ 𝑍𝑍(𝑦𝑦𝑖𝑖>0)�𝑝𝑝𝑙𝑙𝑙𝑙(1 − 𝜔𝜔)𝜃𝜃 ∓ (𝑦𝑦𝑖𝑖 − 1) 𝑝𝑝𝑙𝑙𝑙𝑙�𝜃𝜃 + 𝑦𝑦𝑖𝑖(𝜑𝜑 − 1)� − 𝑦𝑦𝑖𝑖𝑝𝑝𝑙𝑙𝑙𝑙𝜑𝜑 − 𝑝𝑝𝑙𝑙𝑙𝑙𝑦𝑦𝑖𝑖!�𝑛𝑛
𝑖𝑖=1

Iterative methods are used to obtain MLE of the parameters of ZIGP model. Czado and Min (2005) 

proved the consistency and asymptotic normality of a solution of maximum likelihood estimators 
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(MLE) in ZIGP regression model. We use the ZIGP package in R software to get the MLE of ZIGP 

model.  

5.2  Estimator based on first two moments and proportion of zeros (MOZE) 

Wagh and Kamalja (2017b) compared the estimates of GPD parameter in terms of bias, MSE, 

covariance using the method of moment estimation and MLE through a simulation study and 

demonstrated that ME performs better or equally good as compared to MLE when the sample size is 

small. Wagh and Kamalja (2017c) proposed an estimator referred to as probability estimator of 

inflation parameter of ZIP distribution based on moment estimator of the mean parameter and 

compare its performance through a simulation study. Famoye (1997) estimates the parameters of 

GNBD by the method of maximum likelihood, MOZE, first two moments and the ratio of the first 

two frequencies (MORA) and Minimum Chi-square (MC) and compares them through asymptotic 

relative efficiency. In this section, we introduce new estimators of parameters of ZIGP distribution 

which are based on first two sample moments and proportion of zeros; but the method of obtaining 

the estimates is somewhat different than that of Famoye (1997). We describe this method in the 

following. 

The first two population moments of 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃(𝜃𝜃, 𝜑𝜑, 𝜔𝜔) distribution are, 

𝐸𝐸(𝑌𝑌) = (1 − 𝜔𝜔)𝜃𝜃,  𝐸𝐸(𝑌𝑌2) = (1 − 𝜔𝜔)𝜃𝜃(𝜃𝜃 + 𝜑𝜑2) 

Let 𝑀𝑀1 = 1
𝑛𝑛

∑ 𝑌𝑌𝑖𝑖
𝑛𝑛
𝑖𝑖=1  and 𝑀𝑀2 = 1

𝑛𝑛
� 𝑌𝑌𝑖𝑖

2𝑛𝑛
𝑖𝑖=1  be the first and second sample moment respectively, 

based on a random sample 𝑦𝑦1, 𝑦𝑦2, … , 𝑦𝑦𝑛𝑛  from 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃(𝜃𝜃, 𝜑𝜑, 𝜔𝜔)  distribution. The moment equation 

obtained by equating first sample moment with the corresponding population moment of ZIGP 

distribution when simplified for 𝜃𝜃 gives, 

𝜃𝜃 = 𝑀𝑀1
1−𝜔𝜔

 (5.1) 

Equating ratio of 𝑀𝑀2  and 𝑀𝑀1  with the ratio of corresponding population moments of ZIGP 

distribution gives, 

𝑀𝑀2
𝑀𝑀1

= 𝜃𝜃 + 𝜑𝜑2 

Simplifying the above equation for 𝜑𝜑, we get, 

196 Estimation in zero-inflated Generalized Poisson distribution 



𝜑𝜑 = �𝑀𝑀2
𝑀𝑀1

− 𝑀𝑀1
1−𝜔𝜔

   (5.2) 

Let 𝑒𝑒0 = 𝑃𝑃(𝑌𝑌 = 0) and �̂�𝑒0 = 𝑛𝑛0
𝑛𝑛

 be the corresponding empirical probability where 𝑛𝑛0 is the 

frequency of zero in a random sample. Then 

𝑒𝑒0 = 𝜔𝜔 + (1 − 𝜔𝜔)𝑒𝑒−𝜃𝜃/𝜑𝜑 

Simplifying the expression  �̂�𝑒0 = 𝑒𝑒0 for 𝜔𝜔, we get the following probability equation. 

𝜔𝜔 = 𝑝𝑝�0−𝑒𝑒−𝜃𝜃/𝜑𝜑

1−𝑒𝑒−𝜃𝜃/𝜑𝜑         (5.3) 

Thus 𝜔𝜔 is in terms of 𝜃𝜃 and 𝜑𝜑.  An estimate of  𝜔𝜔  based on (5.3) using ME of 𝜃𝜃 and 𝜑𝜑 is calculated. 

We use the following steps to obtain estimates of parameters. 

i) Obtain the initial estimates 𝜃𝜃�0 and 𝜑𝜑�0 of  𝜃𝜃 and 𝜑𝜑 with 𝜔𝜔�0 = �̂�𝑒0. That is

𝜃𝜃�0 = 𝑀𝑀1
1−𝜔𝜔� 0

and 𝜑𝜑�0 = �𝑀𝑀2
𝑀𝑀1

− 𝑀𝑀1
1−𝜔𝜔� 0

ii) The improved estimates 𝜔𝜔�3, 𝜃𝜃�3  and 𝜑𝜑�3  are obtained iteratively using (5.3), (5.1) and (5.2)

respectively as follows for 𝑖𝑖 = 1,2,3.

𝜔𝜔�𝑖𝑖 = 𝑝𝑝�0−𝑒𝑒−�𝜃𝜃�𝑖𝑖−1/𝜑𝜑� 𝑖𝑖−1� 

1−𝑒𝑒−�𝜃𝜃�𝑖𝑖−1/𝜑𝜑� 𝑖𝑖−1�

𝜃𝜃�𝑖𝑖 = 𝑀𝑀1
1−𝜔𝜔� 𝑖𝑖

𝜑𝜑�𝑖𝑖 = �𝑀𝑀2
𝑀𝑀1

− 𝑀𝑀1
1−𝜔𝜔� 𝑖𝑖

 (5.4) 

We use only three iterations since at this stage we get an estimate, which is more or almost 

equally efficient than corresponding MLEs. In the next section, we demonstrate the efficiency of the 

proposed estimators with respect to MLE based on simulation. 

6. Comparison of estimate of parameters of ZIGP distribution

We perform a simulation study to compare the performance of proposed estimates of 

parameters of ZIGP distribution through MSE, bias, and SE. The simulation study in this paper 
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demonstrates that the new estimators 𝜃𝜃�3, 𝜑𝜑�3  of 𝜃𝜃  and 𝜑𝜑  are almost equally efficient as that of 

respective MLEs while 𝜔𝜔�3 is much more efficient than 𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀. We discuss the steps of simulation 

study systematically in the following. 

Generate 𝑚𝑚  random samples each of size 𝑛𝑛  from ZIGP distribution and obtain MLE 

𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀 , 𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀, 𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀, of 𝜃𝜃, 𝜑𝜑 and 𝜔𝜔 using 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃 package in R-Software as discussed by Erhardt (2011). 

Calculate the proposed estimators 𝜔𝜔�3, 𝜃𝜃�3 and 𝜑𝜑�3 for each sample. The algorithm is as follows. 

i) 𝑚𝑚 = 500 random samples each of size 𝑛𝑛 are generated from 𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃(𝜃𝜃, 𝜑𝜑, 𝜔𝜔) for 𝜃𝜃 = 2, 𝜑𝜑 = 1.5

and 𝜔𝜔 = 𝜔𝜔0 where 𝜔𝜔0 ∈ (0,1).

ii) Compute 𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖) , 𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀

(𝑖𝑖)  𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖)  and 𝜃𝜃�3

(𝑖𝑖), 𝜑𝜑�3
(𝑖𝑖) 𝜔𝜔�3

(𝑖𝑖) for each of the 𝑖𝑖𝑡𝑡ℎ sample.

iii) Evaluate 𝑀𝑀𝑀𝑀𝐸𝐸(𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀) and 𝑀𝑀𝑀𝑀𝐸𝐸(𝜃𝜃�3) using following formulae.

𝑀𝑀𝑀𝑀𝐸𝐸(𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀) =
∑ �𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀

(𝑖𝑖) −𝜃𝜃�
2𝑚𝑚

𝑖𝑖=1

𝑚𝑚
, 𝑀𝑀𝑀𝑀𝐸𝐸�𝜃𝜃�3� =

∑ �𝜃𝜃�3
(𝑖𝑖)−𝜃𝜃�

2𝑚𝑚
𝑖𝑖=1

𝑚𝑚
.

Similarly, evaluate 𝑀𝑀𝑀𝑀𝐸𝐸(𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀), 𝑀𝑀𝑀𝑀𝐸𝐸(𝜑𝜑�3), 𝑀𝑀𝑀𝑀𝐸𝐸(𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀) and 𝑀𝑀𝑀𝑀𝐸𝐸(𝜔𝜔�3) by using following

formulae.

𝑀𝑀𝑀𝑀𝐸𝐸(𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀) =
∑ �𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀

(𝑖𝑖) −𝜑𝜑�
2𝑚𝑚

𝑖𝑖=1

𝑚𝑚
, 𝑀𝑀𝑀𝑀𝐸𝐸(𝜑𝜑�3) =

∑ �𝜑𝜑�3
(𝑖𝑖)−𝜑𝜑�

2𝑚𝑚
𝑖𝑖=1

𝑚𝑚

𝑀𝑀𝑀𝑀𝐸𝐸(𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀) =
∑ �𝜔𝜔� 𝑀𝑀𝑀𝑀𝑀𝑀

(𝑖𝑖) −𝜔𝜔�
2𝑚𝑚

𝑖𝑖=1

𝑚𝑚
, 𝑀𝑀𝑀𝑀𝐸𝐸(𝜔𝜔�3) =

∑ �𝜔𝜔� 3
(𝑖𝑖)−𝜔𝜔�

2𝑚𝑚
𝑖𝑖=1

𝑚𝑚

iv) Further evaluate the relative efficiency of all the proposed estimates with respect to respective

MLE as follows.

𝑅𝑅𝐸𝐸�𝜃𝜃�3�𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀� = 𝑀𝑀𝑀𝑀𝑀𝑀�𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀�
𝑀𝑀𝑀𝑀𝑀𝑀�𝜃𝜃�3�

 ,        𝑅𝑅𝐸𝐸(𝜑𝜑�3|𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀)
𝑀𝑀𝑀𝑀𝑀𝑀(𝜑𝜑�3)

𝑅𝑅𝐸𝐸(𝜔𝜔�3|𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝜔𝜔� 𝑀𝑀𝑀𝑀𝑀𝑀)
𝑀𝑀𝑀𝑀𝑀𝑀(𝜔𝜔� 3)

v) The variance of the proposed estimates and 𝑀𝑀𝑙𝑙𝐸𝐸s is calculated as follows.

𝑣𝑣𝑚𝑚𝑣𝑣�𝜃𝜃�3� =
∑ �𝜃𝜃�3

(𝑖𝑖)−𝜃𝜃�3�
2𝑚𝑚

𝑖𝑖=1

𝑚𝑚−1
,  𝑣𝑣𝑚𝑚𝑣𝑣�𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀� =

∑ �𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖) −𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀�

2𝑚𝑚
𝑖𝑖=1

𝑚𝑚−1
, 

𝑣𝑣𝑚𝑚𝑣𝑣(𝜑𝜑�3) =
∑ �𝜑𝜑�3

(𝑖𝑖)−𝜑𝜑�3�
2𝑚𝑚

𝑖𝑖=1

𝑚𝑚−1
, 𝑣𝑣𝑚𝑚𝑣𝑣(𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀) =

∑ �𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖) −𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀�

2𝑚𝑚
𝑖𝑖=1

𝑚𝑚−1
, 

𝑣𝑣𝑚𝑚𝑣𝑣(𝜔𝜔�3) =
∑ �𝜔𝜔� 3

(𝑖𝑖)−𝜔𝜔� 3�
2𝑚𝑚

𝑖𝑖=1

𝑚𝑚−1
, 𝑣𝑣𝑚𝑚𝑣𝑣(𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀) =

∑ �𝜔𝜔� 𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖) −𝜔𝜔� 𝑀𝑀𝑀𝑀𝑀𝑀�

2𝑚𝑚
𝑖𝑖=1

𝑚𝑚−1
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where  𝜃𝜃�3 = ∑ 𝜃𝜃�3
(𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑚𝑚

, 𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑚𝑚

, 𝜑𝜑�3 = ∑ 𝜑𝜑�3
(𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑚𝑚

, 

𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑚𝑚

, 𝜔𝜔�3 = ∑ 𝜔𝜔� 3
(𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑚𝑚

, 𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ 𝜔𝜔� 𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑚𝑚

. 

We evaluate standard errors 𝑀𝑀𝐸𝐸�𝜃𝜃�3�, 𝑀𝑀𝐸𝐸�𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀�, 𝑀𝑀𝐸𝐸(𝜑𝜑�3), 𝑀𝑀𝐸𝐸(𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀), 𝑀𝑀𝐸𝐸(𝜔𝜔�3) and 𝑀𝑀𝐸𝐸(𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀) 

of the estimators from their respective variances. 

vi) We also calculate average biases in the respective estimators as follows.

𝑏𝑏𝑖𝑖𝑚𝑚𝑝𝑝�𝜃𝜃�3�  =
∑ �𝜃𝜃�3

(𝑖𝑖)−𝜃𝜃�𝑚𝑚
𝑖𝑖=1

𝑚𝑚
, 𝑏𝑏𝑖𝑖𝑚𝑚𝑝𝑝�𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀� =

∑ �𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖) −𝜃𝜃�𝑚𝑚

𝑖𝑖=1

𝑚𝑚
, 

𝑏𝑏𝑖𝑖𝑚𝑚𝑝𝑝(𝜑𝜑�3) =
∑ �𝜑𝜑�3

(𝑖𝑖)−𝜑𝜑�𝑚𝑚
𝑖𝑖=1

𝑚𝑚
, 𝑏𝑏𝑖𝑖𝑚𝑚𝑝𝑝(𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀) =

∑ �𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖) −𝜑𝜑�𝑚𝑚

𝑖𝑖=1

𝑚𝑚
, 

𝑏𝑏𝑖𝑖𝑚𝑚𝑝𝑝(𝜔𝜔�3) =
∑ �𝜔𝜔� 3

(𝑖𝑖)−𝜔𝜔�𝑚𝑚
𝑖𝑖=1

𝑚𝑚
, 𝑏𝑏𝑖𝑖𝑚𝑚𝑝𝑝(𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀) =

∑ �𝜔𝜔� 𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖) −𝜔𝜔�𝑚𝑚

𝑖𝑖=1

𝑚𝑚
. 

Steps (i) to (vi) are repeated for 𝜔𝜔0 = 0.1,0.2, … ,0.8. 

The simulation study is performed for the sample sizes 𝑛𝑛 = 50,100,200,250. Table 6.1 and 6.2 

shows the results for 𝑛𝑛 = 50, 100 (the results corresponding to 𝑛𝑛 = 200,250 are not presented in the 

paper due to the almost similar behaviour).  

Table 6.1 MSE, SE, Bias and Relative Efficiency for 𝜽𝜽, 𝝋𝝋, 𝝎𝝎 of ZIGP distribution for 𝒏𝒏 = 𝟓𝟓𝟎𝟎. 

Parameter 𝜽𝜽 Parameter 𝝋𝝋 Parameter 𝝎𝝎 

𝝎𝝎𝟎𝟎
Estimate 

type 𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴 𝑩𝑩𝒁𝒁𝑩𝑩𝑴𝑴 𝑹𝑹𝑴𝑴�𝜽𝜽��𝜽𝜽�𝑴𝑴𝑴𝑴𝑴𝑴� 𝑴𝑴𝑴𝑴 𝑩𝑩𝒁𝒁𝑩𝑩𝑴𝑴 𝑹𝑹𝑴𝑴(𝝋𝝋� |𝝋𝝋� 𝑴𝑴𝑴𝑴𝑴𝑴) 𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴 𝑩𝑩𝒁𝒁𝑩𝑩𝑴𝑴 𝑹𝑹𝑴𝑴(𝝎𝝎� |𝝎𝝎� 𝑴𝑴𝑴𝑴𝑴𝑴) 

0.1 
𝑀𝑀𝑙𝑙𝐸𝐸 0.1836 0.4192 0.0905 0.0668 0.2466 -0.0783 0.0150 0.1165 0.0379 

𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.1863 0.3760 0.2128 0.9851 0.0733 0.2487 -0.1079 0.9111 0.0197 0.1090 0.0886 0.7609 

0.2 
𝑀𝑀𝑙𝑙𝐸𝐸 0.2000 0.4432 0.0630 0.0833 0.2830 -0.0577 0.0191 0.1381 -0.0035 

𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.1955 0.3971 0.1954 1.0229 0.0850 0.2693 -0.1121 0.9800 0.0158 0.1074 0.0658 1.2027 

0.3 
𝑀𝑀𝑙𝑙𝐸𝐸 0.2641 0.5092 0.0731 0.0847 0.2792 -0.0828 0.0232 0.1524 -0.0060 

𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.2393 0.4307 0.2328 1.1032 0.0851 0.2552 -0.1420 0.9941 0.0158 0.1114 0.0584 1.4702 

0.4 
𝑀𝑀𝑙𝑙𝐸𝐸 0.3441 0.5858 0.0412 0.1023 0.3142 -0.0615 0.0290 0.1684 -0.0258 

𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.2788 0.4775 0.2264 1.2344 0.1034 0.2934 -0.1321 0.9894 0.0150 0.1136 0.0465 1.9261 

0.5 
𝑀𝑀𝑙𝑙𝐸𝐸 0.3888 0.6232 0.0345 0.1343 0.3583 -0.0784 0.0316 0.1753 -0.0314 

𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.3054 0.4996 0.2374 1.2732 0.1257 0.3121 -0.1687 1.0683 0.0124 0.1033 0.0417 2.5568 

0.6 
𝑀𝑀𝑙𝑙𝐸𝐸 0.5308 0.7293 0.0025 0.1614 0.3965 -0.0673 0.0447 0.1812 -0.0135 

𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.3913 0.5816 0.2317 1.3564 0.1569 0.3586 -0.1692 1.0283 0.0114 0.1006 0.0353 3.9383 

0.7 
𝑀𝑀𝑙𝑙𝐸𝐸 0.6492 0.8010 0.0944 0.2010 0.4374 -0.1001 0.0459 0.1751 -0.0494 

𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.5068 0.6371 0.3191 1.2810 0.1654 0.3655 -0.1790 1.2151 0.0070 0.0795 0.0268 6.5322 

0.8 
𝑀𝑀𝑙𝑙𝐸𝐸 0.9919 0.9959 0.0446 0.2603 0.4956 -0.1231 0.0517 0.2195 -0.0603 

𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.8803 0.7878 0.5108 1.1268 0.2605 0.4321 -0.2722 0.9991 0.0051 0.0684 0.0209 10.1263 

Table 6.2 MSE, SE, Bias and Relative Efficiency for 𝜽𝜽, 𝝋𝝋, 𝝎𝝎  of ZIGP distribution for 𝒏𝒏 = 𝟏𝟏𝟎𝟎𝟎𝟎. 

       Kirtee K. Kamalja and Yogita S. Wagh 199



Parameter 𝜽𝜽 Parameter 𝝋𝝋 Parameter 𝝎𝝎
𝝎𝝎𝟎𝟎 Estimate 

type 𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴 𝑩𝑩𝒁𝒁𝑩𝑩𝑴𝑴 𝑹𝑹𝑴𝑴�𝜽𝜽��𝜽𝜽�𝑴𝑴𝑴𝑴𝑴𝑴� 𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴 𝑩𝑩𝒁𝒁𝑩𝑩𝑴𝑴 𝑹𝑹𝑴𝑴(𝝋𝝋�|𝝋𝝋� 𝑴𝑴𝑴𝑴𝑴𝑴) 𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴 𝑩𝑩𝒁𝒁𝑩𝑩𝑴𝑴 𝑹𝑹𝑴𝑴(𝝎𝝎� |𝝎𝝎� 𝑴𝑴𝑴𝑴𝑴𝑴) 

0.1 
𝑀𝑀𝑙𝑙𝐸𝐸 0.1003 0.3108 0.0629 0.0321 0.1750 -0.0385 0.0091 0.0942 0.0160 

𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.1217 0.2832 0.2041 0.8244 0.0373 0.1739 -0.0845 0.8589 0.0120 0.0787 0.0763 0.7594 

0.2 
𝑀𝑀𝑙𝑙𝐸𝐸 0.1177 0.3417 0.0339 0.0401 0.1979 -0.0322 0.0114 0.1067 0.0014 

𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.1204 0.2885 0.1934 0.9772 0.0444 0.1931 -0.0849 0.9035 0.0108 0.0807 0.0659 1.0493 

0.3 
𝑀𝑀𝑙𝑙𝐸𝐸 0.1438 0.3791 0.0196 0.0475 0.2171 -0.0211 0.0150 0.1221 -

0.0110 
𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.1337 0.3091 0.1959 1.0755 0.0462 0.1985 -0.0827 1.0288 0.0098 0.0821 0.0556 1.5277 

0.4 
𝑀𝑀𝑙𝑙𝐸𝐸 0.2008 0.4483 0.0129 0.0584 0.2415 -0.0144 0.0181 0.1331 -

0.0216 
𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.1658 0.3509 0.2073 1.2108 0.0561 0.2197 -0.0888 1.0421 0.0084 0.0780 0.0477 2.1712 

0.5 
𝑀𝑀𝑙𝑙𝐸𝐸 0.2206 0.4694 0.0259 0.0733 0.2683 -0.0377 0.0156 0.1243 -

0.0144 
𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.1797 0.3632 0.2191 1.2277 0.0673 0.2332 -0.1141 1.0884 0.0071 0.0714 0.0443 2.2139 

0.6 
𝑀𝑀𝑙𝑙𝐸𝐸 0.2882 0.5374 0.0058 0.0906 0.2994 -0.0346 0.0179 0.1319 -

0.0235 
𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.2155 0.4160 0.2069 1.3371 0.0816 0.2639 -0.1100 1.1103 0.0058 0.0685 0.0328 3.1108 

0.7 
𝑀𝑀𝑙𝑙𝐸𝐸 0.3769 0.6131 0.0421 0.1223 0.3454 -0.0566 0.0187 0.1344 -

0.0263 
𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.2890 0.4741 0.2543 1.3040 0.1095 0.2960 -0.1484 1.1169 0.0046 0.0639 0.0235 4.0450 

0.8 
𝑀𝑀𝑙𝑙𝐸𝐸 0.5492 0.7390 0.0646 0.1792 0.4223 -0.0348 0.0178 0.1305 -

0.0278 
𝑀𝑀𝑀𝑀𝑍𝑍𝐸𝐸 0.4438 0.5879 0.3143 1.2376 0.1626 0.3706 -0.1597 1.1018 0.0027 0.0490 0.0188 6.4612 

Table 6.1 and 6.2 shows that MOZE and MLE of ZIGP distribution performs equally for the 

parameters 𝜃𝜃, 𝜑𝜑 and  𝜔𝜔.  We observed, through the relative efficiency of MOZE with respect to MLE 

for all the parameters of ZIGP distribution that, MOZE performs as good as the MLE for the sample 

sizes 𝑛𝑛 = 50,100.  The results can be visualized through the Fig. 6.1-6.6 for 𝑛𝑛 = 50,100  which 

clearly shows the behaviour of the MLE and the MOZE for all the parameters across the values of  

𝜔𝜔.  

Figure 6.1-6.6 MSE, SE and Bias of estimated Mean parameter 𝜽𝜽 for 𝒁𝒁𝒁𝒁𝒁𝒁𝑷𝑷 distribution for 𝒏𝒏 =
𝟓𝟓𝟎𝟎, 𝟏𝟏𝟎𝟎𝟎𝟎. 
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It can be observed that the MSE and SE of the mean parameter of 𝜃𝜃�3 is less than that of  𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀 . Overall 

the MOZE of mean parameter 𝜃𝜃 is equally efficient as MLE for ZIGP distribution. 

Figure 6.7-6.12 MSE, SE and Bias of estimated dispersion parameter 𝝋𝝋 for 𝒁𝒁𝒁𝒁𝒁𝒁𝑷𝑷 distribution 
for 𝒏𝒏 = 𝟓𝟓𝟎𝟎, 𝟏𝟏𝟎𝟎𝟎𝟎. 
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It can be observed that the MSE and SE for the dispersion parameter of 𝜑𝜑�3 is less than that of  𝜑𝜑�𝑀𝑀𝑀𝑀𝑀𝑀 . 

Overall the MOZE of dispersion parameter 𝜑𝜑 is equally efficient as MLE for ZIGP distribution. 

Figure 6.13-6.18 MSE, SE and Bias of estimated inflation parameter 𝝎𝝎 for 𝒁𝒁𝒁𝒁𝒁𝒁𝑷𝑷 distribution 
for 𝒏𝒏 = 𝟓𝟓𝟎𝟎, 𝟏𝟏𝟎𝟎𝟎𝟎. 

          Further, we note that the MSE for inflation parameter 𝜔𝜔�3 is less than MSE of 𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀 . Overall 

the MOZE of inflation parameter 𝜔𝜔 is more efficient than MLE for ZIGP distribution. The boxplot 

(not included) shows that 𝜔𝜔�3 is more consistent than that of 𝜔𝜔�𝑀𝑀𝑀𝑀𝑀𝑀. 

7. Fitting different count data models

For the purpose of demonstration, we fit Poisson, GPD, ZIP, ZIGP, and ZINB to various real 

life data sets and compare the values of chi-square statistic for goodness of fit and p-value at 5% level 

of significance. The results are reported in the following Table 7.1. 
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Table 7.1 Fitting count data model to zero-inflated data sets 

8. Conclusions

In this paper, we take a brief overview of different zero-inflated distributions that are popular 

for modelling count data having zero-inflation and overdispersion. We present a simulation study for 

choosing between zero-inflated models by comparing the performance of the estimates of Poisson, 

GPD, ZIP, ZIGP and ZINB model when the data come from ZIGP distribution. If the zero-inflated 

nature of the data is ignored and either a Poisson or GPD model is used to model a ZIGP data, we fail 

Reference of the 
sample data 

set used 

Details of the 
Sample 
data set 

Sample 
Size 

Param
eter 

Goodness of fit under different model and details of 
model fitting 

Poisson GPD ZIP ZIGP ZINB 

Santolino and 
Boucher (2009) Spanish 

insurance 
claim data set 

180 

𝜃𝜃� 4.6111 4.6109 7.4732 6.8259 6.4818 

𝜑𝜑�  - 4.0728 - 2.7972 0.9968 
𝜔𝜔� - - 0.3830 0.3245 0.2886 

𝜒𝜒2 1631634.44 33.4889 10776.9 16.9866 16.7737 

p-value 0.0000 0.0004 0.0000 0.0747 0.0795 

Lawal (2012) 
Injury counts 
for cleaner 

pre-WRATS 
342 

𝜃𝜃� 0.3275 0.3275 0.8638 0.3282 0.3276 

𝜑𝜑�  - 1.3289 - 1.3282 2.2257 

𝜔𝜔� - - 0.6209 0.0025 0.0003 

𝜒𝜒2 82.4239 0.3461 3.4604 0.3445 0.3883 

p-value 0.0000 0.8411 0.1772 0.5572 0.5332 

Lawal (2012) 

Mosquito 
count from 

492 houses in 
Western 
Kenya 

492 

𝜃𝜃� 1.4858 1.4858 3.4341 2.1005 1.4871 

𝜑𝜑�  - 2.6637 - 2.3434 3.2517 

𝜔𝜔� - - 0.5673 0.2927 0.0009 

𝜒𝜒2 5.118E+10 15.0649 1399980 13.9254 15.7383 
p-value 0.0000 0.0579 0.0000 0.0525 0.0276 

Rideout, Hinde, 
Demetrio (2001) 

Data for 270 
micro-

propagated 
roots 

270 

𝜃𝜃� 5.0593 5.0591 6.6222 6.5924 6.5889 

𝜑𝜑�  - 2.2921 - 1.2812 0.1003 

𝜔𝜔� - - 0.2360 0.2326 0.2322 

𝜒𝜒2 2462.3554 127.6170 61.1898 16.6173 15.6528 
p-value 0.0000 0.0000 0.0000 0.0833 0.1100 

Simulated data from 
𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃 (2, 1.5, 0.4) 

𝑒𝑒 =    0, 1, 2,3,4,5,6,8,9 

𝑝𝑝 = 55,15,11,8,2,6,1,1, 

100 

𝜃𝜃� 1.2200 1.2199 2.4853 2.0869 2.0309 
𝜑𝜑�  - 1.9087 - 1.4210 0.5246 
𝜔𝜔� - - 0.5091 0.4154 0.6647 
𝜒𝜒2 104.4887 3.5509 4.7384 0.1201 0.0992 

p-value 0.0000 0.3142 0.1920 0.9417 0.9516 

Simulated data from 
𝑍𝑍𝑍𝑍𝐺𝐺𝑃𝑃(3, 1.3, 0.5) 

𝑒𝑒 = 0: 8,10,11,13,14 

𝑝𝑝 = 160,22,28,26,22,19, 8,5,6,1,1,1,1 

300 

𝜃𝜃� 1.7267 1.7266 3.5988 3.4241 3.4119 

𝜑𝜑�  - 2.3666 - 1.3190 0.2173 
𝜔𝜔� - - 0.5202 0.4957 0.4939 
𝜒𝜒2 1286.3096 46.8497 21.2283 3.3325 3.3952 

p-value 0.0000 0.0000 0.0017 0.6489 0.6393 
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to notice some significant relationships. To correctly identify the zero-inflated model one should 

consider an estimate of inflation parameter along with the estimate of the mean parameter.  

We discuss the estimation of parameters of ZIGP distribution and propose estimators of 

parameters of ZIGP distribution based on the first two sample moments and proportion of zeros 

referred as MOZE and compares its performance with MLE through a simulation study. Through 

simulation study, it is observed that MOZE are almost equal or even sufficient than that of MLE of 

the parameters of ZIGP distribution.  
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