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ABSTRACT 

An exponentiated Weibull-geometric distribution is defined and studied. A 

new count data regression model, based on the exponentiated Weibull-geometric 

distribution, is also defined. The regression model can be applied to fit an under-

dispersed or an over-dispersed count data. The exponentiated Weibull-geometric 

regression model is fitted to two numerical data sets. The new model provided a 

better fit than the fit from its competitors. 
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1. Introduction 

 Many techniques for generating families of discrete distributions have been developed 

in the literature. See for examples the books by Balakrishnan and Nevzorov (2003), Johnson 

et al. (2005), Consul and Famoye (2006), and the references therein. These discrete 

distributions are found useful in many different areas of life. Frome et al. (1973) considered 

the Poisson distribution in the context of non-linear regression analysis for count data where 

the sample mean and sample variance are about equal. When the sample mean and sample 

variance are about equal, we have an equi-dispersion situation. When the sample mean is 

smaller (or greater) than the sample variance, we have over-dispersion (or under-dispersion) 

situation. 

 Many researchers obtained discrete distributions by discretizing continuous 

distributions. Nekoukhou and Bidram (2015) gave a long list of these works. Another method 

to generalize an existing distribution is by adding parameters to the distribution to form an 

exponentiated family (Lee et al., 2013 and the references therein). By exponentiating the 

cumulative distribution function of discrete Weibull distribution (Nakagawa and Osaki, 1975), 

Nekoukhou and Bidram (2015) defined the exponentiated discrete Weibull distribution. 

 Mahmoudi and Shiran (2012) defined an exponentiated Weibull-geometric distribution 

by compounding the exponentiated Weibull and geometric distribution to form a continuous 

distribution. In this paper, we define an exponentiated Weibull-geometric distribution by using 

the T-R framework proposed by Alzaatreh et al. (2013) and recently used by Hamed et al. 

(2018). This new distribution is a discrete distribution and it is the discrete analogue of the 

continuous exponentiated Weibull distribution. This is like calling the geometric distribution 

a discrete analogue of the exponential distribution. 

 Alzaatreh et al. (2013) introduced a general method for generating a probability 

distribution. Suppose we have a probability density function (PDF), ( )Tf t , of a continuous 

random variable [ , ],  T a b a b     and a monotonic and absolutely continuous 

function  ( )RW F y  of the cumulative distribution function (CDF) ( )RF y  for any random 

variable R. The CDF ( )YF y  of a new random variable Y is given by  

 
 

[ ( )]

( ) ( ) [ ( )] .
RW F y

Y T T R
a

F y f t dt F W F y   
 (1.1) 

The distribution in (1.1) belongs to the T-R family. Many continuous distributions have 

been defined and studied by using the result in (1.1). In particular, Alzaatreh et al. (2012) 

defined the T-geometric family. This family consists of the discrete analogue to the 

distribution of the non-negative continuous random variable T. Furthermore, the authors 

defined and studied the exponentiated-exponential geometric distribution (EEGD). The 

EEGD with one shape parameter provided excellent fits to many count data sets. This 

observation motivated the definition and study of EWGD. The EWGD, characterized by two 

shape parameters is a generalization of EEGD and the geometric distribution. 

 In this article, an exponentiated Weibull-geometric distribution (EWGD) is defined and 

studied. The paper is organized as follows: In Section 2, the definition and some properties of 

EWGD are given. In Section 3, estimation of the parameters is considered along with some 

test and goodness-of-fit statistics for EWGD. An exponentiated Weibull-geometric regression 

(EWGR) model to fit a count response variable that follows the EWGD is defined in Section 
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4. A zero-inflated EWGR is also given in Section 4. In Section 5, the EWGR model is applied 

to two real life data sets and the results are compared with other count data regression models. 

Some concluding remarks are provided in Section 6. 

 

2. Definition and some properties of EWGD 

 The Weibull CDF is given by 1 exp[ ( / ) ]ct    and the exponentiated Weibull CDF is 

given as 
( / )( ) 1

c a
t

TF t e   
 

, for t > 0 and , c > 0. The CDF of geometric distribution with 

probability p of success is 
1( ) 1 y

RF y q    for y = 0, 1, 2, … and 0 < q = 1 – p < 1. By using 

equation (1.1), the CDF of the exponentiated Weibull-geometric distribution (EWGD) is given 

by ( ) ( [ ( )]),Y T RF y F W F y  where 
1[ ( )] ln[1 ( )] ln[ ] ( 1)ln( ).y

R RW F y F y q y q         

Hence, 

    ( 1)( ) { ln( )[ 1]} 1 exp[ ( ln ) / ( 1) ] 1
ca a

c c y

Y TF y F q y q y           
, 

where c > 0, a > 0, and  0 exp[ ( ln ) / ] 1
c

q      . Therefore, the CDF of EWGD is 

given by 

  ( 1)( ) 1
c a

y

YF y    , for y = 0, 1, 2, 3, … 
 

(2.1) 
The corresponding probability mass function (PMF) for EWGD is given as 

 ( 1)( ) ( ) ( ) ( 1) 1 1 ,
c ca a

y y

Y Y Yf y f y F y F y            
   

 

for y = 0, 1,2,…         

 
(2.2) 

  

Observe that (0) (0) (1 )a

Yf F    . The EWGD in (2.1) is the same as the exponentiated 

discrete Weibull distribution (Nekoukhou and Bidram, 2015). The two distributions are 

derived through different methods. In this paper, different properties and applications to count 

data modeling are emphasized. 

 When c = 1, EWGD reduces to the exponentiated exponential-geometric distribution 

(EEGD) defined and studied by Alzaatreh et al. (2012). When c = a = 1, the EWGD reduces 

to the geometric distribution with parameter . When a = 1, the EWGD reduces to the discrete 

Weibull distribution defined and studied by Nakagawa and Osaki (1975). When a = 1 and c = 

2, the EWGD reduces to the discrete Rayleigh distribution defined by Roy (2004).  

 

Transformations: 

 The following propositions show the relationships between EWGD and some 

continuous distributions. These relationships can be used to simulate random variates from 

the EWGD. 

Proposition 1: If U is a uniform (0, 1) random variable, then  
1/

1/log (1 )
c

aY u
  
  

, 

where [v] is the largest integer less than or equal to v, follows an EWGD with parameters a, 

c, and . 

Proof: 
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   1/ 1/ 1/ 1/( ) [{log (1 )} ] {log (1 )} 1a c a cP Y y P U y P y U y         
 

=      ( 1) ( 1)(1 ) (1 ) 1 1
c c c ca a

y a y a y yP U            , on simplification. 

Hence, Y follows the EWGD in Equation (2.2).  

 

By using the technique in the proof of Proposition 1, the following propositions can be 

proved. 

Proposition 2: If V follows a standard exponential distribution, then the random variable 

  
1/

1/log 1 (1 )
c

v aY e

   
  

 follows an EWGD with parameters a, c, and . 

Proposition 3: Let V be an exponentiated exponential random variable with CDF 

( ) (1 )v dF v e  , then   
1/

/log 1 (1 )
c

v d aY e

   
  

 follows an EWGD with parameters 

g(=d/a), c, and . 

Proposition 4: Let V be a standard Pareto random variable with CDF 
1( ) 1F v v  , then 

  
1/

1 1/log 1 (1 )
c

aY v

   
  

 follows an EWGD with parameters a, c, and . 

Proposition 5: Let V be a Gumbel random variable with CDF ( ) exp( )vF v e  , then 

  
1/

1log 1 exp( )
c

vY a e

    
  

 follows an EWGD with parameters a, c, and . 

Proposition 6: Let V be a Fréchet random variable with CDF 
1/( ) exp( )vF v e  , then 

  
1/

1 1/log 1 exp( )
c

vY a e

    
  

 follows an EWGD with parameters a, c, and . 

 

Quantile Function: 

 By using Proposition 1, the quantile function of EWGD is 𝑦 = 𝑄𝑌(𝑢) = [{𝑙𝑜𝑔𝜃(1 −

𝑢1/𝑎)}1/𝑐], where [v] is the largest integer less than or equal to v. This result can be used to 

simulate a random sample from EWGD. In order to do this, simulate random variate u from 

the uniform (0, 1) and compute ( )YQ u  to obtain a random variate y from the EWGD. 

 The exponentiated Weibull distribution with the PDF 

 
1

1 ( / ) ( / )( ) ( / ) / 1 ,
c c a

c t tg t ac t e e  


    
 

 

is monotonically decreasing for all values of , c < 1 and a < 1. Hence, the exponentiated 

Weibull-geometric distribution is monotonically decreasing for all values of c < 1 and a < 1. 

This result is based on Lemma 2 of Alzaatreh et al. (2012) for any T-geometric distribution. 

Note that there are other values of the parameters c and a for which the EWGD is 

monotonically decreasing even though the distribution of T is not monotonically decreasing. 

The hazard function of EWGD is given by 
( 1)

( 1)

( ) (1 ) (1 )
( )

1 ( ) 1 (1 )

c c

c

y a y a

Y

y a
Y

f y
h y

F y

 







  
 

  
. 

Nekoukhou and Bidram (2015) illustrated the hazard rate function of EWGD for different 

values of the parameters a, c and  . They noted that the hazard rate function could be 

decreasing, increasing, bathtub-shaped, and upside-down bathtub. This shows that the EWGD, 

characterized by two shape parameters, is more flexible than many other discrete distributions. 
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By using Theorem 2 in Alzaatreh et al. (2012), if the distribution of T (i.e., exponentiated 

Weibull distribution) is unimodal, so also is the distribution of the T-geometric distribution. 

Nassar and Eissa (2003) showed that the exponentiated Weibull distribution is unimodal. 

Hence, the EWGD is unimodal. 

 

Moments and dispersion: 

The moments and the moment generating function cannot be expressed in closed forms. 

However, the rth central moments can be computed numerically by evaluating 

( )r

r E X   , where 0 ( )x xP X x 

   . The summation is evaluated when the 

probability 1 ( )P X x   is at most 1.0E–10. The mean, variance, skewness and kurtosis are 

computed for some parameter values. We consider the values a = 0.2(0.1)10.0, c = 

0.5(0.1)10.0, and  = 0.1(0.1)0.9. From this computation, we observe the following patterns 

between the mean, variance, skewness, kurtosis and the parameters: When both a and c are 

fixed, the mean and variance are increasing functions of  and there is no observed pattern for 

skewness and kurtosis. For fixed a and , the mean, variance, skewness and kurtosis are 

decreasing functions of c. When c and  are fixed, the mean is an increasing function of a and 

there is no observed pattern for the variance, skewness and kurtosis. A small portion of these 

values are presented in Table 1. 

When 2a   and 1c  , the EWGD is over-dispersed. For all other values of a and c, the 

distribution is either under-dispersed, equi-dispersed or over-dispersed. 

 

Table 1: Moments of EWGD for some parameter values 

 

c

 

a 

  = 0.2 

    2 sk 

 ku 

  = 0.4 

    2 sk  ku 

  = 0.6 

    2 sk 

 ku 

0.5

 

0.5 

 

1.0 

 

1.5 

 

2.0 

 

2.5 

 

3.0 

 0.27 1.43 10.09 191.2

3 

 0.52 2.70 7.29 102.4

0 

 0.75 3.84 6.08 72.94 

 0.97 4.87 5.38 58.32 

 1.18 5.80 4.92 49.62 

 1.38 6.64 4.59 43.87 

 1.07 15.02 9.21 164.02 

 2.04 27.72 6.78 91.06 

 2.92 38.66 5.75 66.80 

 3.72 48.25 5.16 54.69 

 4.46 56.77 4.77 47.42 

 5.14 64.45 4.50 42.55 

 3.88 160.29 8.95 

156.22 

 7.26 292.35 6.65 88

.37 

10.25 404.67 5.68 65

.62 

12.93 502.59 5.12 54

.15 

15.37 589.62 4.76 47

.17 

17.60 668.15 4.49 42

.45 

1.0

 

0.5 

 

1.0 

 

1.5 

 

2.0 

 

2.5 

 0.13 0.18 3.97 23.31 

 0.25 0.31 2.68 12.20 

 0.36 0.42 2.10 8.65 

 0.46 0.49 1.75 6.99 

 0.55 0.55 1.51 6.08 

 0.63 0.60 1.34 5.56 

 0.36 0.69 3.22 17.19 

 0.67 1.11 2.21 9.90 

 0.92 1.38 1.79 7.72 

 1.14 1.54 1.56 6.79 

 1.33 1.65 1.43 6.33 

 1.50 1.71 1.35 6.09 

 0.85 2.47 2.90 14

.85 

 1.50 3.75 2.07 9.

27 

 2.02 4.45 1.74 7.

65 

 2.44 4.86 1.58 6.

96 

 2.79 5.13 1.48 6.

59 
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3.0 

 3.09 5.31 1.43 6.

36 

1.5

 

0.5 

 

1.0 

 

1.5 

 

2.0 

 

2.5 

 

3.0 

 0.11 0.11 2.94 11.38 

 0.21 0.19 1.83 5.50 

 0.30 0.24 1.29 3.68 

 0.38 0.28 0.95 2.89 

 0.45 0.30 0.70 2.52 

 0.52 0.32 0.50 2.38 

 0.27 0.29 2.11 7.66 

 0.48 0.44 1.25 4.34 

 0.66 0.50 0.87 3.56 

 0.80 0.52 0.66 3.40 

 0.92 0.52 0.55 3.46 

 1.02 0.51 0.50 3.60 

 0.54 0.71 1.78 6.

50 

 0.93 0.95 1.10 4.

28 

 1.21 1.02 0.84 3.

87 

 1.43 1.02 0.74 3.

81 

 1.61 1.00 0.70 3.

82 

 1.75 0.98 0.69 3.

82 

1.75

 

0.5 

 

1.0 

 

1.5 

 

2.0 

 

2.5 

 

3.0 

 0.11 0.10 2.74 9.34 

 0.20 0.17 1.65 4.31 

 0.29 0.22 1.12 2.76 

 0.37 0.25 0.76 2.10 

 0.44 0.27 0.49 1.80 

 0.50 0.28 0.27 1.70 

 0.25 0.24 1.84 5.89 

 0.45 0.35 0.99 3.30 

 0.61 0.39 0.59 2.80 

 0.73 0.39 0.36 2.85 

 0.84 0.38 0.24 3.10 

 0.92 0.36 0.20 3.41 

 0.48 0.51 1.49 5.

01 

 0.81 0.65 0.82 3.

42 

 1.05 0.67 0.57 3.

29 

 1.23 0.65 0.49 3.

38 

 1.37 0.62 0.48 3.

45 

 1.48 0.60 0.50 3.

46 

 

3. Statistical Inference 

We consider parameter estimation, test of hypothesis and goodness-of-fit tests. In Sub-

section 3.1, we address the maximum likelihood estimation of the three parameters of EWGD. 

In Sub-section 3.2, we compare the EWGD with its sub-models and briefly describe some 

goodness-of-fit statistics. 

 

3.1 Maximum likelihood estimation 

Suppose a random sample 1 2, , , nY Y Y  of size n is taken from the EWGD. The log-

likelihood function of the EWGD in Equation (2.2) is given by 

 
 ( 1)

1

log ( , , ) log [1 ] [1 ] .
c c

i i

n
y ya a

i

L a c   



    l  
 

(3.1) 

The partial derivatives of Equation (3.1) with respect to a, c, and  give the likelihood 

equations. The maximum likelihood estimates ĉ , â , and ̂  of the parameters are obtained by 

using PROC NLMIXED in SAS to maximize the log-likelihood function in Equation (3.1). 

 When a = c = 1, the EWGD reduces to the geometric distribution. We consider the data 

to be from geometric distribution and use the moment estimate of the geometric distribution 

to obtain the initial estimate of . Thus, the initial estimate of  is given by equating the sample 

mean from the data to the geometric population mean. This is given as / (1 ) y     . On 

solving for , we obtain 0 / (1 )y y   . Hence, one set of initial estimates will be a = c = 1 
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and 0 . We can use the zero frequency from the EWGD to find the initial estimate for parameter 

a. We solve equation (1 )a

of    for a to obtain 0 0 0ln / ln(1 )a f   , where 0f  is the zero 

frequency from the sample. In order to find the initial estimate for the parameter c, we equate 

the first frequency from the sample to the population probability of Y = 1. This leads to solving 

the equation 
2

1 0(1 )
c af f   . On solving the equation, the initial estimate of c is given by 

 01/

0 0 1 0ln ln[1 ( ) ] / (ln ) / ln(2)
a

c f f    . These second initial estimates are based on the 

assumption that both 0f  and 1f  are non-zero. 

 

3.2 Tests and goodness-of-fit statistics 

 The EWGD reduces to EEGD when c = 1. To compare the EWGD with EEGD, we 

test the hypothesis 0 : 1H c   against 1 : 1H c  . The null hypothesis can be tested by using the 

t-statistic ?( 1) / ( )t c se c  , where ˆ( )se c  is the standard error of ĉ . By using the asymptotic 

normality of the maximum likelihood estimate (MLE), the statistic has an approximate normal 

distribution. 

 The EWGD reduces to the geometric distribution when a = c = 1. Thus, we test 

0 : 1H c a   against 1 0:  is falseH H . We use the likelihood ratio test. We define 0 ( )L  , the 

likelihood statistic when a = c = 1 and 1
ˆ?( , , )L c a   is the likelihood statistic when 0H  is false. 

The test statistic is defined as 0 1
? ?( ) / ( , , )L L c a    and 2log( )  is approximately chi-

squared with 2 degrees of freedom. 

 The goodness-of-fit statistic can be based on the Akaike Information criterion (AIC), 

the Bayesian Information criterion (BIC), the Pearson chi-square statistic with its p-value and 

the ranked probability score (RPS). The AIC and the BIC are respectively defined as 

AIC 2log( ) 2L p    and BIC 2log( ) log( )L p n   , where n is the sample size, p is the 

number of estimated parameters and L is the likelihood statistic. The smaller the AIC (or BIC), 

the better the model. The chi-square statistic is given by 
2 2

1

1

( ) /
k

k p i i i

i

O E E  



  , where iO  

is the observed frequency in cell i, iE  is the expected frequency in cell i and k is the total 

number of cells. The degree of freedom for the chi-square distribution is k – p – 1. 

 The ranked probability score (RPS) is defined by Weigel et al. (2006) as a statistic that 

measures the discrepancy between the theoretical CDF and empirical CDF. It is given by 
2

1 1 1

RPS
k m m

i i

m i i

e o
  

 
  

 
   , 

where ie  is the theoretical probability and io  is the empirical proportion in category i. The 

smaller the measure, the better the model. 

 

4. Count data regression 
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 Suppose that Y is a count response variable that follows the EWGD in Equation (2.2) 

and Y is associated with a set of predictors. We wish to fit the response variable Y by using 

the predictors. Suppose we have a k – 1 row vector of predictors 0 1 2 ,( 1)( 1, , , , )i i i i i kx x x x x   K . 

In count data modeling, it is common to model the mean by a log-linear relationship. The 

mean of EWGD is not in closed form, but it is a function of parameter  . We assume that the 

parameter   of EWGD is a function of ix  given by ( ) ( , )i i ix f x    , where 

0 ( , ) 1if x    is a known function of ix  and a k-dimensional column vector 

0 1 2 1( , , , , )k       of regression parameters. Since 0 1  , we take ( , )if x   to be the 

logit function 

 ( ) ( , ) / (1 ).i ix x

i i ix f x e e
        (4.1) 

This leads to the exponentiated Weibull-geometric regression (EWGR) model given by 

 ( 1)
( | ) ( ) 1 1

c c
i i

a a
y y

i i i i iP Y y x y          
   

, iy  = 0, 1, 2, …, 
 

(4.2) 

where ( )i ix   is given in Equation (4.1). The estimation of the parameters can be carried 

out by using the maximum likelihood estimation method. The log-likelihood function is given 

by 

 ( 1)

*

1

log ( , , | ) log [1 ] [1 ] .
c c

i i

n
y ya a

i i i

i

L a c x  



    l  

 A count data may have an inflated number of k value in the data. The most common k 

value is the zero which leads to zero-inflated regression model. Similarly, the count data may 

not have a zero count and this leads to zero-truncated regression model. In this section, we 

will define a zero-inflated regression model for the EWGR model. A zero-inflated EWGR 

(ZIEWGR) model is a mixture model with the probability mass function 

(1 ) ( ), 0
( | , )

(1 ) ( ), 1,2,3, ,

i i i i

i i i

i i i

y y
P Y y x z

y y

  

 

  
  

   

where ( )iy  is the EWGR model given in Equation (4.2) and 0 < i  < 1. The probability 

i  may be taken as a nuisance parameter when the data set is small or a function of predictors 

when the sample size is large. If i  is a function of predictors 0 1 2 ,( 1)( 1, , , , )i i i i i rz z z z z   , 

then i  can be defined as exp( ) / [1 exp( )]i i iz z    , where   is an r-dimensional column 

vector 0 1 2 1( , , , , )r       of parameters. In general, iz  may be a subset of ix  or different 

from ix . 

 

5. Applications 

 In this section, we apply the generalized Poisson regression (GPR) model defined by 

Famoye (1993), the exponentiated exponential geometric regression (EEGR) model defined 

by Famoye and Lee (2017) and the EWGR model to two count data sets. These two models 
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are chosen because both can be over- or under-dispersed. Because the data sets have high 

proportion of zero, the zero-inflated versions of the models were also applied and the results 

are compared. Kamalja and Wagh (2018) pointed out that ignoring the zero-inflated nature of 

a data set can result in an underestimation of the parameters, which may lead to insignificant 

findings. 

 

5.1 Health Care Data 

Cameron et al. (1988) used the data from 1977-78 Australian Health Survey to analyze 

various measures of health-care utilization. The data can be obtained from the Journal of 

Applied Econometrics 1997 Data Archive. Many authors, including Mullahy (1997) and 

Cameron and Johansson (1997), fitted the data to univariate regression models. A detailed 

description of the predictor variables can be found in Gurmu and Elder (2000). Summary 

statistics for the predictor variables were provided in Cameron et al. (1988). 

We model the response variable y, the total number of non-prescribed medications used in 

the past two days. The complete data set has six response variables. All the six variables were 

adequately fitted by the EWGR and ZIEWGR models. The SAS NLMIXED procedure was 

used to fit the regression models to the response variables. There is an adequate fit when the 

optimization program converged and the gradient for each of the parameter estimates is less 

than 1.0E-6. When we considered GPR and EEGR and their inflated models, these two models 

adequately fitted the response variable y and one other response variable (the number of 

admissions to a hospital, psychiatric hospital, nursing or convalescent home in the past 12 

months). The results from this other response variable is similar to the variable y reported in 

Table 2. The response variable y ranges from 0 to 8 with a mean of 0.3557 and a standard 

deviation of 0.507. The variable is over-dispersed and it is highly skewed to the right with 

skewness of 3.05 and kurtosis of 15.11. 

The results of fitting ZIEEGR and ZIEWGR are presented in Table 2. For all models (that 

of ZIGPR is not provided in the table), the predictors sex, age and illness are positively 

associated with total number of non-prescribed medications used. However, the predictor 

freerepa is negatively associated with the response variable. The dispersion parameter a in 

both ZIGPR and ZIEEGR are significantly different from 1. In the ZIEWGR model, the 

dispersion parameter c is significantly different from 1 but the parameter a is not significantly 

different from 1. The ZIEEGR is nested within the ZIEWGR model. Thus, we can compare 

ZIEWGR with ZIEEGR by testing if the parameter c = 1 under a null hypothesis. Since the 

null hypothesis is rejected, one should use the ZIEWGR to model the data. The log-likelihood 

statistics for ZIEEGR and ZIEWGR models in Table 2 support the assertion. The AIC, BIC 

and RPS for ZIGPR model are respectively 7863.1, 8040.1 and 5.7E-5. By using these 

statistics, we notice that ZIEWGR provided the best fit among all the three models. 

The log-likelihood statistics for the GPR, EEGR and EWGR models are respectively -

3930.16, -3929.87, and -3918.31. In comparing these values with the corresponding ones for 

the zero-inflated models, we observe that the zero-inflated models performed better than the 

non-inflated (ordinary) models. The ordinary models are all nested within the zero-inflated 

models. The likelihood ratio statistics for testing if all the parameters of the zero-inflation part 

are all zeros are rejected at 5% level for all models. 

 
Table 2. Parameter estimates (standard errors in parentheses) for health-care data (n = 5190). 
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Variable x/z 

ZIEEGR 

 𝛽 𝛿 

ZIEWGR 

 𝛽 𝛿 

Constant 

Sex 

Age 

Agesq 

Income 

Levyplus 

Freepoor 

Freerepa 

Illness 

Actdays 

Hscore 

Chcond1 

Chcond2 

â  

ĉ  

 -2.3555 (0.226)* 0.0916 (1.495) 

 0.1935 (0.066)* -0.7508 (0.480) 

 4.9383 (1.211)* 0.5814 (9.637) 

 -6.1885 (1.351)* -1.9508 (11.07) 

 0.1181 (0.100) 0.0878 (0.778) 

 -0.0556 (0.076) -0.1172 (0.481) 

 -0.0390 (0.161) -0.1319 (1.198) 

 -0.2756 (0.116)* 0.6015 (0.861) 

 0.1478 (0.027)* -3.3287 (1.351)* 

 0.0075 (0.010) 0.2838 (0.156) 

 0.0203 (0.013) -1.1435 (1.313) 

 0.1063 (0.070) -0.3559 (0.548) 

 -0.0556 (0.100) -1.1609 (1.502) 

 1.3611 (0.090)* 

  

-4.4433 (0.740)* -0.5237 (1.872) 

 0.1926 (0.060)* -0.9426 (0.515) 

 5.2423 (1.126)* 9.2446 (11.42) 

 -6.6473 (1.267)* -13.6344 (13.99) 

 0.0208 (0.090) -0.7611 (0.706) 

 -0.0796 (0.069) -0.4022 (0.484) 

 -0.1433 (0.148) -1.4247 (1.657) 

 -0.2872 (0.107)* 0.7172 (1.063) 

 0.1622 (0.022)* -17.0050 (31.47) 

 -0.0018 (0.009) 1.3707 (2.246) 

 0.0212 (0.012) -29.9175 (260.2) 

 0.0934 (0.066) -0.5457 (0.591) 

 -0.0447 (0.095) -1.9216 (2.342) 

 9.7881 (6.921) 

 0.5708 (0.090)* 

LogL 

AIC 

BIC 

RPS 

-3905.91 

7865.8 

8042.8 

2.95E-5 

-3893.49 

7843.0 

8026.5 

1.17E-6 

 

The observed proportion of zeros in the data is 73.49%. After fitting the ZIGPR, ZIEEGR 

and ZIEWGR models, the predicted proportion of zeros are respectively given by 73.83%, 

73.56% and 73.48%. The ZIEWGR provided the best predicted probability of zero. We also 

calculated the chi-square values by combining the last three classes in the frequency table. 

The chi-square values for ZIGPR, ZIEEGR and ZIEWGR are respectively given by 16.41, 

16.68 and 2.20. Note that we have a total of 7 classes after the last three classes were combined. 

The goal for computing the chi-square values is not to check if these values are significant, 

but to see which of these models provides the closest expected frequencies. In this analysis, 

the ZIEWGR model provided the best fit by using the goodness of fit statistics. 

 

5.2 Violence Data 

The National Violence Against Women (NVAW) Survey of 1995-1996 was conducted to 

obtain a public-use data set. Interviews were completed from men and women, but the data 

used in this sub-section is a subset of the 8000 interviews completed by women who were at 

least 18 years old living in US households. Respondents were asked questions on various 

topics including physical assault they had experienced as adults by any type of perpetrator. 

The response variable used in the data analysis is physical assault or violence. This is the total 

number of twelve possible violent physical actions directed toward a woman by her current 

and/or past partners. A high score on this variable indicates a woman experienced severe 

violence. 

 In the analysis, seven predictor variables were used. The variables are age in years; 

level of education is one of the seven school levels (0 = no schooling to 6 = postgraduate); 

race (1 = white, 0 = others); number of children under 18 years of age (Nchid); respondent’s 

income level is one of 10 levels (1 = below $5,000 to 10 = over $1,000,000); health level is 

one of 5 levels (0 = poor to 4 = excellent); and drug is a binary variable that indicates illicit 
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drug use with 1 = yes and 0 = no. The variable drug indicates if a woman has used marijuana, 

cocaine, heroin, angel dust, etc. in the past month. After excluding the cases having missing 

information on any of the predictor variables and the response variable, we have 6110 

observations. 

 The descriptive statistics for the response and predictor variables are given in Table 3. 

The response variable, violence, is positively skewed (skewness = 2.24, kurtosis = 4.70). 

Tjaden and Thoennes (1999) provided detailed description of the variables and the most recent 

publications on the data. 

 
Table 3. Descriptive statistics for the response and predictor variables (n = 6110) 

Variable Description Mean   SD Proportion of 

1’s 

Age Age in years 42.54   15.37 

Educ Education level 3.79   1.16 

Race Race  0.8146 

Nchild Number under 18 years 0.97   1.21 

Income 1995 family income level 3.95   2.44 

Health Health condition 2.74   1.08 

Drug Illicit drug use  0.0172 

violence Response variable 1.23   2.34 

SD = standard deviation 

 

 The results of fitting the ZIEEGR and ZIEWGR models are presented in Table 4. For 

the ZIGPR (not included in Table 4) and ZIEEGR models, the variables education and health 

are significantly associated with the response variable violence. The higher the level of 

education (or the better the health condition), the lower the number of violence a respondent 

experienced. The other five predictor variables are not significantly related to violence. In the 

ZIEWGR model, the predictor variables education and health are negatively associated with 

the number of violence. In addition to these two predictor variables, drug is positively related 

to the number of violence under the ZIEWGR model. The respondents who used illicit drug 

in the past month of the survey tend to have higher number of violence. 

 

Table 4. Parameter estimates (standard errors in parentheses) for violence data. 

*Significant at 5% level. 

 

Variable x/z 

ZIEEGR 

 𝛽 𝛿 

ZIEWGR 

 𝛽 𝛿 

Constant 

Age 

Educ 

Race 

Nchild 

Income 

Health 

Drug 

â  

ĉ  

 1.4382 (0.147)* -0.8980 (0.191)* 

 -0.0029 (0.002) 0.0200 (0.002)* 

 -0.1050(0.023)* 0.0075 (0.031) 

 0.0566 (0.054) 0.1872 (0.081)* 

 0.0291 (0.020) -0.0467 (0.028) 

 -0.0050 (0.011) -0.0404 (0.014)* 

 -0.0753 (0.021)* 0.2123 (0.031)* 

 0.1609 (0.125) -1.0985 (0.268)* 

 1.6930 (0.135)* 

  

 8.3098 (0.985)* -8.6298 (1.294)* 

 0.0009 (0.006) 0.1027 (0.016)* 

 -0.1765 (0.054)* -0.0566 (0.108) 

 0.0614 (0.127) 1.1172 (0.416)* 

 0.0819 (0.048) 0.1955 (0.133) 

 0.0154 (0.025) 0.0217 (0.063) 

 -0.2277 (0.053)* 0.4199 (0.094)* 

 0.7492 (0.360)* -11.4066 (163.1) 

 0.0714 (0.009)* 

 3.3861 (0.338)* 

LogL 

AIC 

-8092.68 

16219.0 

-8054.58 

16145.0 



 

 

 

 
Felix Famoye                                                                              723 

 

BIC 

RPS 

16334.0 

5.446E-4 

16266.0 

1.461E-4 

 

The chi-square values from the ZIGPR, ZIEEGR and ZIEWGR models are respectively 

given by 58.73, 46.84 and 31.23. The ZIEWGR model provided the closest expected 

frequencies. The observed proportion of zero for the response variable violence is 67.05%. 

The predicted proportion of zero from ZIGPR, ZIEEGR and ZIEWGR models are respectively 

67.07%, 67.08% and 66.93%. The ZIGPR provided the best expected zero frequency. 

The AIC, BIC and RPS for ZIGPR model are respectively 16224.0, 16338.0 and 6.221E-

4. In comparing these values with the corresponding values for ZIEEGR and ZIEWGR models 

in Table 4, we observe that the ZIEWGR model provided the best fit followed by the ZIEEGR 

model. The log-likelihood statistics for the GPR, EEGR and EWGR models are respectively 

-8416.13, -8224.73 and -8151.13. In comparing the ordinary regression models with their 

corresponding zero-inflated regression models, we observe that the zero-inflated models 

performed better. The results from the data analysis show that the ZIEWGR provided the best 

fit by using the goodness of fit statistics. 

 

6. Summary and conclusions 

The exponentiated Weibull-geometric distribution can be applied to fit count data with 

over-dispersion or under-dispersion and it has two shape parameters. The distribution has 

closed form PMF and a CDF. One limitation of the distribution is that its moments cannot be 

expressed in closed forms. However, the moments can easily be computed numerically. Quite 

often, the negative binomial distribution (NBD) and/or the generalized Poisson distribution 

(GPD) are used to fit count data. Both distributions have one shape parameter and only the 

GPD can be used to fit under-dispersed or over-dispersed data. The EWGD studied in this 

paper, with two shape parameters, is more flexible than the two distributions. 

Consul (1989, page 1) pointed out that a natural event leading to the Poisson distribution 

follows the principle of complete randomness. When this principle does not hold, the 

generalized Poisson distribution is applied. The same can be said of the geometric distribution. 

When the principle of complete randomness fails, distributions like the negative binomial 

distribution, EEGD or EWGD is applied. Among these three, only EEGD and EWGD satisfy 

the property of under-dispersion or over-dispersion and EEGD is a sub-model of EWGD. 

A count data regression, the exponentiated Weibull-geometric regression model, is 

defined. A modified version, the ZIEWGR model is defined and illustrated with two numerical 

data sets. The goodness-of-fit of ZIEWGR model is compared with ZIEEGR and ZIGPR by 

using the AIC and the ranked probability scores among other statistics. In the two numerical 

examples, the ZIEWGR performed better than the other two count data regression models. 
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