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ABSTRACT 

   In this paper we use the maximum likelihood (ML) and the modified 

maximum likelihood (MML) methods to estimate the unknown parameters of 

the inverse Weibull (IW) distribution as well as the corresponding approximate 

confidence intervals.  The estimates of the unknown parameters are obtained 

based on two sampling schemes, namely, simple random sampling (SRS) and 

ranked set sampling (RSS). Comparison between the different proposed 

estimators is made through simulation via their mean square errors (MSE), 

Pitman nearness probability (PN) and confidence length. 

 

Keywords: Inverse Weibull, maximum likelihood, modified maximum 

likelihood, ranked set sampling. 
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1. Introduction 

      Ranked set sampling is recognized as a useful sampling technique for improving the 

precision and increasing the efficiency of estimation when the variable under consideration is 

expensive to measure or difficult to obtain but cheap and easy to rank. Ranked set sampling 

has been suggested by McIntyre (1952) in relation to estimating pasture yields. Takahasi and 

Wakimoto (1968) established the theory of RSS, they showed that the sample mean of RSS is 

an unbiased estimator for the population mean and is more efficient than the sample mean of 

SRS. According to RSS, we first select m2 elements denoted by 𝑥𝑖(𝑖), (𝑖 = 1,2, . . , 𝑚) from the 

population at random. These elements are then randomly splitted into m sets of m units each. 

On each set, we rank the m units by judgment or a supporting variable according to the 

characteristic of interest. We select the element with the smallest ranking, 𝑥1(1) , for 

measurement from the first set. From the second set we select the element with the second 

smallest ranking, 𝑥2(2). We continue in this way until we have ranked the elements in the mth 

set and selected the element with the largest ranking, 𝑥𝑚(𝑚), as in Figure 1. This complete 

procedure, called a cycle which is repeated independently k times to obtain a ranked set sample 

of size 𝑛 = 𝑚𝑘 (see Chen et al. (2004)).  

 

One cycle  

𝑥1(1) 

𝑥2(2) 

⋮ 

𝑥𝑚(𝑚) 

 

Figure 1: Ranked set sampling 

 

 Marginally 𝑥𝑖(𝑖) (ith order statistics of the ith random sample in a sample of size m) have 

the same distribution with pdf given by (see David and Nagaraja (2003)). 

𝑓𝑚(𝑥𝑖(𝑖); 𝜃) =
𝑚!

(𝑖 − 1)! (𝑚 − 𝑖)!
[𝐹(𝑥𝑖(𝑖); 𝜃)]

𝑖−1
[1 − 𝐹(𝑥𝑖(𝑖); 𝜃)]

𝑚−𝑖
𝑓(𝑥𝑖(𝑖); 𝜃), −∞ < 𝑥 < ∞  

    Many authors have studied the RSS and its modifications; for example, Al-Saleh and 

Al-Hadrami (2003a) studied the ML and MML estimation of location parameters of 

symmetric distribution using moving extremes ranked set sampling and SRS.  Al-Saleh et al. 

(2003b) studied ML and MML estimation of the mean of exponential distribution based on 

moving extremes ranked set sampling under both perfect and imperfect ranking. Helu et al. 

(2010) studied estimation of the parameters of Weibull distribution using different methods 

of estimation based on SRS, RSS and modified RSS. Abu-Dayyeh and Assrhani (2013) 

considered estimation of the shape and location parameters of the Pareto distribution based on 

SRS and RSS. Balci et al. (2013) used RSS, ranked set sampling by choosing both diagonal 

elements and ranked set sampling by choosing extremes of the samples to derive the MML 

estimates (MMLEs) for the population mean and variance of normal distribution. Hussian 

(2014) discussed Kumaraswamy distribution using SRS and RSS techniques based on 

maximum likelihood and Bayesian estimation methods. The moving extremes ranked set 
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sampling was presented by Chen et al. (2014) to obtain the MMLEs for some usual scale 

distributions. Sadek and Alharbi (2014) studied the problem of Bayesian estimation of the 

parameters for Weibull distribution based on RSS under squared error loss function and 

LINEX loss function. Dey et al. (2016) considered RSS, modified ranked set sampling, 

median ranked set sampling and SRS to estimate the parameter of Rayleigh distribution.  

     The inverse Weibull distribution (it is also known as Fre'chet distribution) is more 

appropriate than the Weibull distribution for modeling a non-monotone and unimodal hazard 

rate functions. The probability density function (pdf) and cumulative distribution function (cdf) 

of the IW distribution are, respectively, given by  

 𝑓(𝑥) = 𝜆𝜃𝑥−(𝜃+1)𝑒−𝜆𝑥−𝜃
 , 𝑥 > 0, 𝜆, 𝜃 > 0, (1) 

 

and 

 𝐹(𝑥) = 𝑒−𝜆𝑥−𝜃
, (2) 

                                

where λ is the scale parameter and θ is the shape parameter. Such model has been 

suggested as a model in the analysis of life testing data. Keller and Kamath (1982) introduced 

the IW distribution for modelling reliability data and failures of mechanical components 

subject to degradation. Estimation of the parameters of IW distribution in classical and 

Bayesian methods has been discussed in literature. Calabria and Pulcini (1989) discussed the 

statistical properties of the MLEs of the parameters and reliability for a complete sample. Erto 

(1989) used the Least Square method to obtain the estimators of the parameters and reliability. 

Calabria and Pulcini (1990) obtained the MLEs and the Least Square of the parameters. 

Calabria and Pulcini (1992) derived the Bayes estimators of the parameters and reliability. 

The hazard rate function of the IW distribution is  

ℎ(𝑥) = 𝜆𝜃𝑥−(𝜃+1) (𝑒𝜆𝑥−𝜃
− 1)

−1

. 

The shape of the hazard rate function of the IW distribution can be decreasing, increasing 

or unimodal based on the value of the shape parameter.  Many works have been suggested to 

estimate the unknown parameters of the IW distribution, see for example, Calabria and Pulcini 

(1994), Maswadah (2003), Singh et al. (2013), Musleh and Helu (2014) and Nassar and Abo-

Kasem (2017). For more details see Hassan and Naesr (2013). 

   The main objective of this study is to obtain the MLEs and MMLEs as well as the 

approximate confidence intervals for the scale and the shape parameters of the IW distribution 

based on SRS and RSS. We compare the performance of the different estimators by using a 

simulation study. The rest of the paper is organized as follows: In Section 2, the MLEs are 

obtained based on the SRS and RSS. The MMLEs under the SRS and RSS are derived in 

Section 3. In Section 4, a simulation study is conducted to evaluate the performance of the 

different estimators. A real data set is analyzed in Section 5 for illustrative purposes. Finally, 

the conclusion in Section 6. 

 

2. Maximum likelihood estimation for IW distribution parameters 

     In this section, the ML estimation method is used to estimate the IW distribution 

parameters using SRS and RSS. 
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2.1 Maximum likelihood estimation under SRS 

      Let 𝑥1, 𝑥2, … , 𝑥𝑛 
be a simple random sampling of size n from the IW distribution, then 

from the pdf in (1) the log likelihood function is 

 𝑙𝑛𝐿(𝜆, 𝜃) = 𝑛𝑙𝑛𝜆 + 𝑛𝑙𝑛𝜃 − (𝜃 + 1) ∑ 𝑙𝑛𝑥𝑖
𝑛
𝑖=1 − 𝜆 ∑ 𝑥𝑖

−𝜃𝑛
𝑖=1 .        (3) 

                  

The maximum likelihood estimators of λ and θ can be obtained by differentiate (3) with 

respect to λ and θ and equating the results to zero as follows 

 𝑛

�̂�
− ∑ 𝑥𝑖

−�̂�

𝑛

𝑖=1

= 0 
 

(4) 

 

and 

 𝑛

𝜃
− ∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

+ �̂� ∑ 𝑥𝑖
−�̂�𝑙𝑛𝑥𝑖

𝑛

𝑖=1

= 0 .     
 

(5) 

                      

From equation (4), we can obtain the MLE of λ as 

    �̂� =
𝑛

∑ 𝑥𝑖
−�̂�𝑛

𝑖=1

 .   (6) 

 

 Substituting the value of �̂� given by (6) in (5), we can obtain the MLE of the parameter θ.  

Now we use the large sample approximation to construct the approximate confidence 

intervals for the parameters λ and θ. The approximate inverse of observed information matrix 

of the unknown parameters is given by 

 

𝐼−1(𝜆, 𝜃) = (
−

𝜕2𝑙𝑛𝐿

𝜕𝜆2 −
𝜕2𝑙𝑛𝐿

𝜕𝜆𝜕𝜃

−
𝜕2𝑙𝑛𝐿

𝜕𝜃𝜕𝜆
−

𝜕2𝑙𝑛𝐿

𝜕𝜃2

)

(𝜆,𝜃)=(�̂�,�̂�)

−1

      

 

(7) 

 

                             

where 

−
𝜕2𝑙𝑛𝐿

𝜕𝜆2
|

�̂�,�̂�

=
𝑛

�̂�2
 , 

 

−
𝜕2𝑙𝑛𝐿

𝜕𝜃2
|

�̂�,�̂�

=
𝑛

𝜃
+ �̂� ∑ 𝑥𝑖

−�̂�(𝑙𝑛𝑥𝑖)2

𝑛

𝑖=1

 

and 

 
−

𝜕2𝑙𝑛𝐿

𝜕𝜃𝜕𝜆
|

�̂�,�̂�

= − ∑ 𝑥𝑖
−�̂�𝑙𝑛𝑥𝑖

𝑛

𝑖=1

 . 
(8) 

                                                                         

Thus, the approximate confidence intervals of λ and θ, are respectively, given by 

�̂� ± 𝑧𝜈 2⁄ √𝑣𝑎𝑟(�̂�)  and 𝜃 ± 𝑧𝜈 2⁄ √𝑣𝑎𝑟(𝜃) 
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where 𝑣𝑎𝑟(�̂�) and 𝑣𝑎𝑟(𝜃), respectively, are the main diagonal elements in (7) and 𝑧𝜈 2⁄  is 

the upper 𝜈 2⁄  percentile of a standard normal distribution. 

2.2 Maximum likelihood estimation under RSS 

Let 𝑥1(1), 𝑥2(2), … , 𝑥𝑛(𝑛) be a RSS of size n from the IW distribution with pdf (1) and cdf 

(2), then the likelihood function ignoring the constant term can be written as 

𝐿(𝜆, 𝜃) ∝ 𝜆𝑛𝜃𝑛𝑒−𝜆 ∑ 𝑥𝑖(𝑖)
−𝜃𝑛

𝑖=1 ∏ 𝑥𝑖(𝑖)
−(𝜃+1)

𝑛

𝑖=1

∏ [𝑒−𝜆𝑥𝑖(𝑖)
−𝜃

]
𝑖−1

𝑛

𝑖=1

∏ [1 − 𝑒−𝜆𝑥𝑖(𝑖)
−𝜃

]
𝑛−𝑖

𝑛

𝑖=1

 

The log-likelihood function is given by 

 
𝑙𝑛𝐿(𝜆, 𝜃) ∝ 𝑛𝑙𝑛(𝜆𝜃) − 𝜆 ∑ 𝑖𝑥𝑖(𝑖)

−𝜃

𝑛

𝑖=1

− (𝜃 + 1) ∑ 𝑙𝑛𝑥𝑖(𝑖)

𝑛

𝑖=1

+ ∑(𝑛 − 𝑖)𝑙𝑛 (1 − 𝑒−𝜆𝑥𝑖(𝑖)
−𝜃

)

𝑛

𝑖=1

 

 

 

 

(9) 

From (9), the likelihood equations can be written as follows 

𝑛

�̂�
− ∑ 𝑖𝑥𝑖(𝑖)

−�̂�

𝑛

𝑖=1

+ ∑(𝑛 − 𝑖) (
𝑥𝑖(𝑖)

−�̂� 𝑒−�̂�𝑥𝑖(𝑖)
−�̂�

1 − 𝑒−�̂�𝑥𝑖(𝑖)
−�̂�

)

𝑛

𝑖=1

= 0 

and 

 𝑛

𝜃
+ �̂� ∑ 𝑖𝑥𝑖(𝑖)

−�̂� 𝑙𝑛𝑥𝑖(𝑖)

𝑛

𝑖=1

− ∑ 𝑙𝑛𝑥𝑖(𝑖)

𝑛

𝑖=1

− ∑(𝑛 − 𝑖) (
�̂�𝑥𝑖(𝑖)

−�̂� 𝑙𝑛𝑥𝑖(𝑖)𝑒−�̂�𝑥𝑖(𝑖)
−�̂�

1 − 𝑒−�̂�𝑥𝑖(𝑖)
−�̂�

)

𝑛

𝑖=1

= 0. 

 

 
 

 
(10) 

It is to be noted that the likelihood equations in this case cannot be solved explicitly, so 

the MLEs of λ and θ can be obtained by using any numerical technique. The elements of the 

observed information matrix with respect to λ and θ are as follow: 

−
∂2lnL

∂λ2
|

λ̂,θ̂

=
n

λ̂2
+ ∑(n − i)

n

i=1

xi(i)
−2θ̂e−λ̂xi(i)

−θ̂

(1 − e−λ̂xi(i)
−θ̂

)
2 , 

−
𝜕2𝑙𝑛𝐿

𝜕𝜃2
|

�̂�,�̂�

=
𝑛

𝜃2
+ �̂� ∑ 𝑖𝑥𝑖(𝑖)

−�̂� (𝑙𝑛𝑥𝑖(𝑖))2

𝑛

𝑖=1

− �̂� ∑
(𝑛 − 𝑖)(𝑙𝑛𝑥𝑖(𝑖))2𝑥𝑖(𝑖)

−�̂� 𝑒−�̂�𝑥𝑖(𝑖)
−�̂�

(1 − �̂�𝑥𝑖(𝑖)
−�̂� − 𝑒−�̂�𝑥𝑖(𝑖)

−�̂�

)

(1 − 𝑒−�̂�𝑥𝑖(𝑖)
−�̂�

)2

𝑛

𝑖=1

 

and 
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−

𝜕2𝑙𝑛𝐿

𝜕𝜆𝜕𝜃
|

�̂�,�̂�

= − ∑ 𝑖𝑥𝑖(𝑖)
−�̂�

𝑛

𝑖=1

𝑙𝑛𝑥𝑖(𝑖)

+ ∑
(𝑛 − 𝑖)𝑥𝑖(𝑖)

−�̂� 𝑒−�̂�𝑥𝑖(𝑖)
−�̂�

𝑙𝑛𝑥𝑖(𝑖) (1 − �̂�𝑥𝑖(𝑖)
−�̂� − 𝑒−�̂�𝑥𝑖(𝑖)

−�̂�

)

(1 − 𝑒−�̂�𝑥𝑖(𝑖)
−�̂�

)
2

𝑛

𝑖=1

 

 

 
 

 
 

 
(11) 

3. Modified  maximum  likelihood  estimation  for  IW distribution parameters 

In this section, the MMLs of the unknown parameters of the IW distribution are obtained 

using SRS and RSS. 

 

3.1 Modified maximum likelihood estimation under SRS 

It is seen that from (5) the ML equation of θ cannot be obtained in explicit form, therefore, 

the MMLEs which have explicit form are obtained. Let 𝑍 = −𝑙𝑛𝑋, then 𝑍 follows the extreme 

value distribution with pdf and cdf given, respectively, by (see Johnson et al. (1994)). 

 
𝑔(𝑧) =

1

𝜎
𝑒𝑥𝑝 {(

𝑧 − 𝜇

𝜎
) − 𝑒𝑥𝑝 (

𝑧 − 𝜇

𝜎
)} ,     − ∞ < 𝑧 < ∞, 

 

(12) 
                                        

and 

 𝐺(𝑧) = 1 − 𝑒𝑥𝑝 {−𝑒𝑥𝑝 (
𝑧 − 𝜇

𝜎
)} (13) 

where 𝜇 = −𝑙𝑛 𝜆 𝜃⁄  is the location parameter and 𝜎 = 1 𝜃⁄  is the scale parameter. From (12) 

and under SRS the log-likelihood function is given by   

𝑙𝑛𝐿∗(𝜇, 𝜎) = −𝑛𝑙𝑛𝜎 + ∑ 𝑡𝑖

𝑛

𝑖=1

− ∑ 𝑒𝑡𝑖

𝑛

𝑖=1

 

where 𝑡𝑖 = (𝑧𝑖 − 𝜇) 𝜎⁄ , 𝑖 = 1,2, … , 𝑛. To obtain the MMLEs, we consider 𝑔(𝑡𝑖) = 𝑒𝑡𝑖, and 

linearize this function by using Taylor series expansions as  

𝑔(𝑡𝑖) = 𝛼𝑖 + 𝛽𝑖𝑡𝑖 

where 

𝛼𝑖 = 𝑒𝜐𝑖(1 − 𝜐𝑖) and   𝛽𝑖 = 𝑒𝜐𝑖. 

Using these linear approximations, the modified likelihood equations can be written as 

 −
𝑛

�̂�
+

1

�̂�
∑ (𝛼𝑖 + 𝛽𝑖𝑡𝑖)𝑛

𝑖=1 = 0  

 

(14) 

and 

 
−

𝑛

�̂�
−

1

�̂�
∑ 𝑡𝑖

𝑛

𝑖=1

+
1

�̂�
∑ 𝑡𝑖(𝛼𝑖 + 𝛽𝑖𝑡𝑖)

𝑛

𝑖=1

= 0   
 (15) 

The solutions of equations (14) and (15) are 

�̂�𝑀𝑀𝐿−𝑆𝑅𝑆 =
∑ 𝛽𝑖𝑧𝑖

𝑛
𝑖=1

∑ 𝛽𝑖
𝑛
𝑖=1

+ �̂�
(∑ 𝛼𝑖

𝑛
𝑖=1 − 𝑛)

∑ 𝛽𝑖
𝑛
𝑖=1

 

and 
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�̂�𝑀𝑀𝐿−𝑆𝑅𝑆 =
−𝑉 + √𝑉2 + 4𝑛𝑊

2𝑛
 

where 

𝑉 = [∑(𝑧𝑖 − �̂�)

𝑛

𝑖=1

+ ∑ 𝛼𝑖(𝑧𝑖 − �̂�)

𝑛

𝑖=1

]  and  𝑊 = ∑ 𝛽𝑖(𝑧𝑖 − �̂�)2

𝑛

𝑖=1

. 

From the modified likelihood equations (14) and (15), we can obtain the elements of the 

observed information matrix as follows 

−
𝜕2𝑙𝑛𝐿∗

𝜕𝜇2
|

�̂�,�̂�

≅
1

�̂�2
∑ 𝛽𝑖

𝑛

𝑖=1

 

−
𝜕2𝑙𝑛𝐿∗

𝜕𝜎2
|

�̂�,�̂�

≅ −
𝑛

�̂�2
−

2

�̂�2
∑ 𝑡𝑖

𝑛

𝑖=1

+
2

�̂�2
∑ 𝛼𝑖𝑡𝑖

𝑛

𝑖=1

+
3

�̂�2
∑ 𝛽𝑖𝑡𝑖

2

𝑛

𝑖=1

 

and 

 
−

𝜕2𝑙𝑛𝐿∗

𝜕𝜇𝜕𝜎
|

�̂�,�̂�

≅ −
𝑛

�̂�2
+

1

�̂�2
∑ 𝛼𝑖

𝑛

𝑖=1

+
2

�̂�2
∑ 𝛽𝑖𝑡𝑖

𝑛

𝑖=1

  . 

 

 

 

(16) 

3.2 Modified maximum likelihood estimation under RSS  

Using the same approach in subsection (3.1), we can obtain the MMLEs under RSS. From 

(12) and (13) and under RSS, we can write the log-likelihood function as follows 

𝑙𝑛𝐿∗(𝜇, 𝜎) = −𝑛𝑙𝑛𝜎 + ∑ 𝑡𝑖(𝑖)

𝑛

𝑖=1

− ∑(𝑛 − 𝑖 + 1)𝑒𝑡𝑖(𝑖)

𝑛

𝑖=1

+ ∑(𝑖 − 1)𝑙𝑛(1 − 𝑒𝑡𝑖(𝑖))

𝑛

𝑖=1

 

where 𝑡𝑖(𝑖) = (𝑧𝑖(𝑖) − 𝜇) 𝜎⁄ . To obtain the MMLEs, we expand the expression 𝑔1(𝑡𝑖(𝑖)) =

𝑒𝑡𝑖(𝑖) and 𝑔2(𝑡𝑖(𝑖)) =
𝑒

𝑡𝑖(𝑖)−𝑒
𝑡𝑖(𝑖)

1−𝑒−𝑒
𝑡𝑖(𝑖)

 in Taylor series around the points 𝜐𝑖 = 𝑙𝑛(−𝑙𝑛 (1 − 𝑝𝑖)) 

and 𝑝𝑖 = 𝑖 𝑛 + 1⁄ . Using only the first two terms, We get  

𝑔1(𝑡𝑖(𝑖)) = 𝛼1𝑖 + 𝛽1𝑖𝑡𝑖(𝑖) 

and 

𝑔2(𝑡𝑖(𝑖)) = 𝛼2𝑖 + 𝛽2𝑖𝑡𝑖(𝑖) 

where 

𝛼1𝑖 = 𝑒𝜐𝑖(1 − 𝜐𝑖),       𝛽1𝑖 = 𝑒𝜐𝑖 

and 

𝛼2𝑖 =
𝑒𝜐𝑖−𝑒𝜐𝑖

1−𝑒−𝑒𝜐𝑖
 ,      𝛽2𝑖 =

[𝑒𝜐𝑖−𝑒𝜐𝑖
(1−𝑒−𝑒𝜐𝑖 )(1−𝑒𝜐𝑖)]−𝑒−2(𝜐𝑖−𝑒𝜐𝑖)

(1−𝑒−𝑒𝜐𝑖 )
2  

Using these linear approximations, we can obtain the modified likelihood equations as 

−
𝑛

�̂�
+

1

�̂�
∑(𝑛 − 𝑖 + 1)(𝛼1𝑖 + 𝛽1𝑖𝑡𝑖(𝑖))

𝑛

𝑖=1

−
1

�̂�
∑(𝑖 − 1)(𝛼2𝑖 + 𝛽2𝑖𝑡𝑖(𝑖))

𝑛

𝑖=1

= 0 

and 
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−

𝑛

�̂�
−

1

�̂�
∑ 𝑡𝑖(𝑖)

𝑛

𝑖=1

+
1

�̂�
∑(𝑛 − 𝑖 + 1)𝑡𝑖(𝑖)(𝛼1𝑖 + 𝛽1𝑖𝑡𝑖(𝑖))

𝑛

𝑖=1

−
1

�̂�
∑(𝑖 − 1)𝑡𝑖(𝑖)(𝛼2𝑖 + 𝛽2𝑖𝑡𝑖(𝑖))

𝑛

𝑖=1

= 0 

 

 

 

 

(17) 

 

The solutions of these equations are 

�̂�𝑀𝑀𝐿−𝑅𝑆𝑆 = 𝐴 + �̂�𝐵 
and 

�̂�𝑀𝑀𝐿−𝑅𝑆𝑆 =
−𝐷 + √𝐷2 + 4𝑛𝐸

2𝑛
 

where 

𝐴 =
[∑ (𝑖 − 1)𝛽2𝑖𝑧𝑖(𝑖)

𝑛
𝑖=1 − ∑ (𝑛 − 𝑖 + 1)𝛽1𝑖𝑧𝑖(𝑖)

𝑛
𝑖=1 ]

[∑ (𝑖 − 1)𝛽2𝑖
𝑛
𝑖=1 − ∑ (𝑛 − 𝑖 + 1)𝛽1𝑖

𝑛
𝑖=1 ]

 , 

𝐵 =
[𝑛 − ∑ (𝑛 − 𝑖 + 1)𝛼1𝑖

𝑛
𝑖=1 + ∑ (𝑖 − 1)𝛼2𝑖

𝑛
𝑖=1 ]

[∑ (𝑖 − 1)𝛽2𝑖
𝑛
𝑖=1 − ∑ (𝑛 − 𝑖 + 1)𝛽1𝑖

𝑛
𝑖=1 ]

 , 

𝐷 = ∑[1 − (𝑛 − 𝑖 + 1)𝛼1𝑖 + (𝑖 − 1)𝛼2𝑖]

𝑛

𝑖=1

(𝑧𝑖(𝑖) − �̂�) 

and 

𝐸 = ∑[(𝑛 − 𝑖 + 1)𝛽1𝑖 − (𝑖 − 1)𝛽2𝑖]

𝑛

𝑖=1

(𝑧𝑖(𝑖) − �̂�)
2

 

The elements of the observed information matrix with respect to μ and σ are as follows 

−
𝜕2𝑙𝑛𝐿∗

𝜕𝜇2
|

�̂�,�̂�

≅
1

�̂�2
∑(𝑛 − 𝑖 + 1)𝛽1𝑖

𝑛

𝑖=1

−
1

�̂�2
∑(𝑖 − 1)𝛽2𝑖

𝑛

𝑖=1

 , 

−
𝜕2𝑙𝑛𝐿∗

𝜕𝜎2
|

�̂�,�̂�

≅ −
𝑛

�̂�2
−

2

�̂�2
∑ 𝑡𝑖(𝑖)

𝑛

𝑖=1

+
2

�̂�2
∑(𝑛 − 𝑖 + 1)𝛼1𝑖𝑡𝑖(𝑖)

𝑛

𝑖=1

+
3

�̂�2
∑(𝑛 − 𝑖 + 1)𝛽1𝑖𝑡𝑖(𝑖)

2

𝑛

𝑖=1

 

−
2

�̂�2
∑(𝑖 − 1)𝛼2𝑖𝑡𝑖(𝑖)

𝑛

𝑖=1

−
3

�̂�2
∑(𝑖 − 1)𝛽2𝑖𝑡𝑖(𝑖)

2

𝑛

𝑖=1

 

and 

 
−

𝜕2𝑙𝑛𝐿∗

𝜕𝜇𝜕𝜎
|

�̂�,�̂�

≅ −
𝑛

�̂�2
+

1

�̂�2
∑(𝑛 − 𝑖 + 1)𝛼1𝑖

𝑛

𝑖=1

+
2

�̂�2
∑(𝑛 − 𝑖 + 1)𝛽1𝑖𝑡𝑖(𝑖)

𝑛

𝑖=1

−
1

�̂�2
∑(𝑖 − 1)𝛼2𝑖

𝑛

𝑖=1

−
2

�̂�2
∑(𝑖 − 1)𝛽2𝑖𝑡𝑖(𝑖)

𝑛

𝑖=1

 . 

 

 

 
 

 
 

 

(18) 

4. Simulation study 
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In this section, a simulation study is carried out using MATHCAD program to compare 

the performance of the ML and MML estimators based on SRS and RSS for IW distribution. 

The simulation study is conducted by choosing 1000 random samples of different samples 

size that were generated from IW distribution. 

Using MATHCAD program, the ML and MML estimators based on SRS and RSS for IW 

distribution are obtained for different values of the parameters (𝜆, 𝜃) = (0.5,2) and (𝜆, 𝜃) =

(1.5,1.5) and different samples of sizes, 𝑛 = 20,30,50,75 and 100 under SRS and RSS, and 

using different values of m and k { (m, k) = (4,5), (5,6),  (5,10), (5,15) and (10,10)} in the case 

of RSS. The performance of the estimators of the parameters has been studied in terms of their 

MSEs, confidence length and PN probability. Pitman nearness probability can be calculated 

as 

 𝑃𝑁 = 𝑃{|𝜃1 − 𝜃| < |𝜃2 − 𝜃|}    (19) 

where 𝜃1 and 𝜃2 are the estimators of 𝜃. Based on PN probability criteria, we can say that 

𝜃1  is better than 𝜃2 if 𝑃𝑁 > 0.5 (Pitman (1937)). All of the calculation in this section were 

done using MATHCAD program version 2007 and based on 1000 replications. Proceedings 

of the simulation are described as follow: 

Step 1: Suppose U has a uniform (0,1) distribution, then 𝑥 = (−𝑙𝑛 (𝑢) 𝜆⁄ )−1 𝜃⁄  follows 

the IW distribution. 1000 simple random samples of sizes 20,30,50,75 and 100 were generated 

from IW distribution.  
Step 2: In the case of RSS, 1000 random samples of size (𝑚 × 𝑘) using different values 

of m and k { (m, k) = (4,5), (5,6),  (5,10), (5,15) and (10,10)} were generated from IW 

distribution. A random sample of size (𝑚 × 𝑘)  is drawn by using RSS as in Figure (1), 

sampling was done without replacement from (𝑚2 × 𝑘).  
Step 3: Equations (4) and (5) were solved to obtain the ML estimates based on SRS and 

the MML estimates based on SRS are obtained by solving equations (14) and (15). Equations 

(10) were solved to obtain the ML estimates based on RSS and the MML estimates based on 

RSS are obtained by solving equations (17).  

Step 4: The approximate confidence intervals of λ and θ under SRS and SRS are obtained 

by the asymptotic variance covariance matrix using equations (8), equations (16), equations 

(11) and equations (18), respectively. 

Step 5: The PN probability of the estimators �̂�𝑀𝐿𝐸−𝑆𝑅𝑆, 𝜃𝑀𝐿𝐸−𝑆𝑅𝑆, �̂�𝑀𝐿𝐸−𝑅𝑆𝑆,
 
𝜃𝑀𝐿𝐸−𝑅𝑆𝑆, 

�̂�𝑀𝑀𝐿𝐸−𝑆𝑅𝑆,   𝜃𝑀𝑀𝐿𝐸−𝑆𝑅𝑆,   �̂�𝑀𝑀𝐿𝐸−𝑅𝑆𝑆,  and 𝜃𝑀𝑀𝐿𝐸−𝑅𝑆𝑆 are calculated using equation (19). 

The average value of estimates, MSE, confidence length and coverage probability under 

SRS and RSS are tabulated in Table 1 for (𝜆, 𝜃) = (0.5,2)  and in Table 4 for (𝜆, 𝜃) =
(1.5,1.5). Tables 2 and 3 display the values of PN probability for (𝜆, 𝜃) = (0.5,2), while 

Tables 5 and 6 present the PN probability for (𝜆, 𝜃) = (1.5,1.5). From table 1 and 4, it can be 

noted that in all the cases the MLEs and MMLEs of λ and θ based on RSS have smaller MSEs 

than the corresponding estimates using SRS. It is also observed that the MMLEs of  λ and θ 

based on RSS perform better than the corresponding MLEs in terms of MSE and confidence 

length in most cases.  

From Tables 2, 3, 5 and 6,  we can see that the PN probability of the estimates based on 

RSS with respect to the estimates based on SRS are greater than 0.5, which show the 

outperform of the estimates based on RSS. Furthermore, the PN values show that the MMLEs 

under RSS perform better than MLEs under RSS and MLEs and MMLEs under SRS. 
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Table 1. The average values of the ML estimates and MML estimates of (𝜆, 𝜃) = (0.5,2), MSE in 

parentheses (first row of each cell), 95% confidence lengths and the coverage probabilities in 

parentheses (second row of each cell), under SRS and RSS.  

 

n 

 

(m;k) 

 

Parameter 

             

            ML Estimates 

               

                MML Estimates 

       SRS       RSS       SRS         RSS 

20 (4;5) 𝜆 0.497(0.0249) 

0.522(87.200) 

0.492(0.0100) 

0.190(65.900) 

0.511(0.0263) 

0.489(92.200) 

0.513(0.0102) 

0.153(64.600) 

𝜃 2.172(0.2151) 

1.136(83.300) 

2.183(0.1668) 

0.735(69.100) 

2.162(0.2108) 

1.707(89.900) 

2.102(0.1370) 

0.771(71.900) 

30 (5;6) 𝜆 
0.503(0.0165) 

0.432(88.900) 

0.491(0.0065) 

0.128(58.600) 

0.513(0.0172) 

0.396(92.900) 

0.506(0.0065) 

0.102(57.500) 

𝜃  
2.104(0.1119) 

0.908(85.500) 

2.125(0.0936) 

0.499(63.000) 

2.101(0.1103) 

1.281(91.000) 

2.065(0.0786) 

0.512(65.900) 

50 (5;10) 𝜆 
0.503(0.0094) 

0.336(91.000) 

0.494(0.0037) 

0.078(48.200) 

0.509(0.0097) 

0.301(92.200) 

0.503(0.0037) 

0.061(44.400) 

𝜃  
2.056(0.0542) 

0.695(89.100) 

2.085(0.0517) 

0.305(52.900) 

2.055(0.0538) 

0.937(93.600) 

2.047(0.0441) 

0.309(55.700) 

75 (5;15) 𝜆 
0.504(0.0062) 

0.275(92.100) 

0.496(0.0024) 

0.052(41.100) 

0.508(0.0064) 

0.244(94.300) 

0.502(0.0024) 

0.041(40.200) 

𝜃  
2.030(0.0389) 

0.562(85.800) 

2.055(0.0318) 

0.205(46.300) 

2.030(0.0388) 

0.741(93.100) 

2.030(0.0284) 

0.206(45.900) 

100 (10;10) 𝜆 
0.501(0.0047) 

0.238(90.600) 

0.497(0.0013) 

0.039(42.200) 

0.504(0.0047) 

0.210(93.900) 

0.501(0.0013) 

0.031(39.100) 

𝜃  
2.029(0.0299) 

0.486(85.100) 

2.039(0.0168) 

0.155(47.500) 

2.030(0.0300) 

0.636(92.000) 

2.020(0.0152) 

0.155(48.600) 

 

Table 2. PN comparison between different estimators of  𝜆 = 0.5 

 

PN probability of 

                

                   (cycle size; number of cycles) 

 

 

 

(4;5) 

 

(5;6) 

 

(5;10) 

 

(5;15) 

 

(10;10) 

�̂�𝑀𝐿𝐸−𝑅𝑆𝑆 𝑣𝑠 �̂�𝑀𝐿𝐸−𝑆𝑅𝑆 
0.6410 

 

0.6410 

 

0.6380 

 

0.6360 

 

0.6820 

�̂�𝑀𝐿𝐸−𝑅𝑆𝑆 𝑣𝑠 �̂�𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  

0.4870 

 

0.4670 

 

0.4660 

 

0.4740 

 

0.4850 

�̂�𝑀𝐿𝐸−𝑅𝑆𝑆 𝑣𝑠 �̂�𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.6440 

 

0.6410 

 

0.6410 

 

0.6410 

 

0.6800 

�̂�𝑀𝐿𝐸−𝑆𝑅𝑆 𝑣𝑠 �̂�𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  

0.3580 

 

0.3680 

 

0.3520 

 

0.3610 

 

0.3220 

�̂�𝑀𝐿𝐸−𝑆𝑅𝑆 𝑣𝑠 �̂�𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.4960 

 

0.5010 

 

0.4920 

 

0.5200 

 

0.5010 

�̂�𝑀𝑀𝐿𝐸−𝑅𝑆𝑆 𝑣𝑠 �̂�𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.6550 

 

0.6490 

 

0.6440 

 

0.6440 

 

0.6830 

 
Table 3. PN comparison between different estimators of  𝜃 = 2 

 

PN probability of 

                

                   (cycle size; number of cycles) 

 
 

 

(4;5) 

 

(5;6) 

 

(5;10) 

 

(5;15) 

 

(10;10) 
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𝜃𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 𝜃𝑀𝐿𝐸−𝑆𝑅𝑆 
0.5430 

 

0.5100 

 

0.5240 

 

0.5280 

 

0.5780 

𝜃𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 𝜃𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  

0.3890 

 

0.3860 

 

0.4090 

 

0.4400 

 

0.4140 

𝜃𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 𝜃𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.5310 

 

0.5090 

 

0.5230 

 

0.5330 

 

0.5830 

𝜃𝑀𝐿𝐸−𝑆𝑅𝑆  𝑣𝑠 𝜃𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  

0.4370 

 

0.4700 

 

0.4660 

 

0.4680 

 

0.4040 

𝜃𝑀𝐿𝐸−𝑆𝑅𝑆  𝑣𝑠 𝜃𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.4730 

 

0.4680 

 

0.4530 

 

0.4970 

 

0.5090 

𝜃𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 𝜃𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.5630 

 

0.5380 

 

0.5280 

 

0.5390 

 

0.5940 

 
Table 4. The average values of the ML estimates and MML estimates of (𝜆, 𝜃) = (1.5,1.5), MSE 

in parentheses (first row of each cell), 95% confidence lengths and the coverage probabilities in 

parentheses (second row of each cell), under SRS and RSS. 

 

n 

 

(m;k) 

 

Parameter 

             

            ML Estimates 

               

                MML Estimates 

       SRS       RSS       SRS         RSS 

20 (4;5) 𝜆 1.600(0.1780) 

1.424(93.600) 

1.625(0.1181) 

0.564(66.100) 

1.638(0.1930) 

1.566(92.200) 

1.621(0.1087) 

0.485(64.600) 

𝜃 
 

1.629(0.1210) 

0.950(88.500) 

1.637(0.0938) 

0.551(69.100) 

1.622(0.1186) 

1.280(89.900) 

1.576(0.0771) 

0.578(71.900) 

30 (5;6) 𝜆 
1.579(0.1177) 

1.142(94.500) 

1.572(0.0557) 

0.365(59.500) 

1.607(0.1268) 

1.240(92.900) 

1.567(0.0517) 

0.315(57.500) 

𝜃 
1.578(0.0629) 

0.759(89.100) 

1.594(0.0526) 

0.374(63.000) 

1.576(0.0621) 

0.960(91.000) 

1.549(0.0442) 

0.384(65.900) 

50 (5;10) 𝜆 
1.545(0.0587) 

0.861(93.100) 

1.550(0.0308) 

0.218(49.700) 

1.562(0.0618) 

0.925(92.200) 

1.545(0.0287) 

0.188(44.400) 

𝜃 
1.542(0.0305) 

0.580(92.000) 

1.564(0.0291) 

0.292(52.900) 

1.541(0.0303) 

0.703(93.600) 

1.535(0.0248) 

0.232(55.700) 

75 (5;15) 𝜆 
1.530(0.0363) 

0.695(94.200) 

1.534(0.0204) 

0.145(40.100) 

1.542(0.0377) 

0.742(94.300) 

1.531(0.0193) 

0.125(40.900) 

𝜃 
1.522(0.0219) 

0.468(89.700) 

1.542(0.0191) 

0.154(44.200) 

1.523(0.0218) 

0.556(93.100) 

1.522(0.0171) 

0.155(44.700) 

100 (10;10) 𝜆 
1.522(0.0266) 

0.598(94.100) 

1.522(0.0098) 

0.108(40.700) 

1.532(0.0276) 

0.637(93.900) 

1.519(0.0023) 

0.093(39.100) 

𝜃 
1.522(0.0168) 

0.405(88.400) 

1.529(0.0094) 

0.116(47.500) 

1.522(0.0169) 

0.477(92.000) 

1.515(0.0086) 

0.116(48.600) 

 

Table 5. PN comparison between different estimators of  𝜆 = 1.5 

 

PN probability of 

                

                   (cycle size; number of cycles) 

 
 

 

(4;5) 

 

(5;6) 

 

(5;10) 

 

(5;15) 

 

(10;10) 

�̂�𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 �̂�𝑀𝐿𝐸−𝑆𝑅𝑆 
0.5760 

 

0.6000 

 

0.5860 

 

0.5840 

 

0.6670 

�̂�𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 �̂�𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  

0.3560 

 

0.3960 

 

0.3780 

 

0.3680 

 

0.3930 

�̂�𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 �̂�𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.5790 

 

0.6090 

 

0.5980 

 

0.5750 

 

0.6550 
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�̂�𝑀𝐿𝐸−𝑆𝑅𝑆  𝑣𝑠 �̂�𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  

0.4090 

 

0.3930 

 

0.4020 

 

0.4070 

 

0.3310 

�̂�𝑀𝐿𝐸−𝑆𝑅𝑆  𝑣𝑠 �̂�𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.5750 

 

0.5720 

 

0.5590 

 

0.5370 

 

0.5240 

�̂�𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 �̂�𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.5900 

 

0.6150 

 

0.6050 

 

0.5840 

 

0.6570 

 

 

 

Table 6. PN comparison between different estimators of  𝜃 = 1.5 
PN probability of                                   (cycle size; number of cycles) 

 
 

 

(4;5) 

 

(5;6) 

 

(5;10) 

 

(5;15) 

 

(10,10) 

𝜃𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 𝜃𝑀𝐿𝐸−𝑆𝑅𝑆 
0.5430 

 

0.5100 

 

0.5240 

 

0.5160 

 

0.5780 

𝜃𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 𝜃𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  

0.3890 

 

0.3860 

 

0.4090 

 

0.4310 

 

0.4140 

𝜃𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 𝜃𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.5310 

 

0.5090 

 

0.5230 

 

0.5140 

 

0.5830 

𝜃𝑀𝐿𝐸−𝑆𝑅𝑆  𝑣𝑠 𝜃𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  

0.4370 

 

0.4700 

 

0.4660 

 

0.4680 

 

0.4040 

𝜃𝑀𝐿𝐸−𝑆𝑅𝑆  𝑣𝑠 𝜃𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.4740 

 

0.4690 

 

0.4530 

 

0.4970 

 

0.5090 

𝜃𝑀𝑀𝐿𝐸−𝑅𝑆𝑆  𝑣𝑠 𝜃𝑀𝑀𝐿𝐸−𝑆𝑅𝑆  

0.5630 

 

0.5380 

 

0.5280 

 

0.5290 

 

0.5940 

 

5. Numerical example 

     In this section, we use a data set of Dumonceaux and Antle (1973) to show the 

applicability of the proposed estimators. The data set represents the maximum flood levels of 

the Susquehenna River at Harrisburg, Pennsylvenia over 20 four-year periods (1890–1969). 

The original data set which consists of 20 observations are  

 

0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379 0.324 

0.269 0.740 0.418 0.412 0.494 0.416 0.338 0.392 0.484 0.265 

 
   

Maswadah (2003) analyzed these data and showed that the IW distribution provide a good 

fit to the data. Also, Maswadah (2003) obtained the MLE of  λ and θ  from the complete data 

set as �̂� = 0.0119 and 𝜃 = 4.3138. Here, we select a random sample of size 15 by using SRS 

and RSS, sampling was done with replacement. In RSS method, five matrices 3 × 3 are drawn 

and then applying the technique presented in Figure 1. The generated SRS observations are 

 

0.269 0.416 0.449 0.324 0.412 

0.315 0.315 0.412 0.379 0.265 

0.449 0.338 0.449 0.338 0.449 

 

while the generated RSS observations are 
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0.265 0.269 0.269 0.324 0.338 

0.416 0.418 0.423 0.423 0.449 

0.494 0.613 0.613 0.740 0.740 
 

   Table 7 displays the different estimates of the unknown parameters under SRS and RSS 

as well as the corresponding confidence intervals bounds. From table 7, it is seen that for 

parameter λ the MML method under SRS perform better than other methods in terms of 

confidence interval length, while for parameter θ the ML method under RSS perform better 

than other methods in terms of confidence length (CL). 

 

Table 7. The ML and MML estimates of λ and θ and the corresponding 95% confidence intervals 

under SRS and RSS for real data set. 

Sampling Parameter MLE LB UB CL MMLE LB UB CL 

 

SRS 

λ 

θ 

0.002 

5.641 

-

0.001 

4.515 

0.005 

6.767 

0.006 

2.252 

0.002 

5.635 

0.001 

4.079 

0.004 

9.111 

0.002 

5.032 

 

RSS 

λ 

θ 

0.035 

3.351 

0.010 

2.676 

0.060 

4.026 

0.050 

1.350 

0.036 

3.338 

0.030 

2.782 

0.044 

4.170 

0.014 

1.388 

 

6. Conclusion 

     In this paper, we have considered the estimation problem of the unknown parameters 

of the IW distribution based on SRS and RSS. We used the ML and MML methods of 

estimation to estimate the unknown parameters. It is noted that the ML estimators cannot be 

obtained in closed forms, so, the MMLEs have been presented. We used a simulation study to 

compare the performance of the different estimators in terms of their MSEs, confidence length 

and PN probability. It is noted that the MMLEs based on RSS perform very well relative to 

their MSE, confidence length and PN probability. This indicates that the estimation based on 

RSS method is more efficient than estimation based on SRS. 
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