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Abstract: Some specific random fields have been studied by many researchers 

whose finite-dimensional marginal distributions are multivariate closed skew-

normal or multivariate extended skew-t, in time and spatial domains. In this 

paper, a necessary and sufficient condition is provided for applicability of such 

random field in spatial interpolation, based on the marginal distributions. Two 

deficiencies of the random fields generated by some well-known multivariate 

distributions are pointed out and in contrast, a suitable skew and heavy tailed 

random field is proposed. The efficiency of the proposed random field is 

illustrated through the interpolation of a real data.  
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1. Introduction 

   In recent years, random fields (RFs) have been successfully applied, as a statistical model, to the 

analysis of biological sequences, text and image processing, as well as many areas of computer 

vision and artificial intelligence. In many situations the availability of a RF is potentially of great 

importance particularly during defining the joint distribution for any arbitrary number of variables. 

For instance, a common approach for interpolation in time or spatial domain, is to compute 

conditional expectation of field variable in interpolated site given observed data. The joint 

distribution of variables in observed sites and any arbitrary sites is thus needed. In this case a RF 

usually is defined in terms of the finite-dimensional distributions based on a multivariate 

distribution. Recently some RFs have been defined by multivariate Skew-Normal (SN) distribution 

(Azzalini, 1985) [5], multivariate Closed Skew-Normal (CSN) distribution (González-Farías et al, 

2004) [10], multivariate Skew-t distribution and its general form, multivariate Extended Skew-t 

(EST) distribution (Arellano-Valle and Genton, 2010) [3]. These RFs have been studied by some 

authors such as Kim and Mallick (2004) [12] and Karimi and Mohammadzadeh (2011). In this study, 

we show that the RFs generated by some versions of multivariate SN, CSN and EST distributions 

have two weakness in application to the spatial interpolation. These two deficiencies are in concern 

to the compatibility and considering proper spatial autocorrelation structure (PSAS) which will be 

explained in Section 3. Our findings show that definition of a RF based on multivariate CSN and 

EST distributions as studied by the corresponding researchers, have these two weaknesses. 

Although a suitable modification in these RFs may remove the second problem, but the first problem 

cannot be solved anymore. In the sequel, we define a new skew and heavy tailed RF based on the 

multivariate generalized asymmetric Laplace (GAL) distribution introduced by Kozubowski et al 

(2013) [15], which do not have these two deficiencies mentioned in the above RFs. This RF do not 

have the first weakness at all and have less weakness than the CSN and EST RFs regarded to the 

second deficiency. Moreover, it provides an enormous flexibility in modeling heavy-tailed and 

skewed data.  
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   The paper is organized as follows. In Section 2, the multivariate CSN and EST distributions are 

reviewed. The necessary and sufficient condition for compatibility of a RF is discussed in Section 

3. Then, we show that some versions of these distributions do not satisfy this condition. Also, we 

show these RFs, which have been defined and studied by some researchers, do not consider PSAS 

property. Section 4 is devoted to definition of GAL RF and study of its profits, and its application to 

a real environmental data set is included in Section 5. 

 

2. Multivariate closed skew normal and extended skew-t distributions 

   In this section, the multivariate CSN and EST distributions are first reviewed with emphasis on 

characteristics of the joint and marginal distributions. 

 Recall that, a p-dimensional continuous random vector 𝑿 = (𝑋1, … , 𝑋𝑝)′  has a closed skew 

normal (CSN) distribution, denoted by 𝑿 ∼ 𝐶𝑆𝑁𝑝,𝑞(𝝁, 𝜮, 𝜞, 𝝃, 𝜟), if its density function is given by 

𝑓𝑿(𝒙) =
1

𝛷𝑞(𝟎;𝝃,𝜟+𝜞 𝜮𝜞′)
𝜑𝑝(𝒙; 𝝁, 𝜮) 𝛷𝑞(𝜞(𝒙 − 𝝁); 𝝃, 𝜟), 𝒙 ∈ 𝑅𝑝,                                               (2.1) 

where 𝜞 ∈ 𝑅𝑞×𝑝 is the shape parameter, 𝜑𝑝(𝒙; 𝛍, 𝚺) denotes the density function of p-dimensional 

normal distribution with mean 𝝁 ∈ 𝑅𝑝 , positive definite dispersion matrix 𝚺 , and 𝛷𝑞(𝒙; 𝝃, 𝜟) 

denotes the q-dimensional normal cumulative distribution function with mean 𝝃 ∈ 𝑅𝑝  and 

dispersion matrix 𝚫 . Consider the partition 𝐗′ = (𝐗𝟏
′ , 𝐗𝟐

′ )  with  dim(𝑿1) = 𝑝1 , dim(𝑿2) = 𝑝2 , 

𝑝1 + 𝑝2 = 𝑝  and the corresponding partition of the parameters (𝛍, 𝚺, 𝚪) . Then the marginal 

distribution of CSN is given by 

𝑿1~𝐶𝑆𝑁𝑝1,𝑞(𝝁1, 𝜮11, 𝜞1
∗ , 𝝃, 𝜟1

∗),                                                                                                    (2.2) 

 

where  𝚺22.1 =  𝚺22−𝚺21𝚺11
−𝟏𝚺12 , 𝚪1

∗ = 𝚪1 + 𝚪2 𝚺21𝚺11
−𝟏 , 𝚫1

∗ = 𝚫 + 𝚪2 𝚺22.1𝚪2
′ . See González-

Farías et al. (2004) [10] for more details.  

   An extended version of the skew-t distribution is introduced and studied by Arellano-Valle and 

Genton (2010) [3], see also Adcock (2010) [1]. A continuous p-dimensional random vector 𝑿 =
(𝑋1, … , 𝑋𝑝)′  has a multivariate extended skew-t (EST) distribution, denoted by 𝑿 ∼

𝐸𝑆𝑇𝑝(𝝁, 𝜮, 𝝀, 𝜈, 𝜏), if its density function is given by 

𝑓𝑿(𝒙) =
1

𝑇1(
𝜏

√1+𝝀′�̅�𝝀
;𝜐)

𝑡𝑝(𝒙; 𝝁, 𝜮, 𝜈)𝑇1((𝝀′𝒛 + 𝜏)(
𝜐+𝑝

𝜐+𝑄(𝒛)
)

1

2 ; 𝜐 + 𝑝), 𝒙 ∈ 𝑅𝑝,                                  (2.3) 

where 𝜮 = 𝝎−𝟏𝜮 𝝎−𝟏  (the correlation matrix) , 𝒛 = 𝝎−𝟏(𝒙 − 𝝁), 𝑄(𝒛) = 𝒛′𝜮
−𝟏

 𝒛  and 𝝎 =

𝑑𝑖𝑎𝑔(𝜮)
1

2, 𝝀 ∈ 𝑅𝑝 is the shape parameter, 𝜏 ∈ 𝑅 is the extension parameter, 

𝑡𝑝(𝒙; 𝝁, 𝜮, 𝜈) =
𝛤(

𝜐+𝑝

2
)

|𝜮|
1
2(𝜐𝜋)

𝑝
2  𝛤(

𝜐

2
)

(1 +
𝑄(𝒛)

𝜐
)−(

𝜐+𝑝

2
),                                                                              (2.4) 

denotes the density function of usual p-dimensional Student’s t distribution with location parameter 

𝝁 ∈ 𝑅𝑝, positive definite dispersion matrix 𝜮, with p × p scale and correlation matrices 𝝎 and 𝜮, 

respectively, and degrees of freedom 𝜐 > 0, and 𝑇1(𝑥; 𝜐) denotes the univariate standard Student’s 

t cumulative distribution function with degrees of freedom 𝜐 > 0. The marginal distribution of EST 

is also given by 
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 𝑿1~𝐸𝑆𝑇𝑝1
(𝝁1, 𝜮11, 𝝀1

∗ , 𝜈, 𝜏1
∗),                                                                                                       (2.5) 

where 𝝀1
∗ =

𝝀1+�̅�11
−𝟏�̅�12𝝀2

√1+𝝀2
′�̃�22.1𝝀2

, 𝜏1
∗ =

𝜏

√1+𝝀2
′�̃�22.1𝝀2

 and �̃�22.1 = �̅�22 − �̅�21�̅�11
−𝟏�̅�12.  See Arellano-Valle 

and Genton (2010) [3] for more details.  

3. Main results 

   The Kolmogorov extension theorem guarantees that a suitably "consistent" collection of finite-

dimensional distributions will define a RF. Let 𝜈𝒔1…𝒔𝑘
(. ) be a system that satisfy the two following 

conditions (well known as consistency conditions): 

 (Permutation) For all permutations  𝜋 of {1,2, … , 𝑘}  and measurable sets 𝐵𝑖 ⊆ 𝑅 ,    

𝜈𝒔𝜋(1)…𝒔𝜋(𝑘)
(𝐵𝜋(1) × … × 𝐵𝜋(𝑘)) = 𝜈𝒔1…𝒔𝑘

(𝐵1 × … × 𝐵𝑘),                                                             (3.1) 

 (Projection) For all measurable sets 𝐵𝑖 ⊆ 𝑅, 𝑚 ∈ 𝑁, 

𝜈𝒔1…𝒔𝑘,𝒔𝑘+1,…,𝒔𝑘+𝑚
(𝐵1 × … × 𝐵𝑘 × 𝑅 × … × 𝑅) = 𝜈𝒔1…𝒔𝑘

(𝐵1 × … × 𝐵𝑘).                        (3.2) 

   Then, there exists a probability measure space (Ω, 𝐹, 𝑃) and a RF 𝓩 = {𝑍(𝒔), 𝒔 ∈ 𝑫 ⊆ 𝑅𝑑} for 

which, 𝜈𝒔1…𝒔𝑘
 is the finite dimensional distribution (FDD) of RF 𝓩, in the sense that 

𝜈𝒔1…𝒔𝑘
(𝑩) = 𝑃[(𝑍(𝒔1), … , 𝑍(𝒔𝑘)) ∈ 𝑩],    𝑩 ⊆ 𝑅𝑘.                                                                     (3.3) 

Here, 𝑫 is an arbitrary set in 𝑅𝑑. However, it is known that the direct check of the Kolmogorov 

conditions seems practically impossible.  In the case that the system 𝜈𝒔1…𝒔𝑘
(. ) corresponds to a 

multivariate function 𝑓𝒔1,…,𝒔𝑘
 with respect to a σ-finite measure 𝜇  in the sense that 𝜈𝒔1…𝒔𝑘

(𝑩) =

∫ 𝑓𝒔1,…,𝒔𝑘

 

𝑩
(𝑧1, … , 𝑧𝑘) 𝜇(𝑑𝑧1 … 𝑑𝑧𝑘), an easier alternative is to check the similar conditions with (3.1) 

and (3.2) for this function. To this end, the following definition is represented. 

 

Definition 3.1 (Compatibility) A multivariate function  𝑓 is said to be compatible with respect to 

measure 𝜇, if it is exchangeable in its components, i.e. 

𝑓𝒔1,…,𝒔𝑘
(𝑧1, … , 𝑧𝑘) = 𝑓 𝒔𝜋(1),…,𝒔𝜋(𝑘)

(𝑧𝜋(1), … , 𝑧𝜋(𝑘)),                                                                           (3.4) 

and if all the marginal functions can be coincided with the ones whose non-common dimensions 

are integrated out, i.e.  

∫ 𝑓𝒔1,…,𝒔𝑘,𝒔𝑘+1,…,𝒔𝑘+𝑚
(𝑧1, … , 𝑧𝑘+𝑚) 𝜇(𝑑𝑧𝑘+1 … 𝑑𝑧𝑘+𝑚

 

𝑅𝑚 ) = 𝑓𝒔1,…,𝒔𝑘
(𝑧1, … , 𝑧𝑘).                             (3.5) 

   The following proposition shows that compatibility is a necessary and sufficient condition to 

satisfy the consistency conditions in the Kolmogorov existence theorem.  

Proposition 3.1.  Let system 𝜈𝒔1…𝒔𝑘
 corresponds to a multivariate positive function 𝑓 with respect 

to a σ-finite measure 𝜇 (𝜈𝒔1…𝒔𝑘
(𝑩) = ∫ 𝑓𝒔1,…,𝒔𝑘

 

𝑩
(𝑧1, … , 𝑧𝑘) 𝜇(𝑑𝑧1 … 𝑑𝑧𝑘)). Then the compatibility 

of 𝑓  is a necessary and sufficient condition for which 𝜈𝒔1…𝒔𝑘
 satisfy consistency conditions in 

Kolmogorov theorem. 

 

Proof: Since 𝜈 corresponds to function 𝑓 with respect to measure 𝜇, we conclude that 

𝜈𝒔1…𝒔𝑘
(𝐵1 × … × 𝐵𝑘) = ∫ 𝑓𝒔1,…,𝒔𝑘

(𝑧1, … , 𝑧𝑘)
 

𝐵1×…×𝐵𝑘
 𝜇(𝑑𝑧1 … 𝑑𝑧𝑘), 

and so 
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𝜈𝒔𝜋(1)…𝒔𝜋(𝑘)
(𝐵𝜋(1) × … × 𝐵𝜋(𝑘)) = ∫ 𝑓 𝒔𝜋(1),…,𝒔𝜋(𝑘)

 

𝐵𝜋(1)×…×𝐵𝜋(𝑘)

(𝑧𝜋(1), … , 𝑧𝜋(𝑘))  𝜇(𝑑𝑧𝜋(1) … 𝑑𝑧𝜋(𝑘)) 

                     = ∫ 𝑓 𝒔𝜋(1),…,𝒔𝜋(𝑘)

 

𝐵1×…×𝐵𝑘
(𝑧𝜋(1), … , 𝑧𝜋(𝑘))  𝜇(𝑑𝑧1 … 𝑑𝑧𝑘). 

   The second equation comes from Fubini’s Theorem. Now, the condition (3.1) holds iff (3.4) holds. 

Therefore 

𝜈𝒔1…𝒔𝑘𝒔𝑘+1,…,𝒔𝑘+𝑚
(𝐵1 × … × 𝐵𝑘 × 𝑅 × … × 𝑅) = ∫ 𝐴

 

𝐵1×…×𝐵𝑘×𝑅×…×𝑅

 𝜇(𝑑𝑧1 … 𝑑𝑧𝑘+𝑚) 

                       = ∫ {∫ 𝐴  𝜇(𝑑𝑧𝑘+1 … 𝑑𝑧𝑘+𝑚)
 

𝑅×…×𝑅
}

 

𝐵1×…×𝐵𝑘
𝜇(𝑑𝑧1 … 𝑑𝑧𝑘), 

where 𝐴 = 𝑓𝒔1…𝒔𝑘,𝒔𝑘+1,…,𝒔𝑘+𝑚
(𝑧1, … , 𝑧𝑘+𝑚).  

   Again the second equation is derived by Fubini’s Theorem. Therefore, the condition (3.2) is 

satisfied iff (3.5) is right.                                                                                                                    

Notice that positivity of 𝑓 and being σ-finite for measure 𝜇 are both essential in Proposition 3.1 and 

cannot be removed. However, positivity of 𝑓 can be replaced by integrability of 𝑓 with respect to 

measure 𝜇 i.e. ∫ 𝑓𝒔1…𝒔𝑘,𝒔𝑘+1,…,𝒔𝑘+𝑚
(𝑧1, … , 𝑧𝑘+𝑚)

 

𝑅𝑘+𝑚  𝜇(𝑑𝑧1 … 𝑑𝑧𝑘+𝑚) < ∞. 

   Now, we apply Proposition 3.1 to the functions (2.1) and (2.3) in order to show that these two 

multivariate functions cannot be used for defining an applicable RF to spatial statistics problems.  

Before stating our original theorem, we explain (in the following remark) a circumstance which 

both sides of Equation (3.5) may is used separately. The end of this remark is portraying an example 

which explains why an applicable RF has to be consistent or more clearly, how compatibility of a 

multivariate function generating a RF will be necessary and essential.  

Remark 1. When a random field is defined, we often need to have precise expression of any 

marginals. For instance in all works which are referenced in the introduction (Kim and Mallick 

(2004) and Karimi and Mohammadzadeh (2011)), the authors need to have marginal distributions 

of any arbitrary points in defined random fields. In fact, for spatial prediction studied in these works, 

it is supposed that the marginal distributions of any arbitrary points with size n is an n-dimensional 

multivariate CSN distribution where its parameters are completely specified by these n point which 

do not depend to any other point. For example, consider a CSN random field and let a researcher 

has 2 observations in locations {𝒔1, 𝒔2} and it is desired to predict his variable in unobserved 

location 𝒔3 . Without miss of generality, suppose that 𝑞 = 1.  It is also assumed that the joint 

distribution of the variables in these 3 locations is 

 (𝑋𝒔1
, 𝑋𝒔2

, 𝑋𝒔3
)𝑇~𝐶𝑆𝑁3,1(𝝁123, 𝜮123, 𝚪123, 𝜉, Δ)                                                                               (3.6) 

where  𝝁123 = (𝜇1, 𝜇2, 𝜇3)𝑇 , 𝜮123 = [𝜎𝑖𝑗]𝑖,𝑗=1
3  and 𝚪123 = (Γ1, Γ2, Γ3). Assume that (3.6) comes 

from this fact that a CSN random field is considered. From this joint distribution the researcher 

computes conditional expectation 𝐸(𝑋𝒔3
|𝑋𝒔1

, 𝑋𝒔2
) as the best predictor in location 𝒔3 . Now, let 

another researcher has another observation in location 𝒔4 and therefore should suppose 

 (𝑋𝒔1
, 𝑋𝒔2

, 𝑋𝒔3
, 𝑋𝒔4

)𝑇~𝐶𝑆𝑁4,1(𝝁1234, 𝜮1234, 𝚪1234, 𝜉, Δ).                                                              (3.7) 
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Also let this researcher decides to predict variable only by two observations in locations {𝒔1, 𝒔2}.  

Second researcher has two choices for distribution of  (𝑋𝒔1
, 𝑋𝒔2

, 𝑋𝒔3
)𝑇. One choice is Equation (3.6) 

similar with first researcher and another choice is computing distribution of  (𝑋𝒔1
, 𝑋𝒔2

, 𝑋𝒔3
)𝑇 from 

Equation (3.7) and Equation (2.2) which are right-hand side and left-hand side of (3.5), respectively. 

These two choices have to lead to a unique distribution for (𝑋𝒔1
, 𝑋𝒔2

, 𝑋𝒔3
)𝑇.   

   The following theorem shows that these two choices given in Remark 1 lead to the various results 

whenever we need to model skewness using a RF produced based upon functions (2.1) and (2.3).  

Theorem 3.1. The multivariate functions (2.1) and (2.3) are compatible if and only if  𝚪 = 𝟎 and  

𝛌 = 𝟎, respectively. 

Proof. A simple computation shows that condition (3.4) is satisfied for both functions (2.1) and 

(2.3). First check condition (3.5) for the function (2.1). Choose 𝑓𝒔1…𝒔𝑘,𝒔𝑘+1,…,𝒔𝑘+𝑚
 be equal with 

function (2.1) for 𝑿 ∼ 𝐶𝑆𝑁𝑘+𝑚,𝑞(𝝁, 𝜮, 𝜞, 𝝃, 𝜟)  and consider the partition 𝐗′ = (𝐗𝟏
′ , 𝐗𝟐

′ ) 

with dim(𝑿1) = 𝑘, dim(𝑿2) = 𝑚 and the corresponding partition of the parameters (𝛍, 𝚺, 𝚪). Also 

by Note 1, 𝑓𝒔1…𝒔𝑘
 has to be equal with function (2.1) for 𝑿1~𝐶𝑆𝑁𝑘,𝑞(𝝁1, 𝜮11, 𝚪1, 𝝃, 𝚫). By these 

assumptions, the left-hand side of (3.5) is function (2.1) for 𝑿1
∗~𝐶𝑆𝑁𝑘,𝑞(𝝁1, 𝜮11, 𝜞1

∗ , 𝝃, 𝜟1
∗) where, 

 𝚪1
∗ = 𝚪1 + 𝚪2 𝚺21𝚺11

−𝟏, 𝚫1
∗ = 𝚫 + 𝚪2 𝚺22.1𝚪2

′, 𝚺22.1 =  𝚺22−𝚺21𝚺11
−𝟏𝚺12, see (2.2). Therefore (3.5) 

is satisfied iff 𝜞1
∗ = 𝚪1  and 𝜟1

∗ = 𝚫  iff 𝚪1 + 𝚪2 𝚺21𝚺11
−𝟏 = 𝚪1  and 𝚫 + 𝚪2 𝚺22.1𝚪2

′ = 𝚫  iff 

𝚪2 𝚺21𝚺11
−𝟏 = 0 and  𝚪2 𝚺22.1𝚪2

′ = 0 ( 𝚺22.1 is positive definite) iff  𝚪2 = 𝟎. This proves that (3.5) 

holds for all possible choices of indexes iff 𝚪 = 𝟎.  

   The proof about function (2.3) is the same as (2.1). Let 𝑓𝒔1…𝒔𝑘,𝒔𝑘+1,…,𝒔𝑘+𝑚
 is the same as expression 

in (2.3) for 𝑿 ∼ 𝐸𝑆𝑇𝑘+𝑚(𝝁, 𝜮, 𝝀, 𝜈, 𝜏) and consider the partition 𝑿𝑇 = (𝑿1
𝑇 , 𝑿2

𝑇) with dim(𝑿1) = 𝑘, 

dim(𝑿2) = 𝑚  and the corresponding partition of the parameters (𝝁, 𝜮, 𝝀). Also by Remark 1, 

𝑓𝒔1…𝒔𝑘
 has to be equal with function (2.3) for  𝑿1~𝐸𝑆𝑇𝑘(𝝁1, 𝜮11, 𝝀1, 𝜈, 𝜏). Also, the left-hand side 

of (3.5) is function (2.3) for 𝑿1
∗~𝐸𝑆𝑇𝑘(𝝁1, 𝜮11, 𝝀1

∗ , 𝜈, 𝜏1
∗), where 𝝀1

∗ =
𝝀1+�̅�11

−𝟏�̅�12𝝀2

√1+𝝀2
′�̃�22.1𝝀2

,  𝜏1
∗ =

𝜏

√1+𝝀2
′�̃�22.1𝝀2

,  �̃�22.1 = �̅�22 − �̅�21�̅�11
−𝟏�̅�12, see (2.5). Therefore (3.5) holds iff 𝝀1

∗ = 𝝀1 and 𝜏1
∗ = 𝜏 iff 

𝝀1+�̅�11
−𝟏�̅�12𝝀2

√1+𝝀2
′�̃�22.1𝝀2

= 𝝀1 and 
𝜏

√1+𝝀2
′�̃�22.1𝝀2

= 𝜏 iff 𝝀2
′�̃�22.1𝝀2 = 0  and  �̅�11

−𝟏�̅�12𝝀2 = 0 ( �̃�22.1 is positive 

definite) iff  𝝀2 = 𝟎.  This proves that (3.5) holds for all possible choices of indexes iff 𝛌 = 𝟎.                                         

   As we mentioned in introduction, the defined CSN and EST Rfs have another problem in spatial 

statistics matters especially in Geostatistics. This problem is highlighted in some spatial prediction 

activities referred in Karimi and Mohammadzadeh (2011) and Karimi et al (2010). In fact, an 

inappropriate choice for parameters of these RFs have been caused they do not consider PSAS. We 

explain this characteristic and its deficiency for some RFs in Remark 2 as follows.  
 

Remark 2.  Let Z (𝒔1), … , Z(𝒔𝑛) be the observations from a stationary and isotropic RF {Z(𝐬): 𝐬 ∈
D ⊆ 𝑅𝑑  } at n locations (𝒔1, … , 𝒔𝑛) . In Geostatistics literature, it is assumed that there exist a 

correlation between corresponding variables based on their distance named by spatial 

autocorrelation. In the other word, 𝐶𝑜𝑣 (𝑍(𝒔𝒊), 𝑍(𝒔𝒋)) = 𝐶(|𝒔𝒊 − 𝒔𝒋|) where |𝒉| is the norm of 

vector 𝒉  and 𝐶  is a real value function. In a matrix form, 𝑉𝑎𝑟(𝒁) = 𝑪  where 𝐙 =

(Z (𝒔1), … , Z(𝒔𝑛)) and 𝑪 = [𝐶𝑖,𝑗]
𝑖,𝑗=1

𝑛
with notation 𝐶𝑖,𝑗 = 𝐶(|𝒔𝒊 − 𝒔𝒋|) for simplicity. For instance, 
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when we deal with a Gaussian RF then 𝒁 ∼ N𝑛(𝝁, 𝜮) and 𝑉𝑎𝑟(𝒁) = 𝜮. Therefore, we choose 𝜮 =
𝑪 in order to have spatial correlation between variables. Another example is t RF which 𝒁 ∼

t𝑛(𝝁, 𝜮, 𝑑) (𝑑 ≥ 3) and 𝑉𝑎𝑟(𝒁) =
𝑑

𝑑−2
𝜮 that results in appropriate choice for reaching to PSAS is 

𝜮 =
𝑑−2

𝑑
𝑪. These examples show that the parameters of a defined RF for applying to problems that 

have spatial autocorrelation, should be exactly 𝑉𝑎𝑟(𝒁) = 𝑪.                                                                                       

   In the following theorem, it is shown that pre-defined RFs based upon the CSN and EST 

distributions consider PSAS if and only if they are symmetric. 

Theorem 3.2. The random fields generated by multivariate CSN and EST distributions given by 

(2.1) and (2.3) consider PSAS if and only if 𝚪 = 𝟎 and 𝛌 = 𝟎, respectively, provided that 𝜮 is 

considered as the variance matrix. 

   Proof. Let Z (𝒔1), … , Z(𝒔𝑛)  be the observations from a stationary and isotropic CSN RF 

{Z(𝐬): 𝐬 ∈ 𝐃 ⊆ 𝑅𝑑 }  at n locations (𝒔1, … , 𝒔𝑛)  and consider 𝐙 = (Z (𝒔1), … , Z(𝒔𝑛)) . Therefore, 

𝒁 ∼ CSN𝑛,𝑞(𝝁, 𝜮, 𝜞, 𝝃, 𝜟) and  

𝑉𝑎𝑟(𝒁) = 𝜮 + 𝜮 𝜞𝑇𝚲 𝜞𝜮 − 𝜮 𝜞𝑇 𝚿 𝚿𝑇 𝜞𝜮,                                                                             (2.13) 

where 𝚲 and 𝚿 are complicated matrices based on 𝛷𝑞(𝟎; 𝝃, 𝜟 + 𝜞 𝜮𝜞′). For more details about 

these matrices see González-Farías et al (2004). PSAS is considered if and only if 𝑉𝑎𝑟(𝒁) = 𝑪, 

that leads to 𝜮 + 𝜮 𝜞𝑇𝚲 𝜞𝜮 − 𝜮 𝜞𝑇 𝚿 𝚿𝑇 𝜞𝜮 = 𝑪. However, by assumption 𝜮 = 𝑪, so to preserve 

PSAS in pre-defined CSN RF, it is required to 𝜮 + 𝜮 𝜞𝑇𝚲 𝜞𝜮 − 𝜮 𝜞𝑇 𝚿 𝚿𝑇 𝜞𝜮 = 𝜮  or 

equivalently 𝜮 𝜞𝑇(𝚲 − 𝚿 𝚿𝑇) 𝜞𝜮 = 𝟎. Last equation is satisfied iff 𝜞𝜮 = 𝟎 since 𝚲 − 𝚿 𝚿𝑇 is 

positive definite. Again 𝜞𝜮 = 𝟎 iff 𝜞 = 𝟎 by positive definiteness of 𝜮. The proof for pre-defined 

EST RF is exactly similar to the CSN case and so is omitted to sake of space.                                                                         

   In the referenced works such as Karimi and Mohammadzadeh (2011) where a CSN RF has been 

used, it is supposed that 𝜮 = 𝑪  which does not lead to 𝑉𝑎𝑟(𝒁) = 𝑪  and obviously spatial 

correlation is not correctly considered in their models.  

   Although we showed that functions (2.1) and (2.3), which had been already used by some authors 

as the density function of two well-known multivariate distribution CSN and EST, are invalid in 

order to define a RF, but this is not the only system of finite dimensional marginal distributions that 

can be taken into consideration, and it is just a particular case. Indeed, in Minozzo and Ferracuti 

(2012), according to Bagnato and Minozzo (2014), it is shown that a stationary spatial stochastic 

process having all its finite dimensional marginal distributions to be CSN.  
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   Also, this was shown that pre-defined CSN and EST distributions cannot consider PSAS. 

However, the required equation 𝜮 + 𝜮 𝜞𝑇𝚲 𝜞𝜮 − 𝜮 𝜞𝑇 𝚿 𝚿𝑇 𝜞𝜮 = 𝑪 for achieving PSAS can be 

solved numerically for getting valid parameter. The right hand side of this equation is the only 

known part of it. Therefore, this equation has not unique solution for none of parameters. To cope 

with this drawback, we need to assume some parameters are known.   

   In some circumstances, imposing the equality 𝑉𝑎𝑟(𝒁) = 𝑪, without any other constraints or 

specifications, would imply that a matrix 𝜮 which has to be positive definite, which is clearly not 

possible. However, this remains an open problem that how we can consider PSAS without loss of 

positive definiteness of  𝜮.  Indeed for having positive definiteness of  𝜮 (or PSAS) declining PSAS 

(or positive definiteness of  𝜮) is basically wrong. A method is to change this matrix as small as 

possible by converting its negative eigenvalues to small and positive values. This may be done in 

library psych of R software by using the function cor.smooth (for details see Revelle, (2015)). This 

change causes loss of PSAS again. However, our simulation computations along with a real example 

in Section 5, show that efficiency of this method with respect to choose 𝑉𝑎𝑟(𝒁) = 𝜮 in application.                                                                                

   Until now, it is shown that the multivariate CSN and EST distributions both violate compatibility 

condition and cannot consider PSAS. Therefore, the CSN and EST RFs cannot be applied to a wide 

class of spatial statistics problems. According to Arellano-Valle and Genton (2010), “the EST 

distribution provides a very flexible class of statistical models. For τ = 0, the multivariate skew-t 

distribution 𝑆𝑇𝑝(𝛍, 𝚺, ν, 𝛌) in the form adopted by Azzalini and Capitanio (2003) is derived. The 

multivariate skew normal 𝑆𝑁𝑝(𝛍, 𝚺, 𝛌) distribution of Azzalini and Dalla Valle (1996) and the 

skew-Cauchy 𝑆𝐶𝑝(𝛍, 𝚺, 𝛌) distribution of Arnold and Beaver (2000) arise when we further let ν →∞ 

and ν = 1, respectively.” Therefore, any RF based on these skew multivariate distributions cannot 

be applied to spatial statistics problems, too. This problem is our motivation to define a well- defined 

skew RF which is both compatible and consider PSAS. In the next section, a skew RF is constructed 

by incorporating the multivariate GAL distribution. 

 

4. The Generalized skew Laplace random fields  

   In this section, a multivariate skew distribution is proposed for which the compatibility condition 

(given by (3.4) and (3.5)) is satisfied. Also, this RF consider PSAS. 

Definition 4.1 (multivariate generalized asymmetric Laplace distribution,  Kozubowski et al. (2013)) 

[15]. A continuous p-dimensional random vector 𝑿 has a generalized asymmetric Laplace (GAL) 

distribution, denoted by 𝑿 ∼ 𝐺𝐴𝐿𝑝(𝝁, 𝜮, 𝑞), if its characteristic function is given by 

𝜙𝑿(𝒕) = (
1

1+
1

2
 𝒕𝑇 𝜮 𝒕−𝑖 𝒕𝑇𝝁

)𝑞,        𝒕 ∈ 𝑅𝑝,                                                                                       (4.1) 

where 𝝁 ∈ 𝑅𝑝 is the location parameter and 𝜮 is the positive definite dispersion matrix. If matrix 

Σ is positive-definite, the distribution is truly p-dimensional and has a probability density function 

of the following form  
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𝑓𝑿(𝒙) =
2 𝑒𝝁𝑇𝜮−1 𝒙

(2𝜋)
𝑝
2𝛤(𝑞)|𝜮|

1
2

(
𝑄(𝒙)

𝛹(𝜮,𝝁)
)

𝑞−
𝑝

2
𝐾𝑞−

𝑝

2
(𝑄(𝒙, 𝜮)𝛹(𝝁, 𝜮)),                                                          (4.2) 

 

where 𝐾𝑢(𝑥) is the modified Bessel function or Bessel function of type 3 with index u, 𝑄(𝒙, 𝜮) =

√𝒙𝑇𝜮−1 𝒙  and 𝛹(𝝁, 𝜮) = √2 + 𝝁𝑇𝜮−1𝝁. 

   Here, we review some useful results about GAL distribution which will be used to prove the 

existence of GAL RF. 

 

 If 𝑿 ∼ 𝐺𝐴𝐿𝑝(𝝁, 𝜮, 𝑞) and 𝑨 be a real matrix 𝑙 × 𝑝. Then, 

 

𝑨𝑿~𝐺𝐴𝐿𝑙(𝑨 𝝁, 𝑨 𝜮 𝐀𝑇 , 𝑞).                                                                                            (4.3) 

 

 Also, let 𝑿 ∼ 𝐺𝐴𝐿𝑝(𝝁, 𝜮, 𝑞) and consider the partition 𝑿𝑇 = (𝑿1
𝑇 , 𝑿2

𝑇) with 𝑑𝑖𝑚(𝑿1) =

𝑝1 , dim(𝑿2) = 𝑝2 = 𝑝 − 𝑝1  and the corresponding partition of the parameters (𝛍, 𝚺). 

Then 

 

𝑿1 ∼ GAL𝑝1
(𝛍1, 𝚺11, q).                                                                                               (4.4) 

 

 By Kotz et al. (2001), the conditional mean finds the following form for the case of q = 1, 

𝐸(𝑿2|𝑿1 = 𝒙1) = 𝚺21𝚺𝟏𝟏
−𝟏𝒙1 + (𝛍2 − 𝚺21𝚺𝟏𝟏

−𝟏𝛍1)
𝑄(𝒙1,𝚺11)

𝛹(𝛍1,𝚺11)
𝑅1−

𝑝1
2

(𝛹(𝛍1, 𝚺11) 𝑄(𝒙1, 𝚺11)),       (4.5)                                                        

where 𝑅𝜁(𝑥) =
𝐾𝜁+1(𝑥)

𝐾𝜁(𝑥)
. 

 If 𝑿 ∼ 𝐺𝐴𝐿𝑝(𝝁, 𝜮, 𝑞) then 𝐸(𝑿) = 𝝁 𝑞 and 𝑉𝑎𝑟(𝑿) = 𝑞(𝜮 + 𝝁 𝝁𝑇). Also, we have the 

following representation for multivariate GAL random variable  

𝑿 = 𝝁 𝐺 +  √𝐺𝑵,                                                                                                         (4.6) 

 

where G has a standard Gamma distribution with shape parameter 𝑞  and 𝑵~N𝑝(0, 𝚺), 

showing that GAL distributions are location-scale mixtures of normal distributions.  

   To check the existence of a GAL RF, it is sufficient to check the compatibility of the GAL 

distribution with respect to Lebesgue measure. For checking (3.4), we use (4.3) with 𝐗𝑻 =
 (Z (𝒔1), … , Z(𝒔𝑘)), 𝐗𝝅

𝑻 = ( Z (𝒔𝜋(1)), … , Z(𝒔𝜋(𝑘))) and an appropriate permutation matrix 𝑨 such 

that 𝑨𝑿 = 𝑿𝝅. It is clear that 𝑓𝑿(𝒙) = 𝑓𝑿𝝅
(𝒙𝝅) by using density function (4.2). For checking (3.5), 

use (4.4) and let 𝐗𝑻 =  (Z (𝒔1), … , Z(𝒔𝑘),  Z (𝒔𝑘+1), … , Z(𝒔𝑘+𝑚)) , 𝑿1
𝑇 =  (Z (𝒔1), … , Z(𝒔𝑘))  and 

𝑿2
𝑇 = ( Z (𝒔𝑘+1), … , Z(𝒔𝑘+𝑚)). Before we define this RF, this is shown that this RF can consider 

PSAS. Let Z (𝒔1), … , Z(𝒔𝑛) be the observations from a stationary and isotropic GAL RF {𝐙(𝐬): 𝐬 ∈
D ⊆ 𝑅𝑑  } at n locations (𝒔1, … , 𝒔𝑛). Then, 𝐙 =  (Z (𝒔1), … , Z(𝒔𝑛)) ∼ GAL𝑛(𝝁, 𝚺, 𝑞) and 𝑉𝑎𝑟(𝒁) =
𝑞(𝜮 + 𝝁 𝝁𝑇). As we mentioned in Note 2, for having PSAS, this is required that 𝑉𝑎𝑟(𝒁) = 𝑪 which 

leads to 𝑪 = 𝑞(𝜮 + 𝝁 𝝁𝑇). Therefore, choosing  

𝜮 =
1

𝑞
𝑪 − 𝝁 𝝁𝑇 ,                                                                                                (4.7) 

results in defined RF use PSAS.  

   However, positive definiteness of  𝜮  maybe not satisfied for some special choices of 𝑪 and 𝝁 in 

(4.7). Therefore, a RF 𝓩 = {Z(𝐬): 𝐬 ∈ 𝐃 ⊆ 𝑅𝑑 } is termed a GAL RF if  𝐙 =  (Z (𝒔1), … , Z(𝒔𝑛)) ∼
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GAL𝑛(𝝁,
1

𝑞
𝑪 − 𝝁 𝝁𝑇, 𝑞) for all configurations (𝒔1, … , 𝒔𝑛) ∈ 𝑫 × … × 𝑫 and all 𝑛 ∈ Ν. This RF is 

well suited for fitting to the skew and heavy tailed data. The ergodicity of this RF is indicated in the 

following remark.  

Remark 3. It is well-known that the stochastic processes must be ergodic as well as stationary in 

order to establish strong consistency of estimators given in the form of spatial means. It ensure that 

individual realizations of the process contains sufficient information to produce consistent estimates 

for the parameters, see e.g. Koopmans (1995). Indeed, ergodicity can be considered as a mixed 

property of stationarity and asymptotic independence. On the other hands, a RF without PSAS may 

not poses ergodicity properties. 

   A sufficient (but not necessary) condition for ergodicity of a stationary stochastic process 

{Z(𝐬): 𝐬 ∈ D ⊆ 𝑅𝑑 } is that 𝐶𝑍(𝒉) = 𝐶𝑜𝑣(Z(𝐬), Z(𝐬 + 𝐡)) tends to zero as ||𝒉|| tends to infinity, 

see Gaetan and Guyon (2010, Theorem B.2, p.257). Although the covariance function 𝐶𝑍(𝒉) is 

chosen in such a way that this condition satisfies, lack of PSAS (𝑉𝑎𝑟(𝒁) ≠ 𝑪) which means 

𝑐𝑜𝑣(Z(𝐬), Z(𝐬 + 𝐡)) ≠ 𝐶(𝒉)  causes that we cannot conclude lim
||𝒉|| →+∞

𝐶𝑜𝑣(Z(𝐬), Z(𝐬 + 𝐡)) = 0 

from lim
||𝒉|| →+∞

𝐶(𝒉) = 0. Therefore, the defined CSN and EST RFs may not be ergodic whenever 

theirs ergodicity is concluded from lim
||𝒉|| →+∞

𝐶(𝒉) = 0.  

   For ergodicity of GAL RF {Z(𝐬): 𝐬 ∈ 𝐃 ⊆ 𝑅𝑑 }, first we need to this RF be stationary.  Since 

𝐸(Z(𝐬)) = 𝑞𝜇𝐬, for having stationarty we need to consider vector 𝝁 in (2.14) to be equal to 𝝁 =

(𝜇, … , 𝜇)𝑇 . Therefore, by (4.6) and stationarity we have Z(𝐬) = 𝜇 𝑌 +  √𝑌 𝑋(𝒔) where Y has a 

standard Gamma distribution with shape parameter 𝑞 and is independent of 𝑋(𝒔) which is a zero 

mean Gaussian process with autocovariance function 𝐶𝑋(𝒉). By a straightforward computation we 

have 𝐶𝑍(𝒉) = 𝑞(𝜇2 + 𝐶𝑋(𝒉)). Therefore, by choosing 𝐶𝑋(𝒉) =
𝐺(𝒉)

𝑞
− 𝜇2, where 𝐺(𝒉) is a valid 

covariance function with the property lim
||𝒉|| →+∞

𝐺(𝒉) = 0, one can easily shows that a stationary 

GAL RF by an appropriate covariance function is ergodic. Notice that matrix 𝜮 in (4.7), as the 

covariance matrix of process 𝑋(𝒔), is built by 𝐶𝑋(𝒉) and matrix 𝑪 in (4.7) is built by 𝐺(𝒉), too.  

 

   Some properties of the RF proposed are highlighted in the continuation of this section.  In 

following, we illustrate the usefulness of the GAL RF. Figure 1 shows the (one dimensional) GAL 

density functions for different values of the location parameter 𝜇.  It is clear that the GAL 

distribution  is skew to right, symmetric and skew to left, for positive, zero and negative values of 

𝜇, respectively. So the location parameter 𝜇 controls both location and skewness of the distribution. 

Figure 2 shows the GAL density functions for different values of 𝜎2.   
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Fig 1. Plots of GAL density function for different location parameters. 

 

 

 

Fig 2. Plots of GAL density function for different variance parameters. 

     

𝜇 = −3 , 𝜎2 = 5, 𝑞 = 3 𝜇 = 0 , 𝜎2 = 5, 𝑞 = 3 

𝜇 = 3 , 𝜎2 = 5, 𝑞 = 3 𝜇 = 15 , 𝜎2 = 5, 𝑞 = 3 

𝜇 = 0 , 𝜎2 = 5, 𝑞 = 1 𝜇 = 0 , 𝜎2 = 15, 𝑞 = 1 

𝜇 = 0 , 𝜎2 = .5, 𝑞 = 1 𝜇 = 0 , 𝜎2 = 1, 𝑞 = 1 
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Fig 3. Plots of GAL density function for different extension parameters. 

It is seen that the large variance leads to the small kurtosis and vice versa.  The graphs of the GAL 

density functions for different values of 𝑞 is plotted in Figure 3, where the effect of increasing q is 

demonstrated. We see that with increasing q, both skewness and kurtosis are decreasing.  

 

5. Application to spatial prediction 

Let Z (𝒔1), … , Z(𝒔𝑛) be the observations from a GAL RF {𝐙(𝐬): 𝐬 ∈ D ⊆ 𝑅𝑑 } at n locations 

(𝒔1, … , 𝒔𝑛) . For predicting Z (𝒔0)  at new location 𝒔0 , based on the observations  𝐙 =
 (Z (𝒔1), … , Z(𝒔𝑛)), we define 𝐙∗ = (Z (𝒔0), 𝐙𝑇)𝑇. Then we have 𝐙∗ ∼ GAL𝑛+1(𝑭∗𝜷, 𝚺∗, 𝑞) where 

𝚺∗ =
C∗

q
− F∗β βTF∗T

, 𝒇(𝒔0) = (𝑓1(𝒔0), … , 𝑓𝑟(𝒔0))
𝑇

, 𝑭∗ = (𝐟 (𝒔0), 𝐅𝑇)𝑇 , 𝐅 = [𝑓𝑗(𝒔𝑖)]
𝑛×𝑟

 are 

known regression functions (covariates), 𝜷 is the regression coefficients, 𝐂∗ = (𝐶00 𝒄𝑻

𝒄 𝑪
) is spatial 

covariance matrix for all observations and prediction, 𝒄 = (𝐶0𝑖)𝑛×1 , 𝑪 = 𝑉𝑎𝑟(𝒁)  and 𝐶𝑖𝑗 =

𝐶𝑜𝑣(Z (𝒔𝑖), Z(𝒔𝑗)). Now, the best predictor of Z (𝒔0) based on the square error loss function is 

given by 𝐸(Z(𝒔0)|𝐙), that can be computed by conditional distribution of Z(𝒔0)|𝐙. We assume a 

stationary GAL RF with stationary spatial covariance function C(h) = 𝜎2𝜌(ℎ, 𝜽), where 𝜌(. , 𝜽) is 

a known correlation function,𝜽 is spatial correlation parameter and 𝜎2 is variance of the random 

field.  In application both 𝜽 and 𝜎2 can be estimated in stage of variogram estimation by using of 

data without considering no distribution for them. Therefore, the only unknown parameter is  𝜷 

which is estimated by maximum likelihood method.  

   The details for prediction is given in the following remark. 

𝜇 = 3 , 𝜎2 = 2, 𝑞 = 5 𝜇 = 3 , 𝜎2 = 2, 𝑞 = 15 

𝜇 = 3 , 𝜎2 = 2, 𝑞 = 2 𝜇 = 3 , 𝜎2 = 2, 𝑞 = .8 
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Remark 4. The conditional expectations 𝐸(Z(𝒔0)|𝐙) for 𝑞 = 1  is provided by Equation (4.5). 

Suppose 𝐙∗ = (Z (𝒔0), 𝐙𝑇)𝑇 ∼ GAL𝑛+1(𝑭∗𝜷, 𝚺∗, 1), then from 𝑭∗𝜷 = (𝒇𝑇(𝑠0)
𝐅

)𝜷 it can be easily 

concluded that 𝛍2 = 𝒇𝑇(𝒔0)𝜷 and 𝛍1 = 𝐅𝛃. Now, this is needed to find suitable matrices 𝚺12 and 

𝚺11. So we have to partition the matrix 𝚺∗ as follows 

𝚺∗ =
𝐂∗

q
− 𝐅∗𝛃𝛃T𝐅∗T = (𝐶00 𝒄𝑻

𝒄 𝑪
) − (𝒇𝑇(𝑠0)

𝐅
) 𝜷𝛃T(𝒇(𝑠0), 𝐅𝑇) 

                                    = (
𝐶00 − 𝒇𝑇(𝑠0)𝜷𝛃T𝒇(𝑠0) 𝒄𝑻 − 𝒇𝑇(𝑠0)𝜷𝛃T𝐅𝑇

𝒄 − 𝐅𝜷𝛃T𝒇(𝑠0) 𝑪 − 𝐅𝜷𝛃T𝐅𝑇 ). 

Therefore, 𝚺12 = 𝒄 − 𝐅𝜷𝛃T𝒇(𝑠0) and 𝚺11 = 𝑪 − 𝐅𝜷𝛃T𝐅𝑇 which leads to  

𝐸(𝑍(𝒔0)|𝒁) = 𝒍𝑇𝜞−1𝒁 + (𝒇𝑇(𝒔0) − 𝒍𝑇𝜞−1𝑭)𝜷
𝑄(𝒁, 𝚪 )

𝛹(𝐅𝛃, 𝚪)
𝑅

1−
𝑛
2

(ψ(𝐅𝛃, 𝚪) 𝑄(𝒁, 𝚪 )) 

where 𝚪 = 𝐂 − 𝐅𝛃𝛃T𝐅T and 𝒍 = 𝒄 − 𝐅𝛃 𝛃T𝒇𝑇(𝑠0).                                                                          

   Since for 𝑞 ≠ 1, Z(𝐬0)|𝐙 does not have a closed form, the Metropolis-Hasting algorithm is used 

in order to generate a sample 𝑍1, … , 𝑍𝑀  from Z(𝐬0)|Z , where the proposal distribution 

𝑔𝑍0
(𝒚): 𝑁(𝑍0, 𝑏1

2 ) in Metropolis-Hasting algorithm is applied. Then E(Z(𝐬0)|𝐙) ≅
1

𝑀
∑ 𝑍𝑗

𝑀
j=1 .  

   In order to study the performance of GAL model, a simulation study is performed with 50 

realizations. We used a stationary GAL RF with exponential covariance function  𝐶(|𝒉|) =

𝜎2exp (−|𝒉|/𝜃) on a regular lattice 500 × 500 with parameters 𝜷 = (4,7), 𝜎2 = 1, 𝜃 = 4. The 

histogram and P-P plot of simulated data given in Figure 4, shows that data are skewed and cannot 

follow the Gaussian law.  

 

 

Figure 4. Histogram and Normal Q-Q plot for simulated data show basic similarities with GAL distribution with 

respect to skewness, heavy tail and non-Gaussian. 
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Parameter estimates are �̂� = (3.84,7.32), �̂�2 = 1.76 and 𝜃 = 4.11. The parameter estimation has 

been done for 5000 iteration and values of �̂�, �̂�2 and 𝜃 are the mean of these estimates. The MSE 

of estimators are 𝑀𝑆𝐸𝜷(�̂�) = (0.94,1.1), 𝑀𝑆𝐸𝜎2(�̂�2) = 2.57 and 𝑀𝑆𝐸𝜃(𝜃) = 0.28 which show a 

suitable estimation has been done.  In the next step, the sample was divided at random into an 

estimation set of size 10 and a validation set of size 40. Comparing the real and estimated values at 

these locations given in Table 1, shows plausible results. The used sample size 𝑁∗ in (19)??? is 60. 

From Table 1, we conclude that the estimation for q = 1  and   𝚺∗ is more precise than q ≠ 1 and 

𝐂∗. In the case of q ≠ 1 which Metropolis-Hasting algorithm is applied the parameter 𝑏1
2 = 2 has 

been considered in the proposal distribution. 

Table 1. Real values in 10 locations and their predictions (prediction error) for different models 

Real 

value 

q = 1 Real 

value 

q ≠ 1 

𝚺∗ 𝐂∗ 𝚺∗ 𝐂∗ 

30.54 30.50 (1.07) 30.59 (1.13) 183.33 183.34 (0.71) 183.36 (1.40) 

14.40 14.25 (0.72) 14.60 (0.96) 34.11 33.99 (1.90) 33.97 (1.81) 

15.30 15.34 (0.11) 16.10 (0.74) 16.14 16.30 (2.13) 15.8 (2.30) 

57.81 57.80 (1.12) 57.42 (1.06) 17.52 17.91 (1.17) 17.86 (0.90) 

65.02 64.98 (0.36) 65.70 (0.60) 34.08 33.92 (0.04) 35.10 (0.11) 

19.60 19.54 (0.85) 20.50 (0.76) 9.47 9.63 (1.86) 9.94 (1.64) 

4.41 4.23 (0.21) 4.90(0.50) 84.23 84.29 (2.09) 84.72 (1.83) 

5.13 5.18 (1.00) 5.63 (1.27) 15.16 15.63 (0.14) 15.87 (0.27) 

58.71 58.46 (.06) 59.40 (0.49) 66.74 66.71 (1.91) 67.13 (2.13) 

3.71 3.77 (0.13) 3.80 (0.09) 64.98 65.42 (2.47) 65.48 (2.58) 

 

We finish this section with two examples of real data set which fit to GAL distribution. Data are 

from Darab region, south of Iran and consist of 45 chemical elements in 811 locations. The 

histogram and Normal-Q-Q plot of all elements show the skew, heavy tail and non-Gaussian 

behavior of almost all of them. Histogram and Normal-Q-Q plot of two elements Mg and Na have 

shown in Figures 5 and 6, respectively. Figure 5, shows that GAL density functions has a good 

fitness to these data, where the parameters are estimated by using the maximum likelihood 

estimation method. The details can be found in Saber et al (2014). 

The Kolmogorov Smirnov test has done for testing this assumption that data comes from a GAL 

distribution. The values of Kolmogorov Smirnov’s statistic are 0.038 and 0.98 for two element Mg 

and Na, respectively. These two values will be compared with critical value 0.189 at significance 
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level 0.05, earned from table of Kolmogorov distribution (Leslie and Miller (1956)). Therefore Mg 

data follows GAL distribution in level of 0.05 and other one does not follow. The graphs of 

cumulative distribution function and empirical distribution function for Mg in Figure 7 confirms 

this fact. We use 100 observations as the training set and 2 observations as the test set. The empirical 

variogram of data is plotted in Figure 8.  The isotropic exponential model 𝛾(║𝒉║) = 𝜏2 +

𝜎2 (1 − exp {−
║𝒉║

𝜃
}) has been fitted to the empirical variogram. The variogram parameters are 

estimated by using package geoR. The estimates 𝜎2̂ = 3.67 ,   𝜃 = 11719, 𝜏2̂ = 4.5  and �̂� =
(7.2,7.5) are earned. 

  

 
Fig 5. Histograms and estimated GAL densities for two elements Mg and Na. 

   

 

 

Fig 6. Normal Q-Q plot for the data set of Darab region 

𝜇 = 2.13 , 𝜎2 = .4, 𝑞 = 7.14 

𝜇 = 110 , 𝜎2 = 195, 𝑞 = 4.8 
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Fig 7. Comparison between GAL distribution and empirical distribution of Mg. 

 

 

Figure 8. Empirical variogram and fitted isotropic exponential model. 

  

In order to compare performance of GAL model with a full Gaussian model, we predicted in a 

test location by two methods. Table 2 shows surprising results of this comparison. This comparison 

shows the efficiency of GAL model with respect to Kriging. It is remarkable that using 𝚺∗instead 

of  𝐂∗ has more precise in GAL model. However, as expected, there is no benefit in using 𝚺∗instead 

of 𝐂∗ for Gaussian model. The negative estimate of prediction variance in Gaussian model based on 

𝚺∗ shows that this model is not basically well-defined.  

 

Table 2. Comparison between Kriging and GAL (NaN refers to not a number). 

Predicted value (standard deviation) 

Real 

value 

Kriging GAL 

𝚺∗ 𝐂∗ 𝚺∗ 𝐂∗ 

15.29 15.52, NaN 16.63 (1.86) 15.29 (1.4) 16.21 (3.4) 

18.05 19.45, NaN 17.69 (1.87) 17.93 (1.3) 14.74 (2.8) 
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Figure 9. 3D plot of surface prediction based on 𝐂∗(right) and 𝚺∗ (left). 

 

Prediction surfaces in Figure 9 show no smoothness for predictions based on C∗, while prediction  

based on 𝚺∗, is more smooth. Contour graph of surface prediction is shown in Figure 10. Because 

of having an erratic shape of surface prediction based on 𝑪∗, the contour graph only has plotted for 

the left panel of Figure 9. From Figure 10, we can see spatial structure in predicted value of Mg in 

whole of region. This point comes from this fact that contour lines with near numbers are in a 

neighborhood. 

 

Figure 10. Contour plot of surface for predictions. 
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6. Discussion and Conclusion 

 

   In this paper, we have shown that the multivariate CSN and multivariate EST distributions are not 

suitable for defining a RF because of their skewness property, (Theorems 3.1and 3.2). In the other 

words, these kinds of multivariate distributions are applicable to define a RF only in the symmetric 

case. However, there are some other multivariate distributions that cannot be used for defining a RF 

even in their symmetric case, e.g. the multivariate Dirichlet distribution and multivariate inverted 

Dirichlet distribution (Kotz et al, 2000) and the generalized multivariate Dirichlet distribution 

(Wong, 1998). 

   It is also easy to show that some well-known multivariate distributions, studied by Kotz et al 

(2000) are not compatible, e.g. the truncated multivariate normal distribution and truncated 

multivariate t distributon. On the other hand, however some other multivariate distributions such as 

Linnik’s distribution, Gamma distribution and Logistic distribution are compatible. So far we only 

studied compatibility of continuous distributions although this concept is about all multivariate 

distribution. Just like continuous distribution, some discrete multivariate distribution are compatible 

while some others are not.  

   Though not proved here, it seems that the similar results about compatibility still hold for more 

skew elliptical distributions with closed formed marginal distributions. Therefore, a wide class of 

skew distributions is not applicable to define a RF. This subject is left for future research work. 
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