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Abstract 

In  this article, a new family of lifetime distributions by adding an additional parameter to 

the existing distributions is introduced. The new family is called, the extended alpha power 

transformed family of distributions. For the proposed family, explicit expressions for some 

mathematical properties along with estimation of parameters through Maximum likelihood 

Method are discussed. A special sub-model, called the extended alpha power transformed 

Weibull distribution is considered in detail. The proposed model is very flexible and can be 

used to model data with increasing, decreasing or bathtub shaped hazard rates. To access the 

behavior of the model parameters, a small simulation study has also been carried out. For the 

new family, some useful characterizations are also presented. Finally, the potentiality of the 

proposed method is showen via analyzing two real data sets taken from reliability engineering 

and bio-medical fields. 
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1.Introduction 

In modeling the lifetime data,  classical distributions are widely used in many applied 

areas such as engineering, medical sciences, actuarial, environmental studies, economics, 

finance, and insurance. In all of the above mentioned  fields, these distributions have been 

applied quite successfully. However, in many fields such as reliability engineering and 

medical fields these classical distributions do not provide the best fit when the data 

follow non-monotonic failure rates. Therefore, to model reliability engineering and bio-

medial data, there is a clear need for the generalized versions of these classical 

distributions. This interest, motivated the researchers to introduce new extensions of the 

exisitng distributions. These extended distributions provide more fexibility by 

introducing one "or more" additional parameters to the baseline model. In the recent 

advances in distribution theory, however, researchers have shown a deep interest in 

proposing new methods to expand family of lifetime distributions. This has been done 

through many different approaches via introducing new generators. Some of the well-

known generators are: Exponentiated family of Mudholkar and Sarivastava (1993), 

Marshal-Olkin generated family (MO-G) of Marshall and Olkin (1997), beta-G by 

Eugene et al. (2002),  gamma-G by Zografos and Balakrishanan (2009), Kumaraswamy-

G family of Cordeiro and de Castro (2011), McDonald-G (Mc-G) by Alexander et al. 

(2012), Kumaraswamy Marshal-Olkin family of  Alizadeh et al. (2013), exponentiated 

generalized-G by Cordeiro et al. (2013), Transformed-Transformer (T-X) by Alzaatreh et 

al. (2013), the exponentiated generalized class of Cordeiro et al. (2013), the 

exponentiated half-logistic family of Cordeiro et al. (2014), log-gamma-G by Amini et al. 

(2014), Lomax Generator of Cordeiro et al. (2014), Weibull-G family of Bourguignon et 

al. (2014), Kumaraswamy odd log logistic-G by Alizadeh et al. (2015), odd generalized 

exponential-G by Tahir et al. (2015). Logistic-X by Tahir et al. (2015), beta Marshal-

OLkin family by Alizadeh et al. (2015), a new neneralized class of distributions of 

Ahmad (2018). Mahdavi and Kundu (2017) proposed a new method for introducing 

statistical distributions via the cumulative distribution function (cdf) given by 
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Using (1), Mahdavi and Kundu (2017) and Dey et al. (2017) introduced the alpha 

power exponential (APE) and  alpha power transformedWeibull (APTW) distributions, 

respectively. 

Recently, Ahmad (2018) proposed a new family of life distributions, called the 

Zubair-G family whose cdf is given by 
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In this article, a new family of lifetime distributions, called the extended alpha power 

transformed (Ex-APT) family of distributions is introduced. The new family is defined by 

the cdf 
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where,  ;F x   is cdf of the baseline random variable depending on the vector parameter   

and  is an additional parameter. The probability density function (pdf), survival function 

(sf), hazard rate function (hrf), reverse hazard rate function (rhrf) and cumulative hazard 

rate function (chrf) of the Ex-APT family are given respectively, by 
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The new pdf is most tractable when  F x   and  f x   have simple analytical 

expressions. Henceforth, a random variable X with pdf (2) is denoted by

 ; ,Ex APX T x   . Furthermore, for the sake of simplicity, the dependence on the vector 

of the parameters is omitted and simply  G x =  ;G x   will be used. Moreover, the key 

motivations for using the Ex-APT family in practice are the following: 

 A very simple and convienent method of adding additional parameters to modify the 

existing distributions. 

 To improve the characteristics and flexibility of the existing distributions. 

 To introduce the extended version of the baseline distribution whose cdf, sf and hrf, 

have closed form. 

  To provide better fits than the competing modified models. 

The rest of this article is organized as follows. In section 2, a special sub-model of the 

proposed family is discussed. Some mathematical properties are obtained in section 3. 

Maximu likelihood estimates of the model parameters are obtained in section 4. A small 

simulation study is conducted in Section 5. Section 6 contains some useful 

characterizations of the proposed class. Section 7, is devoted to analyzing two real life 

applications. Finally, concluding remarks are provided in section 8. 

2. Sub-Model Description 

In this section, we define a special sub-model of the proposed family, called the 

extended alpha power transformed Weibull (Ex-APTW) distribution. Let  ;F x  be cdf of 

the Weibull distribution given by ( ; ) 1 ,      0,  , 0xF x e x
      , where  ,   . Then, 

the cdf of the Ex-APTW distribution has the following expression 
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The pdf, sf and hrf of the Ex-APTW distribution are given, respectively, by 
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For different values of the model parameters, plots of the pdf of the Ex-APTW 

distribution are sketched in Figure 1. 
 

 

 

 
 

Figure 1. Different plots for the pdf of the Ex-APTW distribution. 

For the selected values of parameters, some possible shapes for the hrf of the Ex-

APTW model are drawn in Figure 2.   
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Figure 2. Different plots for the hrf of the Ex-APTW distribution. 

3. Basic Mathematical Properties 

In this section, some statistical properties of the proposed family are derived. 

3.1. Quantile function 

Let X be the Ex-APTW random variable with pdf (4), the quantile function of X, say 

Q(u), is given by 
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where, u has the uniform distribution on the interval [0,1]. From the expression (12), it is 

clear that the proposed family does not have a closed form solution of its quantile 

function. Therefore, computer software can be used to obtain solution. 

3.2. Moments 

Moments are very important and play an essential role in statistical analysis, 

especially in the applications. It helps to capture the important features and characteristics 

of the distribution (e.g., central tendency, dispersion, skewness and kurtosis). The rth 

moment of the Ex-APT family of distributions is derived, using (4) in (12),  
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Furthermore, a general expression for moment generating function (mgf) of the Ex-

APT random variable X is  

    
 

1

, ,

, 0 0

log1
.

! ! ! !

i

r i r i

i i

r

r

r

x

t t
M

i
t

e r r i


 




 

 

 
 
 






       (14) 

3.3. Residual and Reverse Residual Life 

The residual life offer wider applications in reliability theory and risk management. 

The residual lifetime of X denoted by  t
R is derived as 
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Additionally, the reverse residual life of the Ex-APT random variable denoted by  t
R is  
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3.4. Order statistics 

Order statistics are among the essential tools in inferencial and non-parametric 

statistics. The applications of these statistics appear in the study of reliability and life 

testing. Let X1, X2, . . . , Xk be a random sample of size k taken from  the Ex-APT 

distribution with parameters and . Let X1:k, X2:k, . . . , Xk;k be the corresponding order 

statistics. Then, from David (1981), the density of :r kX for (r=1, 2, . . . , k) is given by 
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4. Estimation 

In this section, the estimation of the unknown parameters of the Ex-APT family via 

the method of maximum likelihood is discussed. Let x1, x2, . . . , xk be observed values of 

a random sample from Ex-APT family with parameters  and  . The log-likelihood 

function of this sample is 
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The partial derivatives of (18) are 
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 equal to zero and solving numerically these 

expressions simultaneously,  yields the maximum likelihood estimates of    . 

5. Simulation Study 

In order to assess the performances of the maximum likelihood parameters of the 

proposed distribution, a small simulation study is carried out. The process is carried out 

as follow: 

 The number of Monte Carlo replications was made 1000 times each with sample 

sizes n = 30, 50 and 100. 

 Initial values for the parameters are selected as given in Table 1. 

 Formulas used for calculating Bias and MSE are given by 𝐵𝑖𝑎𝑠(�̂�) =
1

1000
∑ (�̂� − 𝛼)1000
𝑖=1  and 𝑀𝑆𝐸(�̂�) =

1

1000
∑ (�̂� − 𝛼)21000
𝑖=1 , respectively. 

 Step (iii) is also repeated for the other parameters    . 

The empirical results are given in Table 1. 

Table 1: The parameter estimation from  the Ex-APTW distribution using MLE. 

 

Continued of Table (1) 

n Par Init MLE Bias MSE Init MLE Bias MSE 

   3 3.219 0.0132 0.0073 3 0.7711 0.0213 0.0165 

30   0.5 0.5151 0.0149 0.0079 0.5 0.5154 0.0152 0.0084 

 
 0.5 0.5331 0.0262 0.0181 0.5 0.5212 0.0231 0.0162 

   3 3.187 0.0071 0.0042 3 0.7584 0.0112 0.0084 

50   0.5 0.5078 0.0080 0.0052 0.5 0.5075 0.0078 0.0048 

 
 0.5 0.5213 0.0243 0.0106 0.5 0.5092 0.0109 0.0087 

   3 3.087 0.0030 0.0021 3 0.7593 0.0097 0.0039 

100   0.5 0.5021 0.0029 0.0037 0.5 0.5070 0.0071 0.0025 

 
 0.5 0.5187 0.0136 0.0053 0.5 0.5040 0.0097 0.0044 

n Par Init MLE Bias MSE Init MLE Bias MSE 

   3.5 3.5489 0.0485 0.0669 3.5 1.5589 0.0586 0.1212 

30   0.5 0.5183 0.0185 0.0089 1.5 1.5083 0.0088 0.0206 

 
 0.5 0.5736 0.0769 0.0411 0.5 0.5120 0.0126 0.0147 

   3.5 3.5272 0.0273 0.0437 3.5 1.5221 0.0222 0.0615 

50   0.5 0.5109 0.0106 0.0056 1.5 1.4996 0.0065 0.0109 

 
 0.5 0.5674 0.0675 0.0243 0.5 0.5039 0.0039 0.0081 

   3.5 3.5174 0.0172 0.0181 3.5 1.5166 0.0169 0.0293 
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6. Characterizations of Ex-APT Distribution 

This section is devoted to various characterizations of Ex-APT distribution. These 

characterizations are based on: (i) a simple relationship between two truncated moments; 

(ii) the hazard function and (ii) the reverse (or reversed) hazard function. It should be 

mentioned that for characterization (i) the cdf may not have a closed form. We present 

our characterizations (i) (iii) in three subsections. 

6.1. Characterizations based on two truncated moments 

In this subsection we characterize Ex-APT distribution in terms of the ratio of two 

truncated moments. This characterization result employs a theorem due to Glänzel (1987); 

see Theorem 1 in Appendix A. Note that the result holds also when the interval H is not 

closed. As shown in Glänzel (1990), this characterization is stable in the sense of weak 

convergence. 

Proposition 6.1. Let X:   be a continuous random variable and let
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
 

and finally 

          1 2 1

1
; 1 ; 0,       for    .

2
x h x h x h x F x x        

Conversely, if  x  is given as above, then 

 
   

     

 

 

/

1/

1 2

;
,      ,

1 ;

x h x f x
s x x

x h x h x F x

 

 
  

 
 

and hence 

    log 1 ; ,      ,s x F x x     

Now, in view of Theorem 1, X has density (4). 

100   0.5 0.5063 0.0057 0.0028 1.5 1.5021 0.0029 0.0059 

   0.5 0.5527 0.0530 0.0239 0.5 0.4924 0.0031 0.0032 
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Corollary 6.1. Let X:  be a continuous random variable and let  h x  be as in 

Proposition 6.1. Then, X has pdf (4) if and only if there exist functions  x  and  x

defined in Theorem 1 satisfying the differential equation 

   

     

 

 

/

1

1 2

;
,          .

1 ;

x h x f x
x

x h x h x F x

 

 
 

 
 

The general solution of the differential equation in Corollary 6.1 is 

          
1 1

1 21 ; ; ; ; ,x F x f x h x h x D    
      

   

where D is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 6.1 with D=1/2: However, it should be also noted that 

there are other triplets       1 2, ,h x h x x satisfying the conditions of Theorem 1. 

6.2. Characterization based on hazard function 

 It is known that the hazard function,  Fh x , of a twice differentiable distribution 

function,  F x  , satisfies the  first order differential equation  

 

 

 

 
 

/ /

.
F

F

F

f x h x
h x

f x h x
   

For many univariate continuous distributions, this is the only characterization 

available in terms of the hazard function. The following characterization establish a non-

trivial characterization of Ex-APT, in terms of the hazard function, which is not of the 

above trivial form. 

Proposition 6.2. Let X: be a continuous random variable. The random variable X 

has pdf (4) if and only if its hazard function  Fh x satisfies the following differential 

equation 

 
 

 
 

              
    

; ;2/

/

2
; ;

log ; 2 log 2 log;
; ,   ,

;

F x F x

F F
F x F x

f x ef x
h x h x x

f x e e

 

 

     


  

  
  

  

 

with boundary condition  
 

 
log 1

lim lim ; .x F xh x f x
e





 





 

Proof. If X has pdf (4), then clearly the above differential equation holds. Now, if the 

differential equation holds, then 

    
      

    

; ;

1

2
; ;

log
; ; ,   ,

F x F x

F
F x F x

ed d
f x h x x

dx dx e e

 

 

 
 

 




 

  

 

or 

 
        

   

; ;

; ;

; log
; ,

F x F x

F F x F x

f x e
h x

e e

 

 

  


 




  
 

which is the hazard function of the Ex-APT distribution. 

6.3. Characterization in terms of the reverse hazard function 

The reverse hazard function,  Fr x , of a twice differentiable distribution function,  F x , 

is defined  

 
 

 
 ,        support of .F

f x
r x x F x

F x
   
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Proposition 6.3. Let X:  be a continuous random variable. The pdf of X is (4) if 

and only if its reverse hazard function  Fr x  satisfies the differential equation 

 
 

 
 

      
 

    

2 2 ;/

/

2
; ;

1 log ;;
; ; ,   ,

;

F x

F F
F x F x

f x ef x
r x r x x

f x e



 

  
 

 


   


 

with boundary condition  
 

 
log

lim lim ; .x F x

e
r x f x

e





 

 
  

 
 

Proof. Is similar to that of Proposition 6.2. 

7. Applications 

In the this section, we provide two applications of the proposed mode to the real data sets. We compare 

the fits of the proposed distribution to those of the three-parameter exponentiated Weibull of Mudholkar 

and Sarivastava (1993), Marshall-Olkin Weibull (MOW) of Marshall and Olkin (1997) and beta 

distribution of Fayomi et al. (2007). The goodness-of-fit measures such as Anderson-Darling (AD) statistic, 

Cramer–von Mises (CM), Kolmogorov-Smirnov (KS) and the corresponding p-value are considered to 

compare the proposed method with the fitted models. In general, a model with smaller values of these 

analytical measure and high p-value indicate better fit to the data. All the required computations have been 

carried out in the R-language using “BFGS” algorithm. 

Data 1: The first data set representing the remission times (in months) of a random sample of 128 

bladder cancer patients taken from Lee and Wang (2003). The data are listed as: 0.08, 0.20, 0.40, 0.50, 0.51, 

0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 

2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23 , 

4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 

5.85, 6.25, 6.54, 6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 

8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 

12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 

18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05. 

Coressonpong to data 1, the maximum likelihood estimates of the fitted models are provided in Table 2. 

While, the goodness of fit measure are given in Table 3. 

Table 2. Maximum likelihood estimates of the fitted distributions using data 1. 

 

Table 3. The statistics of the fitted models using data 1. 

 

Dist. ̂  ̂  ̂  ̂  

Ex-APTW 2.933 2.645 0.510  

MOW 11.829  0.564 0.877 

EW 4.332  0.541 0.720 

BW 3.196 1.143 0.609 0.486 

Dist. KS CM AD P-value 

Ex-APTW 0.034 0.022 0.144 0.978 

MOW 0.075 0.150 0.884 0.451 

EW 0.046 0.046 0.324 0.940 

BW 0.945 1.592 1.576 2.2e-16 
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From the results given in Table 3, it is clear that the proposed model provide best fit 

to the data. Furthermore, for data 1, the estimated pdf and cdf are skected in Figure 3, 

while, the Kaplan-Meier survival and pp-plots are provided in Figure 4. These Figures 

show that the proposed model fit the data very closely. 
 

 

 

 

 

 

Figure 3. Plots of the estimated pdf and cdf of the Ex-APTW distribution for data 1. 

 

 

 

 

 

Figure 4. PP and Kaplan-Meir survival plots of the Ex-APTW distribution for data 1. 

Data 2: The second data set representing the time between failures for 30 repairable 

items taken from Murthy et al. (2004). The data are given as: 1.43, 0.11, 0.71, 0.77, 2.63, 
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1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 

0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17. The maximum likelihood estimates 

and the considered statistics are provided in Tables 4 and 5, respectively. Corresponding 

to data 2, the estimated pdf and cdf of the proposed model are ploted in Figure 5, while, 

the Kaplan-Meier survival and pp-plots are presented in Figure 6. These figures show that 

how the proposed model fit the data closely. 

Table 4.  Maximum likelihood estimates of the fitted distributions using data 2. 

 

Table 5. The statistics of the fitted models using data 2. 

  

 

 

 

 

 

 

Figure 5. Plots of the estimated pdf and cdf of the Ex-APTW distribution corresponding to data 2. 

 

  

Dist. ̂  ̂  ̂  ̂  

Ex-APTW 2.907 1.364 0.726  

MOW 0.336  1.807 0.200 

EW 1.950  0.937 1.040 

BW 1.810 0.433 1.120 1.758 

Dist. KS CM AD P-value 

Ex-APTW 0.073 0.016 0.117 0.997 

MOW 0.075 0.022 0.151 0.915 

EW 0.083 0.027 0.165 0.899 

BW 0.633 0.955 5.367 7.063e-11 
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Figure 6. PP and Kaplan-Meir survival plots of the Ex-APTW distribution corresponding to data 2. 

8.Conclusions 

In this article, a new method is adopted to extend the existing distributions. This 

effort leads to a new family of lifetime distributions, called the extended alpha power 

transformed family of distributions.  General expressions for some of the mathematical 

properties of the new family are investigated. Maximum likelihood estimates are also 

obtained. There are certain advantages of using the proposed method like its cdf has a 

closed form and facilitating data modeling with monotonic and non-monotonic failure 

rates. A special sub-model of the new family, called the extended alpha power 

transformed Weibull distribution is considered and two real applications are analyzed. In 

simulation study, the consistency and proficiency of the maximum likelihood estimators 

of the proposed model are also illustrated. The practical applications of the proposed 

model reveal better fit to real-life data than the other well-known competitors. It is hoped, 

that the proposed method will attract wider applications from reliability engineering and 

bio-medical analysis. 
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Appendix A 

Theorem 1. Let ( , Ƒ, P) be a given probability space and let H=[d,e] be an interval 

for some d e  might as well b,  e allow edd e   . Let X: H be a continuous 

https://doi.org/10.1080/02331888.2011.568119
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random variable with the distribution function  F x  and let  1h x  and  2h x  be two real 

functions defined on H such that 

       2 1/ / ,                    ,E h X X x E h X X x x x H     

is defined with some real function  x . Assume that

         1 2

1 2, ,  h x h x C H x C x  and  F x is twice continuously differentiable and 

strictly monotone function on the set H. Finally, assume that the equation 

     1 2x h x h x  has no real solution in the interior of H. Then  F x is uniquely 

determined by the functions    1 2,  h x h x and  x particularly 

 
 

     
  

/

1 2

 exp ,

x

a

u
F x C s u du

u q u q u




 

  

where the function  s u  is a solution of the differential equation

 
   

     

/

1/

1 2

u h u
s u

u h u h u







and C is the normalization constant, such that 1.

H

dF   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


