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ABSTRACT 

This paper introduces a new three-parameter distribution called inverse 

generalized power Weibull distribution. This distribution can be regarded as a 

reciprocal of the generalized power Weibull distribution. The new distribution is 

characterized by being a general formula for some well-known distributions, 

namely inverse Weibull, inverse exponential, inverse Rayleigh and inverse 

Nadarajah-Haghighi distributions. Some of the mathematical properties of the 

new distribution including the quantile, density, cumulative distribution functions, 

moments, moments generating function and order statistics are derived. The 

model parameters are estimated using the maximum likelihood method. The 

Monte Carlo simulation study is used to assess the performance of the maximum 

likelihood estimators in terms of mean squared errors. Two real datasets are used 

to demonstrate the flexibility of the new distribution as well as to demonstrate its 

applicability. 
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1. Introduction 

Weibull distribution is one of the most important distributions used in reliability 

engineering and other disciplines. Also, it adequately describes the observed failure times of 

many different types of components and phenomena. Therefore, the Weibull distribution was 

more widely used as a basis for several generalizations. See, for example, the exponentiated 

Weibull distribution by Mudholkar and Srivastava (1993), beta-Weibull distribution by Lee et 

al. (2007) and Kumaraswamy Weibull distribution by Cordeiro et al. (2010). For more detail 

on the generalizations of Weibull distribution, refer to the books by Murthy et al. (2004), 

Rinne (2008) and Lai (2014). Also, Haghighi and Nikulin (2006) proposed a new extension of 

Weibull distribution called the generalized power Weibull distribution. The cumulative density 

function (cdf) and probability density function (pdf) of the generalized power Weibull 

distribution, respectively are 

𝐹(𝑦) = 1 − 𝑒𝑥𝑝{1 − (1 + 𝜆𝑦𝜃)
𝛼
}, 𝜆, 𝛼, 𝜃 > 0,   𝑦 > 0                           (1) 

and 

𝑓(𝑦) =  𝜆𝛼𝜃𝑦𝜃−1(1 + 𝜆𝑦𝜃)
𝛼−1

𝑒𝑥𝑝{1 − (1 + 𝜆𝑦𝜃)
𝛼
},   𝜆, 𝛼, 𝜃 > 0,   𝑦 > 0        (2) 

where α and θ are two shape parameters and λ  is a scale parameter. The Weibull distribution 

is a special case of (1) when α = 1. Its hazard rate function according to Nikulin and Haghighi 

(2009) can be constant, monotone, unimodal, bathtub-shaped. In the literature, some 

extensions of the generalized power Weibull distribution proposed by many authors, such as 

Selim and Badr (2016) proposed the Kumaraswamy generalized power Weibull distribution, 

Selim (2018) proposed the generalized power generalized Weibull distribution, Khan (2018) 

proposed the transmuted generalized power Weibull distribution and Pena-Ramirez et al. 

(2018) proposed The exponentiated power generalized Weibull distribution. 

This paper aims to introduce a reciprocal of the generalized power Weibull distribution 

named inverse generalized power Weibull (IGPW) distribution and studies its mathematical 

properties. The motivations for deriving the inverse generalized power Weibull distribution 

are to provide more usefulness and flexibility of the ordinary distribution and to improve 

its goodness-of-fit in comparison with the well-known distributions in lifetime data analysis. 

The rest of this paper is organized as follows. The inverse generalized power Weibull 

distribution and the special cases thereof are introduced in Section 2. Some of the mathematical 

properties of IGPW distribution are derived in Section 3, including the quantile function, 

skewness, kurtosis, ordinary moments, moment generating function and order statistics. The 

maximum likelihood estimation of the model parameters is introduced in Section 4. In Section 

5, the Monte Carlo simulation study is used to assess the performance of the maximum 

likelihood estimators in terms of mean squared errors. Two real data sets are used to illustrate 

the usefulness of the IGPW distribution in Section 6. The final Section is devoted to the 

conclusion. 

  

https://www.tci-thaijo.org/index.php/thaistat/article/view/135560
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2. Inverse Generalized Power Weibull Distribution 

The inverse generalized power Weibull distribution can be derived using the 

transformation 𝑋 = 1 𝑌⁄ , whereupon if the random variable 𝑌 follows the GPW distribution, 

the random variable 𝑋 follows the IGPW distribution. The cdf and pdf of IGPW distribution 

are given, respectively, by 

F(x) = exp{1 − (1 + 𝜆𝑥−𝜃)
α
} , α, θ, λ > 0,   𝑥 > 0                                              (3) 

and 

𝑓(𝑥) = 𝛼𝜃𝜆𝑥−𝜃−1(1 + 𝜆𝑥−𝜃)
𝛼−1

exp{1 − (1 + 𝜆𝑥−𝜃)
α
}                                         (4) 

where 𝜆 is scale parameter and α, 𝜃 are shape parameters. This model has inverse Weibull (IW) 

distribution as a special case when 𝛼 = 1. Hence, it can also be considered as an extension of 

the inverse exponential distribution which is developed by Keller et al. (1982) when 𝛼 = θ =
1. The graphs of the pdf and cdf for selected values of the model parameters are plotted in Fig. 

1. 

The survival 𝑠(𝑥) and the hazard rate ℎ(𝑥) functions of the 𝐼𝐺𝑃𝑊 distribution are given, 

respectively by 

𝑠(𝑥) = 1 − 𝐹(𝑥) = 1 − exp {1 − (1 + 𝜆𝑥−𝜃)
α
}  ,     𝑥 > 0                                       (5) 

and 

ℎ(𝑥) =
𝑓(𝑥)

𝑠(𝑥)
=

𝛼𝜃𝜆𝑥−𝜃−1(1+𝜆𝑥−𝜃)
𝛼−1

𝑒𝑥𝑝{1−(1+𝜆𝑥−𝜃)
𝛼
}

1−𝑒𝑥𝑝 {1−(1+𝜆𝑥−𝜃)
𝛼
}

,     𝑥 > 0                           (6) 

Fig. 2, shows some possible shapes of the IGPW hazard rate function. 

The reversed hazard 𝑟(𝑥) and the cumulative failure rate 𝐻(𝑥) functions of the IGPW 

distribution are given, respectively by 

𝑟(𝑥) = 𝛼𝜃𝜆𝑥−𝜃−1(1 + 𝜆𝑥−𝜃)
𝛼−1

,     𝑥 > 0,                                                     (7) 

and 

𝐻(𝑥) = (1 + 𝜆𝑥−𝜃)
α

− 1 ,     𝑥 > 0.                                                                    (8) 

 

 

Fig. 1: Some possible shapes of the IGPW density function (left panel) and the IGPW cumulative 

density function (right panel) 
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2.1 Special cases of the 𝑰𝑮𝑷𝑾 distribution 

A number of the important distributions can be obtained as special cases of the 𝐼𝐺𝑃𝑊 

distribution, are specifically inverse Weibull (𝐼𝑊) , inverse exponential (𝐼𝐸) , inverse 

Nadarajah-Haghighi (𝐼𝑁𝐻)  and inverse Rayleigh (𝐼𝑅)  distributions. The special cases of 

𝐼𝐺𝑃𝑊 distribution for selected values of the parameters (𝛼, 𝜃) are listed in Table 1. 

Table 1. Special cases of the 𝐼𝐺𝑃𝑊 distribution 

Model 𝜆 𝛼 𝜃 Author(s) 

IW - 1 - Keller et al. (1982); (Keller and Kamath 

1982) 

IE - 1 1 (Keller et al. 1982) 

INH - - 1 (Tahir et al. 2018) 

IR - 1 2 (Voda 1972) 

 

3. The Statistical Properties 

In this section, some of the statistical properties of IGPW distribution including the 

quantile function, random variables generation function, moments, moment generating 

function, skewness, kurtosis and order statistics are derived. 

 

3.1 Quantile function and simulation 

The quantile function has a number of important applications, for example, it can be used 

to obtain the median, skewness, kurtosis and can be also used to generate random variables. 

The q-th quantile is a solution of the following equation 𝐹(𝑥𝑞) = 𝑞,     0 ≤ 𝑞 ≤ 1. 

 

Fig. 2: Some possible shapes of the 𝐼𝐺𝑃𝑊 hazard rate function 

 

Thus, the quantile function 𝑄(𝑞) corresponding of the IGPW distribution is  
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𝑄(𝑞) = 𝜆1 𝜃⁄ [ √1 − 𝑙𝑛(𝑞)𝛼
− 1]

−1 𝜃⁄
                                                  (9) 

Setting q = 0.5, in equation (9) we obtain the median of the IGPW distribution, as follows 

𝑄(0.5) = 𝜆1 𝜃⁄ [ √1 − 𝑙𝑛(0.5)𝛼
− 1]

−1 𝜃⁄

                                           (10) 

Fig. 3, shows the median of the IGPW distribution as a function of the parameters 𝛼 and 

𝜃.  

The random variables 𝑋 of IGPW distribution can be simulated using equation (9) as 

following  

𝑋 = 𝜆1 𝜃⁄ [ √1 − 𝑙𝑛(𝑢)𝛼
− 1]

−1 𝜃⁄

                                              (11) 

where u ~ the uniform (0, 1) distribution and 𝑋~𝐼𝐺𝑃𝑊(𝜆, 𝛼, 𝜃). 

 

3.2 Skewness and kurtosis 

The shortcomings of the classical skewness and kurtosis measures can be avoided by using 

the skewness and kurtosis measures based on quantiles like Bowley’s skewness and Moors’ 

kurtosis. The Bowley’s skewness measure based on quartiles ((Kenney and Keeping 1962)) is 

given by 

𝑆𝑘 =
𝑄3

4⁄
−2𝑄1

2⁄
+𝑄1

4⁄

𝑄3
4⁄
−𝑄1

4⁄

                                                        (12) 

and the Moors’ kurtosis measure based on octiles (Moors (1988)) is given by 

𝐾𝑢 =
𝑄7

8⁄
−𝑄5

8⁄
+𝑄3

8⁄
−𝑄1

8⁄

𝑄6
8⁄
−𝑄2

8⁄

                                                 (13) 

The Fig. 3, shows the behaviors of median, skewness and kurtosis of the IGPW distribution 

as a function of the parameters α and θ. 

 

   

Fig. 3: The median (left panel), Skewness (middle panel) and kurtosis (right panel) of the IGPW 

distribution as a function of the parameters 𝛼 and 𝜃. 

 

3.3 Moments and moment generating function 

The moments and moment generating function of the IGPW distribution are given by the 

following theorems: 

Theorem 1. If 𝑋 has the IGPW distribution, then the 𝑟th moments of 𝑋 for integer value 

of 𝑟𝜃−1 is  

𝜇𝑟
′ = 𝑒𝜆𝑟𝜃−1

∑ (−1)𝑖−𝑟𝜃−1−𝑟𝜃−1

𝑖=0 (
−𝑟𝜃−1

𝑖
) 𝛤(𝑖𝛼−1 + 1, 1),    𝑟 1                          (14) 

where Γ(a, b) denotes the upper incomplete gamma function and 𝑒 is Euler's number. 

Proof. The 𝑟 𝑡ℎ moment of 𝑋 is defined as follows  

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟∞

0
𝑓(𝑥)𝑑𝑥                                                    (15) 

Inserting Eq.(4) into Eq. (15), yields 
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𝜇𝑟
′ = 𝑒𝛼𝜆𝜃 ∫ 𝑥𝑟−𝜃−1 (1 +

𝜆

𝑥𝜃)
𝛼−1

𝑒𝑥𝑝 {− (1 +
𝜆

𝑥𝜃)
𝛼

} 𝑑𝑥
∞

0
                        (16) 

Let 𝑣 = (1 +
𝜆

𝑥𝜃)
𝛼

, the above expression reduce to 

𝜇𝑟
′ = 𝑒𝜆

𝑟

𝜃 ∫ (𝑣
1
𝛼 − 1)

−𝑟𝜃−1

 𝑒−𝑣𝑑𝑣
∞

1
                                               (17) 

Then, by applying the binomial expansion of 

 (𝑣
1
𝛼 − 1)

−𝑟𝜃−1

= ∑ (−1)𝑖−𝑟𝜃−1∞
𝑖=0 (−𝑟𝜃−1

𝑖
) 𝑣

𝑖
𝛼   

we get 

𝜇𝑟
′ = 𝑒𝜆𝑟𝜃−1

∑ (−1)𝑖−𝑟𝜃−1−𝑟𝜃−1

𝑖=0 (−𝑟𝜃−1

𝑖
) ∫ 𝑣

𝑖
𝛼𝑒−𝑣𝑑𝑣

∞

1
                           (18) 

By integrating the incomplete gamma function in (18) we get the r th moment of 𝑋 as 

follows 

𝜇𝑟
′ = 𝑒𝜆𝑟𝜃−1

∑ (−1)𝑖−𝑟𝜃−1

−𝑟𝜃−1

𝑖=0

(−𝑟𝜃−1

i
) 𝛤 [

𝑖

𝛼
+ 1, 1]   ∎ 

If α = θ = 1, we get the moments of inverse exponential distribution as follows 

𝜇𝑟
′ = 𝑒𝜆𝑟 ∑(−1)i−r

−r

i=0

(
−r
i

) Γ[i + 1, 1] 

And if θ = 1, we get the moments of inverse Weibull distribution as follows 

𝜇𝑟
′ = 𝑒𝜆𝑟𝜃−1

∑ (−1)𝑖−𝑟𝜃−1

−𝑟𝜃−1

𝑖=0

(
−𝑟𝜃−1

𝑖
) 𝛤(𝑖 + 1, 1),    𝑟 1 

Theorem 2. If 𝑋~𝐼𝐺𝑃𝑊 distribution, then for any integer value of 𝑟𝜃−1, the moment 

generating function is   

𝑀𝑥(𝑡) = 𝑒𝜆𝑟𝜃−1
∑ ∑ (−1)𝑖−𝑟𝜃−1−𝑟𝜃−1

𝑖=0 (−𝑟𝜃−1

i
) 𝛤 [

𝑖

𝛼
+ 1, 1]∞

𝑟=0                         (19) 

Proof. The moment generating function is defined as follows  

𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥
∞

0

 𝑓(𝑥)𝑑𝑥 

Using exponential function formula 𝑒𝑡𝑥 = ∑
(𝑡𝑥)𝑟

𝑟!
∞
𝑟=0  , we get 

𝑀𝑥(𝑡) = ∑
𝑡𝑟

𝑟!
∞
𝑟=0 𝐸(𝑋𝑟)                                                  (20) 

By inserting Eq. (14) in Eq. (20), yields the moment generating function of IGPW 

distribution as in (19). 

 

3.4 Order statistics 

Assuming that 𝑥(1), 𝑥(2), … , 𝑥(𝑛)  are the order statistics of a random sample follows a 

continuous distribution with cdf 𝐹(𝑥) and pdf 𝑓(𝑥), then the pdf of 𝑋(𝑘) is given by 

𝑓𝑘:𝑛(𝑥) =
𝑛!

(𝑘−1)!(𝑛−𝑘)!
𝑓(𝑥)[𝐹(𝑥)]𝑘−1[1 − 𝐹(𝑥)]𝑛−𝑘 ,    𝑘 = 1,2, … , 𝑛        (21) 

Let 𝑋 is a random variable of IGPW distribution, then the density function of the k-th order 

statistics of the IGPW distribution is 

𝑓𝑘:𝑛(𝑥) =
𝑛!

(𝑘−1)!(𝑛−𝑘)!
𝛼𝜃𝜆𝑥−𝜃−1(1 + 𝜆𝑥−𝜃)

𝛼−1
[𝑒1−(1+𝜆𝑥−𝜃)

α

]
𝑘

[1 − 𝑒1−(1+𝜆𝑥−𝜃)
α

]
𝑛−𝑘

 (22) 

If 𝑘 = 1, the pdf of order statistics is  
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𝑓1:𝑛(𝑥) = 𝑛𝛼𝜃𝜆𝑥−𝜃−1(1 + 𝜆𝑥−𝜃)
𝛼−1

𝑒1−(1+𝜆𝑥−𝜃)
α

[1 − 𝑒1−(1+𝜆𝑥−𝜃)
α

]
𝑛−1

        (23) 

and if 𝑘 = n, the pdf of order statistics is 

𝑓𝑛:𝑛(𝑥) = 𝑛𝛼𝜃𝜆𝑥−𝜃−1(1 + 𝜆𝑥−𝜃)
𝛼−1

[𝑒1−(1+𝜆𝑥−𝜃)
α

]
𝑛

                                 (24) 

 

4. Maximum Likelihood Estimation 

This section is devoted to discussing the maximum likelihood estimation (𝑀𝐿𝐸) and the 

approximate confidence intervals for the unknown parameters of IGPW distribution. Let 

𝑥1, 𝑥1, … , 𝑥𝑛 is a complete random sample of size n from the IGPW distribution. Then the 

likelihood function (LF) is 

𝐿(𝛼, 𝜃, 𝜆|𝒙) = (𝛼𝜃𝜆)𝑛 ∏ 𝑥−𝜃−1(1 + 𝜆𝑥−𝜃)
𝛼−1

𝑒𝑥𝑝{1 − (1 + 𝜆𝑥−𝜃)
𝛼
}𝑛

𝑖=1           (25) 

and the log-likelihood function (𝑙𝑛𝐿) is 

                         𝑙𝑛𝐿 = 𝑛(ln(𝛼𝜃𝜆) + 1) − (𝜃 + 1)∑ 𝑙𝑛 𝑥𝑖
𝑛
𝑖=1 + (𝛼 − 1)∑ 𝑙𝑛(1 + 𝜆𝑥𝑖

−𝜃)𝑛
𝑖=1  −

∑ (1 + 𝜆𝑥𝑖
−𝜃)

𝛼𝑛
𝑖=1                                                           (26) 

The maximum likelihood estimators of 𝛼, 𝜃 and 𝜆 are the solution of the following three 

equations 

 

𝜕 𝑙𝑛 𝐿

𝜕𝜆
=

𝑛

𝜆
+ (𝛼 − 1)∑

1

𝑥𝑖
𝜃(1+𝜆𝑥𝑖

−𝜃)

𝑛
𝑖=1 − 𝛼 ∑

(1+𝜆𝑥𝑖
−𝜃)

𝛼−1

𝑥𝑖
𝜃

𝑛
𝑖=1 = 0,               (27) 

𝜕 𝑙𝑛 𝐿

𝜕𝛼
=

𝑛

𝛼
+ ∑ 𝑙𝑛(1 + 𝜆𝑥𝑖

−𝜃)𝑛
𝑖=1 − ∑ 𝑙𝑛(1 + 𝜆𝑥𝑖

−𝜃)(1 + 𝜆𝑥𝑖
−𝜃)

𝛼
= 0𝑛

𝑖=1 ,            (28) 

𝜕 𝑙𝑛 𝐿

𝜕𝜃
=

𝑛

𝜃
− ∑ 𝑙𝑛 𝑥𝑖

𝑛
𝑖=1 − (𝛼 − 1)𝜆 ∑

𝑙𝑛 𝑥𝑖𝑥𝑖
−𝜃

(1+𝜆𝑥𝑖
−𝜃)

𝑛
𝑖=1 + ∑

𝛼𝜆 𝑙𝑛 𝑥𝑖

𝑥𝑖
𝜃(1+𝜆𝑥𝑖

−𝜃)
1−𝛼 = 0       𝑛

𝑖=1 (29) 

 

These nonlinear equations cannot be analytically solved, but the statistical software like R 

program (Team (2015)) can be used to solve them numerically using iterative techniques.  

The asymptotic variance-covariance matrix of the MLEs for the three parameters 𝛼, 𝜃 and 

𝜆 is the inverse of the observed Fisher information matrix as follows  

 

�̂� =

[
 
 
 
 −

𝜕2 ln L

𝜕𝛼2
−

𝜕2 ln 𝐿

𝜕𝛼𝜕𝜆
−

𝜕2 ln 𝐿

𝜕𝛼𝜕𝜃

−
𝜕2 ln𝐿

𝜕𝛼𝜕𝜆
−

𝜕2 ln 𝐿

𝜕𝜆2 −
𝜕2 ln 𝐿

𝜕𝜆𝜕𝜃

−
𝜕2 ln𝐿

𝜕𝛼𝜕𝜃
−

𝜕2 ln 𝐿

𝜕𝜆𝜕𝜃
−

𝜕2 ln 𝐿

𝜕𝜃2 ]
 
 
 
 

𝛼=�̂�,𝜆=�̂�,𝜃=�̂�

−1

= [

�̂�𝛼
2 �̂�𝛼,𝜆 �̂�𝛼,𝜃

�̂�𝛼,𝜆 �̂�𝜆
2 �̂�𝜆,𝜃

�̂�𝛼,𝜃 �̂�𝜆,𝜃 �̂�𝜃
2

]               (30) 

 

The elements of the sample Fisher information matrix can be obtained by deriving the 

second derivatives of the log-likelihood function (26) and evaluating them at the MLEs 

((Cohen 1965)). These elements can be derived as follow 

−
𝜕2 lnL

𝜕𝛼2 =
𝑛

𝛼2 + ∑ 𝑙𝑛(1 + 𝜆𝑥𝑖
−𝜃)

2
(1 + 𝜆𝑥𝑖

−𝜃)
α
,𝑛

𝑖=1                                                    (31) 

−
𝜕2 𝑙𝑛 𝐿

𝜕𝜆2 =
𝑛

𝜆2 + (𝛼 − 1)∑
(1+𝜆𝑥𝑖

−𝜃)
−2

𝑥𝑖
2𝜃

𝑛
𝑖=1 + 𝛼(𝛼 − 1)∑

(1+𝜆𝑥𝑖
−𝜃)

𝛼−2

𝑥𝑖
2𝜃                      𝑛

𝑖=1 (32) 

−
𝜕2 𝑙𝑛 𝐿

𝜕𝜃2 =
𝑛

𝜃2 − (𝛼 − 1)𝜆 ∑
𝑙𝑛(𝑥𝑖)

2𝑥𝑖
−𝜃

(1+𝜆𝑥𝑖
−𝜃)

𝑛
𝑖=1 + 𝛼𝜆 ∑

𝑙𝑛(𝑥𝑖)
2𝑥𝑖

−𝜃

(1+𝜆𝑥𝑖
−𝜃)

1−𝛼
𝑛
𝑖=1 + 𝜆2(𝛼 −

1)∑
𝑙𝑛(𝑥𝑖)

2𝑥𝑖
−2𝜃

(1+𝜆𝑥𝑖
−𝜃)

2 +𝑛
𝑖=1  𝜆2𝛼(𝛼 − 1)∑

𝑙𝑛(𝑥𝑖)
2𝑥𝑖

−2𝜃

(1+𝜆𝑥𝑖
−𝜃)

2−𝛼
𝑛
𝑖=1                        (33) 
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−
𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕𝜆
= −∑ (1 +

𝜆

𝑥𝑖
𝜃)

𝛼−1

𝑥𝑖
−𝜃𝑛

𝑖=1 [−1 − 𝛼 𝑙𝑛 (1 +
𝜆

𝑥𝑖
𝜃) + (1 +

𝜆

𝑥𝑖
𝜃)

−𝛼

],         (34) 

−
𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕𝜃
= −∑ 𝜆 𝑙𝑛 𝑥𝑖 (1 +

𝜆

𝑥𝑖
𝜃)

𝛼−1

𝑥𝑖
−𝜃𝑛

𝑖=1 [1 + 𝛼 𝑙𝑛 (1 +
𝜆

𝑥𝑖
𝜃) − (1 +

𝜆

𝑥𝑖
𝜃)

−𝛼

], (35) 

−
𝜕2 𝑙𝑛 𝐿

𝜕𝜆𝜕𝜃
= −∑ (𝛼 − 1) 𝑙𝑛(𝑥𝑖)𝑥𝑖

−𝜃𝑛
𝑖=1 [𝛼(𝛼 − 1)−1(1 + 𝜆𝑥𝑖

−𝜃)
𝛼−1

− (1 + 𝜆𝑥𝑖
−𝜃)

−1
+

𝜆𝑥𝑖
−𝜃(1 + 𝜆𝑥𝑖

−𝜃)
−2

+ 𝛼𝜆𝑥𝑖
−𝜃(1 + 𝜆𝑥𝑖

−𝜃)
𝛼−2

].                                    (36) 

 

The asymptotic normality of the MLE can be used to compute the approximate confidence 

intervals for the parameters α, 𝜆 and θ as follow 

�̂�𝑀𝐿 ± 𝑧𝜏/2√�̂�𝛼
2  ,          �̂�𝑀𝐿 ± 𝑧𝜏/2√�̂�𝜆

2      𝑎𝑛𝑑          𝜃𝑀𝐿 ± 𝑧𝜏/2√�̂�𝜃
2                         (37) 

where zτ/2 is an upper (τ /2)100% of the standard normal distribution.  

 

5. Simulation Study 

In this section, the simulation study is executed to assess the performance of the proposed 

MLE method for estimating the parameters of IGPW distribution. Monte Carlo experiments 

were carried out based on generated data from IGPW distribution. By using the inversion 

method in Section 3.1, We generated 1000 samples of size n = 20, 50, 100  from IGPW 

distribution for different combinations of parameters α, λ and θ. The mean square errors 

(MSE) of the MLEs were computed using the “CG” optimization' method in R program. The 

simulation results were displayed in Table 2. The main conclusion from the figures in Table 2, 

is that the mean square errors of MLEs decrease with increasing the sample size. This indicates 

that the MLE method is suitable for estimating the unknown parameters of IGPW distribution. 
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Table 2: Mean square errors of the MLEs’ α̂, λ̂, θ̂ 

Parameters 𝑛 = 25 𝑛 = 50 𝑛 = 100 

𝛼, 𝜆, 𝜃  α̂ λ̂ θ̂ α̂ λ̂ θ̂ α̂ λ̂ θ̂ 

0.5, 0.5, 0.5 0.2708 0.0169 0.3979 0.0834 0.0162 0.2890 0.0706 0.0151 0.2621 

1, 0.5, 0.5 0.9698 0.3349 0.1144 0.7509 0.2783 0.0868 0.4699 0.1865 0.0705 

1.5, 0.5, 0.5 0.6715 0.7987 0.1129 0.2145 0.3303 0.1036 0.2217 0.3096 0.0410 

0.5, 1, 0.5 0.0797 0.2063 0.5093 0.0445 0.1355 0.4508 0.0523 0.0930 0.4220 

0.5, 1.5, 0.5 0.0772 0.7335 0.4802 0.0453 0.5282 0.4562 0.0403 0.3793 0.3218 

0.5, 0.5, 1 0.1727 0.0142 0.3131 0.1145 0.0129 0.3044 0.0836 0.0102 0.1863 

0.5, 0.5, 1.5 0.3400 0.0198 0.4910 0.2845 0.0168 0.3666 0.1592 0.0139 0.2545 

 

6. Real Data Illustration 

This section illustrates the usefulness of the IGPW distribution using two real datasets. 

These datasets are described as follows: 

The data set (I): Stress-rupture life data 

The first data set consists of 76 observations of the strengths of the life of fatigue fracture 

of Kevlar 373/epoxy that are subject to constant pressure at the 90% stress level until all had 

failed. For previous studies with the data sets see Andrews and Herzberg (1985), Barlow et al. 

(1984) and Oluyede et al. (2016). These data are: 0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 

0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 

0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 

1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 

1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 

2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 

2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 

5.4005, 5.4435, 5.5295, 6.5541, 9.0960. 

The data set (II): Remission times data 

The second data set represents the remission times (in months) of a random sample of 128 

bladder cancer patients (see Lee and Wang (2003)). The data are: 0.08, 2.09, 3.48, 4.87, 6.94 , 

8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 

13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 

14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 

14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 

10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 

11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 

18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 

6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 

The data has been used by Kumar et al. (2015), El-Gohary et al. (2015), Chandra (2017) and 

De Andrade and Zea (2018). 

We fitted the above-mentioned datasets using MLE to the inverse generalized power 

Weibull (IGPW), inverse Nadarajah-Haghighi (INH), inverse Weibull (IW) and inverse 

exponential (IE) distributions. The MLEs and their standard errors for IGPW, INH, IW, and 

IE distributions are displayed in Table 3. The fitted models were compared by using Cramér-
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von Mises (W∗), Anderson Darling (A∗), Kolmogorov-Smirnov (𝐾 − 𝑆), -Log-likelihood 

(−lnL) , Akaike Information Criterion (AIC) , Consistent Akaike Information Criterion 

(𝐶𝐴𝐼𝐶) , Bayesian Information Criterion (BIC)  and Hannan-Quinn Information Criterion 

(HQIC). Based on these criteria, the best model is the one that achieves the lowest values for 

the information criteria and goodness-of-fit statistics. Hence, it is clear from the numerical 

results in Table 4, that the IGPW model provides a better fit than the other competing models. 

The Figures 4 and 5 display the graphical comparison of the fitted models for datasets I and II, 

respectively. Also, these figures graphically illustrate that IGPW distribution provides the best 

fit to our data sets, as compared to the other considered models. Therefore, the IGPW model 

can be used as a possible alternative to the well- known models like inverse exponential and 

inverse Weibull models. 

   

Fig. 4: Histogram and estimated densities (left panel); Theoretical and estimated CDFs (middle panel); P-

P plots (right panel) for stress-rupture life data 

   

Fig. 5: Histogram and estimated densities (left panel); Theoretical and estimated CDFs (middle panel); P-

P plots (right panel) for Remission times data 
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Table 3. The estimates and the standard errors (in parentheses) for data set I and II 

Data set 
Model   𝜃 

 

Data set I IE - 0.6248 (0.0716) -  

IR - 0.0395 (0.0045) -  

IW - 0.8625 (0.1089) 0.7585 (0.0540)  

INH 0.5130 (0.0594) 2.6070 (0.7020) -  

IGPW 0.2356 (0.0327) 12.3717 (4.6809) 2.0876 (0.2692)  

Data set II IE - 2.4847 (0.2020) -  

IR - 0.6174 (0.0545) -  

IW - 2.4311 (0.2192) 0.7520 (0.0424)  

INH 0.5064 (0.0480) 10.5947 (2.3220) -  

 IGPW 0.4435 (0.0482) 15.7165 (4.8326) 1.2110 (0.1023)  

 

Table 4. The estimates of the goodness-of-fit test for data set I and II 

 

 

  

 
Model K-S W∗ A∗ -L AIC CAIC BIC HQIC 

Data set 

I 

IE 0.2899 1.2059 6.8516 163.1015 328.203 328.257 330.5337 329.1344 

IR 0.7940 2.0476 10.9515 345.9147 693.8294 693.8834 696.1601 694.7608 

IW 0.1886 0.9166 5.3388 153.5393 311.0787 311.2431 315.7401 312.9416 

INH 0.1798 0.5652 3.3981 144.5465 293.0930 293.2574 297.7545 294.9560 

IGPW 0.1841 0.3082 1.8968 132.0617 270.1234 270.4568 277.1156 272.9179 

Data set 

II 

IE 0.2311 1.1139 6.6074 460.382 922.765 922.796 925.617 923.923 

IR 0.7502 2.3754 13.2264 774.342 1550.683 1550.715 1553.535 1551.842 

IW 0.1408 0.7443 4.5464 444.001 892.002 892.098 897.706 894.319 

INH 0.1636 0.3565 2.2844 431.059 866.118 866.214 871.822 868.436 

 IGPW 0.1364 0.3368 2.1713 426.910 859.819 860.013 868.375 863.296 
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7. Conclusion 

This paper introduces a new three-parameter distribution, called the inverse generalized 

power Weibull distribution. This distribution is considered as a reciprocal of the generalized 

power Weibull distribution and a generalization of inverse Weibull distribution. Some of the 

statistical properties of the inverted generalized power Weibull distribution, including the 

moments, hazard rate function, quantile function and order statistics are derived. The 

maximum likelihood method is used to estimate the model parameters. The performances of 

the maximum likelihood estimators are assessed in terms of mean squared errors using Monte 

Carlo simulation. The practical applications have established that the proposed distribution is 

quite useful for dealing with reliability data and behaves better than its four special cases 

(inverse Weibull, inverse exponential, inverse Rayleigh and inverse Nadarajah-Haghighi 

distributions). 
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