
1Department of Mathematical Statistics, Cairo University 
2Faculty of Business Administration and International Marketing, Sinai University 

Abstract: A new four-parameter lifetime distribution named as the power Lomax 

Poisson is introduced and studied. The subject distribution is obtained by 

combining the power Lomax and Poisson distributions. Structural properties of 

the power Lomax Poisson model are implemented. Estimation of the model 

parameters are performed using the maximum likelihood, least squares and 

weighted least squares techniques. An intensive simulation study is performed for 

evaluating the performance of different estimators based on their relative biases, 

standard errors and mean square errors. Eventually, the superiority of the new 

compounding distribution over some existing distribution is illustrated by means 

of two real data sets. The results showed the fact that, the suggested model can 

produce better fits than some well-known distributions. 

Key words: Power Lomax distribution, Poisson distribution, Maximum likelihood, 

Moments, Probability Weighted moments, Least squares, and Weighted Least 

squares. 

1. Introduction

Lomax (1954) suggested an important model for lifetime analysis called Lomax (Pareto

type II) distribution. Its widely applied in some areas, such as, analysis of income and wealth 

data, modeling business failure data, biological sciences, model firm size and queuing problems, 

reliability modeling and life testing (see Harris (1968), Atkinson and Harrison (1978), Holland 

et al. (2006),  Corbellini et al. (2007),  Hassan and Al-Ghamdi (2009) and Hassan et al. (2016), 

respectively.  

A random variable  has the Lomax distribution with shape parameter  and scale

parameter  if it has the probability density function (pdf) given by

 (1) 
The cumulative distribution function (cdf) corresponding to (1) is as follows 

(2)
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Generalizations of the Lomax distribution have been formulated by several authors. For 

example, Ghitany et al. (2007) proposed a new distribution using the Marshall-Olkin generator.  

Abdul-Moniem and Abdel-Hameed (2012) introduced the exponentiated Lomax by adding a 

new shape parameter to the Lomax distribution. Lemonte and Cordeiro (2013) investigated beta 

Lomax, Kumaraswamy Lomax and McDonald Lomax. Cordeiro et al. (2013) introduced the 

gamma-Lomax using the gamma generator. The Weibull Lomax using Weibull generator has 

been proposed by Tahir et al. (2015). Also, the Gumbel-Lomax using Gumbel-X generator has 

been introduced by Tahir et al. (2016).   

Rady et al. (2016) proposed a recent development called the power Lomax (PL) distribution 

as a new extension of the Lomax distribution by considering the power transformation 
1

Y T  , where the random variable T  follows Lomax distribution with parameters   and  .

The pdf of the power Lomax distribution is defined by   
1 1( ; , , ) ( ) ; , , , 0.g y y y y                 (3) 

The cdf of the power Lomax distribution is as follows  

 ( ; , , ) 1 ( ) .G y y               (4) 

In the literature, several authors proposed a new distribution to model lifetime data by 

combining some discrete distribution together with other known continuous distributions. 

Adamidis and Loukas (1998) proposed the two-parameter exponential-geometric distribution 

with decreasing failure rate. Following the same idea, Kus (2007) introduced the exponential-

Poisson distribution with decreasing failure rate and discussed several of its properties. 

Chahkandi and Ganjali (2009) proposed the exponential power series family of distributions 

with decreasing failure rate which contains as special cases the exponential Poisson, 

exponential geometric and exponential logarithmic distributions.  A three-parameter Weibull 

power series distribution with decreasing, increasing, upside-down bathtub failure rate 

functions has been introduced by Morais and Barreto-Souza (2011). Based on the exponential 

geometric distribution, Roman et al. (2012) proposed a long term exponential geometric 

distribution. The generalized exponential power series distributions have been proposed by 

Mahmoudi and Jafari (2012). An extended Weibull power series distribution has been proposed 

by Silva et al. (2013). Hassan et al. (2016) introduced the class of generalized inverse Weibull 

power series. Alkarni (2016) introduced generalized extended Weibull power series class.  

Recently, compounding distributions for Lomax with discrete one have been presented by 

some authors. For instance; Abd-Elfattah et al. (2013), Ramos et al. (2013), Al-Zahrani and 

Sagor (2014), Al-Zahrani (2015), and Hassan and Abd-Alla (2017) have been proposed, 

respectively,  Lomax Poisson, exponentiated Lomax Poisson, Lomax-Logarithmic, extended 

Poisson Lomax and exponentiated Lomax geometric distributions. 

In this article, we proposed a new compound distribution by mixing the PL and Poisson 

distributions. The remainder of the article is organized as follows. Section 2 defines the subject 

distribution and gives the graphical presentation for the shape of its pdf and hazard rate 

function. Section 3 presents some structural properties of the new distribution such as; quantile, 

probability weighted moments, order statistics, entropy and moments of residual life. In Section 
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4, the estimation of the model parameters is carried out using the maximum likelihood, least 

squares and weighted least squares methods. In Section 5, a simulation study is achieved to 

illustrate the theoretical results. Section 6 gives the applicability of the proposed model and 

compares with other competing probability models. At the end, concluding remakes are 

presented in Section 7. 

2. Power Lomax-Poisson Model

In this section, we introduce and study the power Lomax Poisson (PLP) distribution. The 

probability density, cumulative distribution, reliability and hazard rate functions are obtained. 

Suppose that 𝑋 = 𝑚𝑖𝑛{𝑌𝑖}𝑖=1
𝑍  be independently and identically distributed (iid) failure times of

Z  component connected in series and each Y  has the power Lomax distribution with pdf (3)

and cdf (4). Let the random variable Z  has zero-truncated Poisson distribution with probability

mass function given by 

𝑃(𝑍 = 𝑧) =
𝑒−𝜃𝜃𝑧

𝑧! (1 − 𝑒−𝜃)
; 𝑧 = 1,2, … . ,  𝜃 > 0. 

Assume that the  variables 𝑋 ’𝑠 and 𝑍 are independent, then the conditional density function 

of 𝑋|𝑍 = 𝑧 is  given by 

𝑓𝑋|𝑍(𝑥|𝑧) = 𝑧𝛼𝛽𝜆𝛼𝑧𝑥𝛽−1(𝜆 + 𝑥𝛽)
−(𝛼𝑧+1)

;      𝑥, 𝛼, 𝜆, 𝛽 > 0.

The joint distribution of the random variables 𝑋 and 𝑍, denoted by 𝑓𝑋𝑍(𝑥; 𝑧) is given by

𝑓𝑋𝑍(𝑥; 𝑧) =
𝑒−𝜃𝜃𝑧

𝑧−1!(1−𝑒−𝜃)
𝛼𝛽𝜆𝛼𝑧𝑥𝛽−1(𝜆 + 𝑥𝛽)

−(𝛼𝑧+1)
.

The marginal pdf of  𝑋 is as follows 

1 1 1 [1 ( ) ]( ; ) (1 ) ( ) ; , , , , 0,xf x e x x e x
              

           

which defines the PLP distribution, where Φ ≡ (𝛼, 𝛽, 𝜃, 𝜆).  Or it can be written as follows 

1 1 1 ( )( ; ) ( 1) ( ) ; , , , , 0.xf x e x x e x
              

         (5) 
The distribution function of PLP is as follows 

[1 ( ) ]1
( ; ) .

(1 )

xe
F x

e

    



  




 



Or it can be written as follows 

( )

( ; ) .
( 1)

xe e
F x

e

     




 

   (6) 
A random variable 𝑋 with density function (5) will be denoted by 𝑋~𝑃𝐿𝑃(𝛼, 𝛽, 𝜃, 𝜆).
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Lemma 

The power Lomax Poisson distribution reduces to the power Lomax distribution as 𝜃 → 0. 

Proof 

If 𝜃 approaches zero, then 

 𝑙𝑖𝑚
𝜃→0

𝐹(𝑥;  𝛷) =
𝑒𝜃−𝑒

𝜃𝜆𝛼(𝜆+𝑥𝛽)
−𝛼

[𝜆𝛼(𝜆+𝑥𝛽)
−𝛼

]

𝑒𝜃 = [1 − 𝜆𝛼(𝜆 + 𝑥𝛽)
−𝛼

] , 

which is the cdf of power Lomax distribution as defined in (4). 

Furthermore, the reliability and hazard rate functions are as follows 

( ) 1
( ; ) ,

1

xe
R x

e

   



 
 


and, 

1 1 1 ( )

( )

( )
( ; ) .

1

x

x

x x e
h x

e

  

  

      

  

 




    




 



Figures 1 and 2 illustrate plots of the PLP densities and hazard rate functions for some selected 

values of the parameters. 

Figure 1: Pdfs of the PLP distribution for some 

parameter values 

Figure 2: Hazard rate function of the PLP 

distribution for some parameter values 
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Figure 1 shows that the density of PLP takes different shapes as symmetrical, right skewed, 

reversed-J and unimodel. From Figure 2, it can be observe that the shapes of the hazard rate 

function are increasing, decreasing and constant at some selected values of parameters. 

3.1.Some Structural Properties 

Here, some statistical properties of the PLP distribution including, quantile function, 𝑟th 

moment, Re'nyi entropy, order statistics and moments of the residual life are obtained. 

3.2. Quantile Function 

The quantile function of PLP distribution, denoted by, 𝑄(𝑢) = 𝐹−1(𝑢)  of 𝑋  has the

following form 

𝑄(𝑢) = {𝜆 ([
1

𝜃
𝑙𝑛 (𝑒𝜃 − 𝑢(𝑒𝜃 − 1))]

−1

𝛼
− 1)}

1

𝛽

,      (7) 

where 𝑢 is a uniform random variable on the unit interval (0,1).  In particular the median of 

the PLP distribution, denoted by 𝑚, is obtained by substituting 𝑢 = 0.5 in (7) as follows 

𝑚 = {𝜆 ([
1

𝜃
𝑙𝑛 (0.5(𝑒𝜃 + 1))]

−1

𝛼
− 1)}

1

𝛽

. 

3.3. Moments 

Many of the important characteristics and features of a distribution can be obtained using 

ordinary moments. The 𝑟th moment of 𝑋 can be easily obtained from pdf (5) as follows 

1 ( 1) ( )

0

( ) ( ) .
( 1)

r r xE X x x e dx
e

  


    









     
   (8) 

Using the exponential expansion for 
( ) ,xe

    

 then (8) can be written as follows 
1

1 ( 1)

0 0

( ) (1 ) .
!( 1)

j
r r j

j

x
E X x dx

j e


  





 


    



 


 

After simplification, the 𝑟th moment of PLP distribution takes the following form 

 

1

0

1

( ) , 1,2,...
!( 1) 1

r

j
r

j

r r
j

E X r
j e j





 
  

 





   
       
    

   
 (9) 

where Γ(. ) stands for gamma function. 

In particular, the mean and variance of PLP distribution are obtained, respectively, as 

follows      

 Amal S. Hassan1, Said G. Nassr2 109



 

1

1

0

1 1
1

( ) ,
!( 1) 1

j

j

j

E X
j e j





 
  

 





   
       
   

   


   

2

2 1

1 1

0 0

2 2 1 1
1 1

( ) .
!( 1) 1 !( 1) 1

j j

j j

j j

Var X
j e j j e j

 

 

   
      

   

  

 

        
                 
         

        
 
 

 

Furthermore, the moment generating function can be obtained from moments as follows, 

 

1
'

0 , 0

1

( ) ,
! ! !( 1) 1

r

r j r

x r

r r j

r r
j

t t
M t

r j r e j





 
  


 

 

 

   
       
    

   
 

where, 𝜇�́� is the 𝑟th moment about the origin. 

3.4. Re'nyi Entropy 

The entropy of a random variable 𝑋 is a measure of uncertainty variation. If 𝑋 is a random 

variable distributed as PLP, then the Re'nyi entropy, for 𝜌 > 0 and 𝜌 ≠ 1 is defined by: 

1
( ) log ( ) , 0 and   1.

1
I X f x dx
  







  
 

Then by using pdf (5), the Re'nyi entropy of PLP distribution can be written as follows: 

( 1) ( 1) ( ( ) )

0

1 ( )
( ) log ( ) .

1 ( 1)

xI X x x e dx
e

  
 

       

  









   
 

  
  



Using the exponential expansion and after simplification, then the Renyi entropy of PLP 

distribution takes the following form    
1

1
0

1 ( 1) 1 ( 1) 1
( ) log , ( 1) ,

1 ( 1) !

j j

j

I X j
e j



 

   

       
  

   








 
     

           



 where, Β(. , . ) stands for beta function. 

3.5. Moments of the Residual Life 

Several functions, namely; the failure rate function, mean residual life function and the left 

censored mean function are related to the residual life. These three functions uniquely 

determine 𝐹(𝑥) . The 𝑛 th moment of residual life denoted by  𝑚𝑛(𝑡) =  𝐸[(𝑋 −  𝑡)𝑛| 𝑋 >
𝑡], 𝑛 =  1, 2, 3, . . ., is derived. The 𝑛th moment of the residual life of a random variable is 

defined as follows 
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1
( ) ( ) ( ) .

( ; )

n

n

t

m t x t f x dx
R t



 
 

The 𝑛th moment of the residual life of PLP distribution is obtained by inserting the pdf (5) and 

binomial expansion in 𝑚𝑛(𝑡) as follows

1 ( 1) ( )

0

1
( ) ( 1) ( ) ( ) .

( ; ) ( 1)

n
n r n n r r x

n r

r t

m t t x x e dx
R t e

  


    









      



  
 
 

By using the exponential expansion, then  𝑚𝑛(𝑡) takes the following form

 
1

1 ( 1)

0 0

1
( ) 1 (1 ) .

( ; ) !( 1)

n r jn
n r r j

n

r j t

n t x
m t x dx

rR t j e


  





 

 
     

 

 
   

  
 

Put 𝑧 = (1 +
𝑥𝛽

𝜆
)

−1

, then the 𝑛th moment of the PLP distribution takes the following form 

 
1

1

( )
0 0

1
( ) 1 (1 ) ,( 1),( ) , (10)

!( 1)

r

n r jn
n r

n t
r j

n t t r r
m t j

r je
  



 

 
 

  


 
 


 

  
        

    


which is incomplete beta. In particular, the mean residual life of the PLP distribution is obtained by 

substituting 𝑛 = 1 in (10) as follows 
1

1
1

1 ( )
0

1 1 1
( ) (1 ) ,( 1),( ) .

!( 1)

j

t
j

t
m t j t

je
  



 

 
 

  








 
       

  


3.6. Order Statistics 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛  is a random sample from PLP distribution. Let 𝑋1:𝑛, 𝑋2:𝑛, … , 𝑋𝑛:𝑛

denote the corresponding order statistics. It is well known that the probability density function 

of the 𝑘th order statistics is given by  

  1

:

0

( )
( ) 1 ( ) ,

( , 1)

n k
u k u

k n

u

n kf x
f x F x

uB k n k


 



 
   

   
     (11) 

Inserting cdf (6) and pdf (5) in (11), then   

 
1

( 1) ( ) ( )

:

0

1
( )

( ) ( ) 1 ( 1)
( , 1)

. (12)

n k
ux u k

k n

u

u k
x

n kx
f x x e e

uB k n k

e e

  

  

 
    

  








 
    



 


 
    

   

 
 



Using the power series for the exponential function will be 

( )

0

( ) .
!

q q
x q

q

e x
q

  


    





 



  (13)
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Then, substituting (13) in (12), the pdf of the 𝑘th order statistics takes the following form 
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Hence, the pdf of the 𝑘th order statistics of 𝑋 is as follows; 

1
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In particular, the pdf of the smallest order statistics 𝑋1:𝑛 is obtained from (14), by substituting

𝑘 = 1, as follows 
1
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Also, the pdf of the largest order statistics 𝑋𝑛:𝑛 is obtained from (14), by substituting 𝑘 = 𝑛. 
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4. Parameter Estimation

In this section, the estimates of the PLP model parameters are obtained using maximum 

likelihood, least squares and weighted least squares methods. 

4.1. Maximum Likelihood Estimators 

Let 𝑋1, 𝑋2, … , 𝑋𝑛  be a simple random sample from the PLP distribution with set of

parameters Φ ≡ (𝛼, 𝜆, 𝜃, 𝛽) . The log-likelihood function, denoted by ln ,l  based on the

observed random sample of size 𝑛 from density (5) is given by: 
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 The partial derivatives of the log-likelihood function with respect 

to the unknown parameters are given by: 
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The maximum likelihood estimators (MLEs) of the model parameters are determined by 

solving numerically the non-linear equations 
𝜕𝑙𝑛𝑙

𝜕𝛼
= 0 , 

𝜕𝑙𝑛𝑙

𝜕𝜆
= 0 , 

𝜕𝑙𝑛𝑙

𝜕𝜃
= 0  and 

𝜕𝑙𝑛𝑙

𝜕𝛽
= 0 

simultaneously. 

4.2. Least Squares and Weighted Least Squares Estimators 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛  is a random sample of size 𝑛 from PLP distribution and suppose

𝑋1:𝑛 <  𝑋2:𝑛 <  … < 𝑋𝑛:𝑛 denotes the corresponding ordered sample. According to Johnson et

al. (1995), the expectation and the variance of distribution are independent of the unknown 

parameter and are given by 

:( ( )) ,
1

i n

i
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


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: 2

( 1)
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( 1) ( 2)
i n

i n i
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 
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 

where 𝐹(𝑋𝑖:𝑛) is cdf for any distribution and 𝑋𝑖:𝑛  is the 𝑖 th order statistic. Then the least

squares (LS) estimators can be obtained by minimizing the sum of squares errors 
2

:

1

( ) ,
1

n

i n

i

i
F X

n

 
  



with respect to the unknown parameters. So the least squares estimators of the unknown 

parameters 𝛼, 𝜆, 𝜃  and 𝛽,  denoted by �̈�, �̈�, �̈�  and �̈�,  of the PLP model can be obtained by

minimizing the following quantity  
2

( )

1

,
1 1

ixn

i

e e i

e n

   




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 

   


with respect to 𝛼, 𝜆, 𝜃 and 𝛽. 
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Weighted least squares (WLS) estimators can be obtained by minimizing the sum of squares 

errors    

 
2

: :

1 :

1
( ) ( ( )) ,

( ( ))

n

i n i n

i i n

F X E F X
Var F X



with respect to the unknown parameters 𝛼, 𝜆, 𝜃 and 𝛽. Therefore, the weighted least squares 

estimators 𝛼, 𝜆, 𝜃 and 𝛽 can be obtained by minimizing the following quantity
2

( )2

1

( 1) ( 2)
,

( 1) 1 1
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n n e e i
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with respect to the parameters 𝛼, 𝜆, 𝜃 and 𝛽. 

5. Simulation Study

In any estimation problems, it is required to study the properties of the derived estimators. 

The derived expressions for the estimators are too complicated to study analytically. 

Consequently, a numerical study will be set up, treating separately the sampling distribution of 

the estimators. A numerical study is performed to compare the different estimators discussed in 

the previous section. The performances of the different estimators are compared in terms of 

their relative bias (RB), mean square error (MSE) and standard error (SE). The numerical 

procedures will be described below:  

Step 1: 1000 random samples of size 10, 20, 30, 40, 50 and 100 are generated from the power 

Lomax Poisson distribution.  

Step 2: Three sets of parameters values are selected as; case I ≡ (α = 0.75, λ = 0.5, θ = 1, β =

0.5 ) , case II ≡ (α = 0.5, λ = 0.5, θ = 1, β = 0.25 )  and case III ≡ (α = 0.35, λ = 0.5, θ =
1, β = 0.2).  

Step 3: the MLEs, LS estimators and WLS estimators of the unknown parameters are obtained. 

Step 4: The biases, MSEs and SEs of different estimators of unknown parameters are computed.  

Simulation results are reported in Tables (1) and (2) (at the end of the article) and 

represented through some Figures from (3) to (10). From these tables and figures, the following 

conclusions can be observed on the performance of different estimators. 
1. For all methods of estimations, it is clear that MSEs and SEs decrease as sample size

increases (see Tables (1) and (2)).

2. The MSEs of MLEs, for all parameters values, are the smallest among the other

estimators in almost all cases (see for example Table (1) and Figures (3 – 5)).
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Figure 3: The MSE for 𝛼 of the first case based 

on MLE, LS, WLS methods 

Figure 4: The MSE for 𝜆 of the third case based 

on MLE, LS, WLS methods 

Figure 5: The MSE for  𝜃 of the second case 

based on MLE, LS, WLS methods 

Figure 6: MSE for MLEs for the second case 

of parameters 

3. The MSEs of MLEs �̂�, �̂�, 𝜃 and �̂� decrease as the sample size increases for different

selected set of parameters (see for example Figure (6)) based on the case II. The

MSEs of LS estimators �̈�, �̈�, �̈� and �̈� decrease for different selected set of parameters

as the sample size increases based on case III (see for example Figure (7)).

4. The MSEs of the WLS estimators 𝛼, 𝜆, 𝜃 and 𝛽  decrease as the sample sizes increase

for different selected set of parameters (see for example Figure (8)).
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Figure 7: MSE for LSs for the third case of 

parameters 

Figure 8: MSE for WLSs for the second case of 

parameters 

5. The MSEs of the MLEs of 𝛼 are smaller than the corresponding MSEs for the other

methods in almost all the cases (see for example Figures (9 a, b)). Also, the MSEs of

the MLEs of 𝛼 for the case I have the smallest values corresponding to the MSEs for

the other sets of parameters for the same sample size (see Figure (9 a)). The MSEs of

MLEs of 𝛼 for the case I have the smallest values corresponding to MSEs of the other

cases of parameters for the same sample size (see Figure (9 b)).

Figure 9a: MSEs of  𝛼 for all the cases based 

on different methods  

Figure 9b: MSEs of  𝛼 for all the cases based on 

different methods  

6. As it seems from Figures (10 a, b), the MSEs of the MLEs of 𝛽 take the smallest

values corresponding to the MSEs of the other estimators �̈�  and 𝛽  for the same

sample size. Also, the MSEs of the MLEs of 𝛽 for case I have the smallest values

corresponding to MSEs of the two other cases for the same sample size (see Figure
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(10 a)). The MSEs of MLEs of 𝛽 for the case I have the smallest values corresponding 

to MSEs of the other cases for the same sample size (see Figure (10 b)).   

Figure 10 a: MSEs of the estimate 𝛽 for all the 

cases based on different methods 

Figure 10 b: MSEs of the estimate 𝛽 for all the 

cases based on different methods 

7. For fixed value of (𝜆 = 0.5, 𝜃 = 1)  and as the value of shape parameters (𝛼, 𝛽)

increases, the MSEs for estimators based on maximum likelihood, least squares and

weighted least squares methods are increasing (see Table(1)).

8. For fixed value of (𝜆 = 0.5, 𝜃 = 1)  and as the value of shape parameters (𝛼, 𝛽)

decrease, the MSEs for estimators based on maximum likelihood, least squares and

weighted least squares methods are decreasing (see Table(1)).

9. The MSEs of 𝜆 for LS estimators and WLS estimators are approximately constant,

when the shape parameters (𝛼, 𝛽) increase.

6. Applications To Real Data

In this section, an application of the proposed PLP model to two real data sets is provided 

to show the flexibility and applicability of the new model in practice. For the first data, the PLP 

distribution is compared with Kumuerswmay Lomax (KL), power Lomax, beta Lomax (BL), 

exponentiated Lomax (EL) and Lomax (L) distributions. While, for the second data, the PLP 

distribution is compared with Weibull Lomax (WL), KL, BL, EL and L distributions  

Example 6.1: The first data set represents 84 observations of failure time for particular 

windshield model given in Table 16.11 of Murthy et al. (2004). The data are recorded as 

follows: 

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 

2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 

3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 

2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 

4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 
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2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 

4.663. 

To compare the fitted models, some criteria measures like; Akaike information criterion 

(AIC), Bayesian information criterion (BIC), consistent Akaike information criterion (CAIC), 

Hannan-Quinn information criterion (HQIC) and the Kolmogorov-Smirnov (K-S) statistics are 

considered. Generally, the smaller values of these statistics are corresponding to the better fit 

model to the data. The mathematical form of these measures is as follows  

 2 1
2 2ln  , ln( ) 2ln , ,

1

k k
AIC k l BIC k n l CAIC AIC

n k


     

 

   2 ln ln 2ln , sup (y) (y) ,y nHQIC k n l k S F F      

where k  is the number of models parameter, 𝑛 is the sample size and ln l  is the maximized

value of the log- likelihood function under the fitted models. Table 3 lists the numerical values 

of the statistics measures.  
Table 3: Statistics measures for all models for failure times of 84Aircraff Windshield data 

Models 
Statistics 

-2log l AIC CAIC BIC HQIC K-S

PLP 261.736 269.736 270.243 279.460 273.645 0.096 

KL 264.808 272.809 273.309 282.580 276.739 0.097 

BL 277.434 285.435 285.935 295.206 289.365 0.193 

EL 282.799 288.799 289.095 296.127 921.746 0.835 

PL 440.267 446.267 446.560 453.560 449.199 0.999 

L 329.977 333.977 334.123 338.862 335.942 1 

It is clear from Table 3 that the PLP model has the smallest values for the statistics 

measures among all fitted models. So, the PLP model could be chosen as the best model. 

Further, figures of the estimated cumulative and estimated densities of the fitted models are 

presented in Figures 11 and 12 
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Figure. 11  Estimated cumulative densities of models for the first data set 

Figure 12.  Estimated densities of models for the first data set 

As seen from the above two figures that, the PLP distribution provides a closer fit to the 

histogram and then it is the best model among the other models to analyze these data. 

Example 6.2: The second data set represents the survival times (in days) of 72 guinea pigs 

infected with virulent tubercle bacilli, observed and reported by Bjerkedal (1960). The data are 

as follows:  
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0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 

1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 

1.46, 1.53, 1.59, 1.6, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02,  2.13,  2.15,  2.16, 

2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.78, 2.93, 3.27,  3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 

5.55,  2.54, 0.77. 

Table 4 lists the numerical values of the statistics measures for the second data set, plots of 

the estimated cumulative and estimated densities of the fitted models are displayed in Figures 

13 and 14. 

Tables 4: Statistics measures for all models based on the second data set 

Models 
Statistics 

-2log l AIC CAIC BIC HQIC K-S

PLP 187.181 195.181 195.778 204.740 198.807 0.078 

KL 190.254 198.254 198.835 207.361 201.879 0.099 

BL 205.238 213.238 216.863 213.835 216.863 0.126 

WL 189.198 197.148 206.255 197.728 200.774 0.098 

EL 245.326 251.326 258.156 251.669 254.045 0.261 

L 226.153 230.153 197.778 206.288 200.774 0.295 

Figure13: Estimated cumulative densities of models for the second data set 
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Figure 14: Estimated densities of models for the second data set 

The values in Table 4 indicate that the most fitted distribution to the data is PLP 

distribution compared to other distributions. Also, it gives the best fit to these data. 

7. Concluding Remarks

In this paper we have introduced a new four- parameter compounding distribution, called

the power Lomax Poisson distribution. Statistical properties of the new distribution such as, 

moments, mean residual life, order statistics, quantile measures and Re'nyi entropy are obtained. 

Three methods of estimation, namely; maximum likelihood, least squares, and weighted least 

squares are proposed to estimate the model parameters and simulation results are provided to 

assess the model performance. The PLP model is fitted to two real life data sets to illustrate the 

usefulness of the proposed distribution. The new model provides consistently a better fit than 

the other competitive models. 
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Table 1: Results of simulation study of MSEs, RBs and SEs of estimates for different values of parameters (𝛼, 𝜆, 𝜃, 𝛽) for 

the power Lomax Poisson distribution 

𝑛 Method Properties 

Case I Case II 

𝛼 = 0.75 𝜆
= 0.5 

𝜃 = 1 𝛽 = 0.5 𝛼 = 0.5 𝜆 = 0.5 𝜃 = 1 𝛽 = 0.25 

10 

ML 

MSE 0.451 0.269 0.555 0.166 0.140 0.138 0.461 0.052 

RB 0.033 0.295 0.557 0.443 0.047 0.476 0.535 0.485 

SE 0.067 0.050 0.049 0.034 0.037 0.029 0.042 0.019 

LS 

MSE 0.151 0.117 0.424 4.978 0.056 0.117 0.927 5.833 

RB 0.168 0.365 0.424 0.638 0.254 0.544 0.514 1.537 

SE 0.036 0.028 0.050 0.221 0.020 0.021 0.081 0.238 

WLS 

MSE 0.162 0.110 0.455 4.744 0.057 0.106 0.681 5.849 

RB 0.206 0.393 0.416 0.619 0.231 0.531 0.516 1.603 

SE 0.038 0.028 0.052 0.215 0.021 0.019 0.064 0.239 

20 

ML 

MSE 0.314 0.149 0.390 0.049 0.050 0.092 0.335 0.012 

RB 0.046 0.326 0.437 0.245 0.148 0.490 0.427 0.292 

SE 0.028 0.017 0.022 9.197* 0.011 8.934* 0.020 4.064* 

LS 

MSE 0.084 0.087 0.245 0.040 0.102 0.097 0.324 0.083 

RB 0.180 0.362 0.335 0.175 0.186 0.466 0.428 0.308 

SE 0.013 0.012 0.018 8.932* 0.015 0.010 0.019 0.014 

WLS 

MSE 0.126 0.089 0.295 0.039 0.065 0.092 0.346 0.082 

RB 0.104 0.299 0.359 0.160 0.143 0.434 0.442 0.277 

SE 0.018 0.013 0.020 9.105* 0.012 0.011 0.019 0.014 

30 

ML 

MSE 0.118 0.108 0.297 0.028 0.030 0.082 0.281 8.673* 

RB 0.134 0.386 0.371 0.204 0.171 0.482 0.385 0.244 

SE 0.011 8.890* 0.013 4.363* 5.070* 5.118* 0.012 2.343* 

LS 

MSE 0.083 0.078 0.229 0.026 0.025 0.070 0.256 0.016 

RB 0.184 0.366 0.318 0.162 0.195 0.429 0.349 0.216 

SE 8.399* 7.059* 0.012 4.707* 4.213* 5.160* 0.012 3.740* 

WLS 

MSE 0.081 0.075 0.248 0.024 0.029 0.070 0.290 7.253* 

RB 0.131 0.315 0.330 0.143 0.141 0.393 0.398 0.182 

SE 9.024* 7.507* 0.012 4.574* 5.209* 5.915* 0.012 2.417* 

50 

ML 

MSE 0.056 0.063 0.208 0.016 0.027 0.087 0.243 5.470* 

RB 0.145 0.380 0.280 0.155 0.177 0.471 0.337 0.213 

SE 4.206* 3.281* 7.195* 2.002* 2.779* 3.555* 7.190* 1.025* 

LS 

MSE 0.070 0.064 0.173 0.017 0.021 0.069 0.230 5.777* 

RB 0.156 0.322 0.254 0.127 0.193 0.436 0.343 0.195 

SE 4.745* 3.896* 6.597* 2.238* 2.135* 2.940* 6.709* 1.165* 

WLS 

MSE 0.057 0.058 0.191 0.015 0.022 0.067 0.280 5.612* 

RB 0.123 0.299 0.268 0.116 0.147 0.408 0.392 0.182 

SE 4.449* 3.774* 6.893* 2.128* 2.623* 3.183* 7.179* 1.192* 

100 

ML 

MSE 0.031 0.044 0.134 8.447* 0.018 0.065 0.168 2.932* 

RB 0.160 0.354 0.187 0.117 0.193 0.460 0.249 0.165 
SE 1.295* 1.126* 3.139* 0.710* 0.912* 1.109* 3.260* 0.350* 

LS 

MSE 0.034 0.042 0.105 0.010 0.016 0.057 0.178 3.744* 

RB 0.173 0.315 0.176 0.106 0.181 0.403 0.291 0.160 
SE 1.298* 1.318* 2.727* 0.854* 0.909* 1.284* 3.051* 0.463* 

WLS 

MSE 0.033 0.040 0.133 8.847* 0.016 0.056 0.212 3.118* 

RB 0.138 0.292 0.204 0.095 0.153 0.394 0.329 0.148 
SE 1.512* 1.367* 3.038* 0.813* 0.996* 1.314* 3.241* 0.420* 

* Indicate that the value multiply 10−3
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Table 2: Results of simulation study of MSEs, RBs and SEs of estimates for different values of 

parameters (𝛼, 𝜆, 𝜃, 𝛽) for the power Lomax Poisson distribution 

𝑛 Method Properties 
Case III 

𝛼 = 0.75 𝜆 = 0.5 𝜃 = 1 𝛽 = 0.5 

10 

ML 

MSE 0.266 0.617 0.894 0.736 

RB 0.252 0.117 0.921 1.175 

SE 0.051 0.078 0.022 0.082 

LS 

MSE 0.123 0.229 0.753 0.734 

RB 0.025 0.388 0.838 0.829 

SE 0.035 0.044 0.022 0.084 

WLS 

MSE 0.130 0.245 0.790 2.398 

RB 0.063 0.337 0.847 1.181 

SE 0.036 0.047 0.027 0.153 

20 

ML 

MSE 0.056 0.236 0.800 0.037 

RB 7.756* 0.352 0.887 0.484 

SE 0.012 0.023 5.729* 8.267* 

LS 

MSE 0.034 0.125 0.690 0.043 

RB 0.050 0.438 0.821 0.375 

SE 9.219* 0.014 6.261* 9.644* 

WLS 

MSE 0.049 0.149 0.704 0.035 

RB 0.016 0.365 0.830 0.332 

SE 0.011 0.017 6.087* 8.809* 

30 

ML 

MSE 0.038 0.171 0.802 0.011 

RB 7.566* 0.407 0.890 0.300 

SE 6.527* 0.012 3.334* 2.933* 

LS 

MSE 0.018 0.098 0.675 9.967* 

RB 0.056 0.455 0.814 0.262 

SE 4.403* 7.140* 3.759* 2.833* 

WLS 

MSE 0.030 0.126 0.693 8.666* 

RB 0.014 0.377 0.824 0.233 

SE 5.820* 0.010 3.977* 2.695* 

50 

ML 

MSE 0.012 0.097 0.782 5.261* 

RB 0.050 0.499 0.879 0.233 

SE 2.116* 3.730* 1.927* 1.111* 

LS 

MSE 0.014 0.085 0.643 6.057* 

RB 0.046 0.452 0.794 0.223 

SE 2.310* 3.704* 2.184* 1.275* 

WLS 

MSE 0.014 0.079 0.667 5.197* 

RB 5.024* 0.404 0.809 0.183 

SE 2.409* 3.959* 2.292* 1.252* 

100 

ML 

MSE 7.551* 0.090 0.781 2.859* 

RB 0.059 0.517 0.878 0.187 

SE 0.844* 1.512* 0.966* 0.382* 

LS 

MSE 6.474* 0.066 0.607 3.437* 

RB 0.037 0.436 0.772 0.172 

SE 0.794* 1.348* 1.021* 0.475* 

WLS 

MSE 8.821* 0.064 0.631 2.773* 

RB 4.887* 0.398 0.787 0.143 

SE 0.950* 1.583* 1.089* 0.446* 

* Indicate that the value multiply 10−3
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