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ABSTRACT 

In the linear regression setting, we propose a general framework, termed 

weighted orthogonal components regression (WOCR), which encompasses many 

known methods as special cases, including ridge regression and principal 

components regression. WOCR makes use of the monotonicity inherent in 

orthogonal components to parameterize the weight function. The formulation 

allows for efficient determination of tuning parameters and hence is 

computationally advantageous. Moreover, WOCR offers insights for deriving new 

better variants. Specifically, we advocate assigning weights to components based 

on their correlations with the response, which may lead to enhanced predictive 

performance. Both simulated studies and real data examples are provided to assess 

and illustrate the advantages of the proposed methods. 
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1. Introduction 

Consider the typical multiple linear regression setting where the available data L: 

= {(yi, xi):    i = 1, . . . , n} consist of n i.i.d. copies of the continuous response y and 

the predictor vector x ∈  R
p
. Without loss of generality (WLOG), we assume yi’s are 

centered and xij’s are standardized throughout the article. Thus the intercept term is 

presumed to be 0 in linear models, which have the general form y = Xβ + ε with y = 

(yi) and random error vector ε∼  (0, σ2In) . For the sake of convenience, we 

sometimes omit the subscript i. When the n ×  p design matrix X is of full column rank 

p, the ordinary least squares (OLS) estimator β = (XT X)−1XT y, as well as its 

corresponding predicted value ŷ(x’) = x’T β at a new observation x’, enjoys many 

attractive properties.  

However, OLS becomes problematic when X is rank-deficient, in which case the Gram 

matrix XTX is singular. This may happen either because of multicollinearity when the 

predictors are highly correlated or because of high dimensionality when p     n. A wealth 

of proposals have been made to combat the problem.  Besides others,  we  are particularly 

concerned with a group of techniques  that include ridge regression (RR; Hoerl and 

Kennard,1970), principal components regression (PCR; Massy,1965), partial least squares 

regression (PLSR;Wold,1966&1978), and continuum regression (CR; Stone and 

Brooks,1990). One common feature of these approaches lies in the fact that they first 

extract orthogonal or uncorrelated components that are linear combinations of X and then 

regress the response directly on the orthogonal components. The number of orthogonal 

components doesn’t exceed n and p, hence reducing the dimensionality. This is the key 

how these types of methods approach high-dimensional or multicollinear data. 

In this article, we introduce a general framework, termed weighted orthogonal 

components regression (WOCR), which puts the aforementioned methods into a unified 

class. Compared to the original predictors in X, there is a natural ordering in the 

orthogonal components. This information allows us to parameterize the weight function 

in WOCR with low-dimensional parameters, which are essentially the tuning parameters, 

and estimate the tuning parameters via optimization. The WOCR formulation also 

facilitates a convenient comparison of the available methods and suggests their new 

natural variants by introducing more intuitive weight functions. 

We restrict our attention to PCR and RR models. The remainder of the article is 

organized as follows. In Section2, the general framework of WOCR is introduced. 

Section3 exemplifies the applications of WOCR with RR and PCR. More specifically, we 

demonstrate how WOCR formulation can be used to estimate the tuning parameter in RR 

and select the number of principal components in PCR, and then introduce their better 

variants on the basis of WOCR. Section4 presents numerical results from simulated studies 

that are designed to illustrate and assess WOCR and make comparisons with others. We also 

provide real data illustrations in Section5. Section6 concludes with a brief discussion, 

including the implication of WOCR on PLSR and CR models. 

 

2. Weighted Orthogonal Components Regression (WOCR) 

Denote m = rank(X) so that m ≤ (p∧n). Let {u1,. . ., um} be the orthogonal components 

extracted in some principled way, satisfying that 𝐮j
T𝐮j′ = 0 if 𝑗 ≠ 𝑗′and 1 otherwise. Here 
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{𝐮𝑗}
j=1

𝑚
forms an orthonormal basis of the column space of X, C(X) = {Xa: for some a ∈ 

Rp}. Since uj ∈ C(X), suppose uj = Xaj for j = 1, . . . , m. The condition 𝐮j
T𝐮j′ = 0 implies 

that 𝐚𝐣
𝑻𝑿𝑻𝑿𝒂𝒋′ = 0, i.e., vectors aj and aj’ are XTX-orthogonal, which implies that aj and 

aj’ are orthogonal if, furthermore, either aj or aj’ is an eigenvector of XTX associated with 

a non-zero eigenvalue. Letting Un×m = [u1, . . . , um] and Ap×m = [a1, . . . , am], we have U 

= XA in matrix form with UTU = Im, but it is not necessarily true that UUT = In. The 

construction of matrix A may (e.g., in RR and PCR) or may not (e.g., in PLSR and CR) 

depend on the response y; again, our discussion will be restricted to the former scenario. 

It is worth noting that extracting m components reduces the original n × p problem into 

an n × m problem, hence achieving an automatic dimension reduction. 

 

2.1 Model Specification 

The general form of a WOCR model can be conveniently expressed in terms of its 

fitted vector 

 �̂� = ∑ 𝑤𝑗⟨𝒚, 𝒖𝑗⟩
𝑚

𝑗=1
𝒖𝑗 = ∑ 𝑤𝑗𝛾𝑗𝒖𝑗

𝑚

𝑗=1
,                                         (1) 

 

where γj = <y, uj> = yT uj is the regression coefficient and 0 ≤ wj ≤ 1 is the weight 

for the j-th  orthogonal  component  uj .   We shall reserve the notation ỹ for WOCR 

fitted vector. Denoting Wm× m = diag (wj), (1) becomes  

ỹ = UWUT y = XAWUT y                                               (2) 

in matrix form, recalling that U = XA. We will see that RR, PCR, and many others are all 

special cases of the above WOCR specification, with different choices of {uj, wj}. For 

example, if wj = 1 or W = Im, then (2) amounts to the OLS fitting, since ỹ = UUTy is 

the projection of y on C(U) in this case and C (U) = C (X). 

This WOCR formulation allows us to conveniently study its general properties. It 

follows immediately from (2) that the associated hat matrix H is 

 

H = UWUT = XAWUT.                                               (3) 

 

The resultant sum of square errors (SSE) is given by SSE   =yT (In − H)2y. Note 

that H is not an idempotent or projection matrix in general, neither is (I − H). Instead, 

(I − H)2 = I − 2H + H2 = I − U(2W − W2)UT . 

The diagonal matrix (2W − W2) has diagonal element {1 − (1 − wj)2}. Therefore, 

SSE =  yT y − yT Udiag{1 − (1 − wj)2}UT y 

       = ‖𝒚‖𝟐 − ∑ (2𝑤𝐽
2 − 𝑤𝑗

2)𝛾𝒋
𝟐

𝒎

𝒋=𝟏
                                                          (4) 

From (2), the WOCR estimate of β is 

�̃� =AWUT y                                                        (5) 

It follows that, given a new data matrix X, the predicted vector ỹ can be obtained as 

 

�̃�′ = 𝑿′�̃� = 𝑿′𝑨𝑾𝑼𝑻𝒚                                              (6) 

 

Although not further pursued here, many other quantities and properties of 

WOCR can be derived accordingly with the generic form, including 𝐸‖�̃� − 𝜷‖
2
as 

studied in Hoerl and Kennard (1970) and Hwang and Nettleton (2003). 
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2.2 Parameterizing the Weights 

The next important component in specifying WOCR is to parameterize the weights 

in W in a principled way. The key motivation stems from the observation that, 

compared to the original regressors in X, the orthogonal components in U are 

naturally ordered in terms of some measure. This ordering may be attributed to the 

observed variation in X that each uj is intended to account for. Another natural 

ordering is based on the coefficients |γj|. Because of orthogonality, the regression 

coefficient γj = <y, uj> remains the same for uj in both the simple regression and 

multiple regression settings. 

This motivates us to parameterize the weights wj based on the ordering measures. 

It is intuitive to assign more weights to more important components. To do so, wj can 

be specified as a function monotone in the ordering measure and parameterized with 

a low-dimensional vector λ. Two such examples are given in Figure1. Among many 

other choices, the usage of sigmoid functions will be advocated in this article because 

they provide a smooth approximation to the 0-1 hard-thresholding indicator function 

that is useful for the component selection purpose and they are also flexible enough to 

adjust for achieving improved prediction accuracy. In general, we denote wj = wj(λ). 

The vector λ in the weight function are essentially the tuning parameters. This 

parameterization expands these conventional modeling methods by providing several 

natural WOCR variants that are more attractive, as illustrated in the next section. 

Determining the tuning parameters λ is yet another daunting task. In common practice, 

one fits the model at a number of fixed λ values and then resorts to cross-validation or a 

model selection criterion to select the best tuning parameter. This can be computationally 

intensive, especially with massive data. When a model selection criterion is used, WOCR 

provides a computationally efficient way of determining the tuning parameter λ. The key 

idea is to plug the specification (1) in a model selection criterion and optimize with respect 

to λ. Depending on the scenarios, commonly used model selection criteria include the 

Akaike information criterion (AIC; Akaike, 1974), the generalized cross- validation (GCV; 

Golub, Heath, and Wahba, 1979), and the Bayesian information criterion (BIC; 

Schwarz,1978). The terms involved in these model selection criteria are essentially SSE 

and the degrees of freedom (DF). A general form of SSE is given by (4). For DF, we follow 

the generalized definition by Efron (2004): 

DF(λ) = E{tr(dŷ/dy)}                                                              (7) 

If neither the components U nor the weights wj depend on y, then DF, often termed as 

the effective degrees of freedom (EDF) in this scenario, can be computed as 

EDF = tr(H) = tr(UWUT ) = tr(WUT U) = tr(W) =∑ 𝒘𝒋
𝟐

𝒎

𝒋=𝟏
.  (8) 

 

When either components U or the weights wj depends on y, the computation of DF is 

more difficult and will be treated on a case-by-case basis. 
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Figure 1: Plot of the weights used  in  ridge  regression  (RR)  and  principal  components  

regression  (PCR)  as  a  function  of  the  singular  values  dj of  X:  (a)  w(d)  =   d2/(d2  +  λ)  in  

RR  for λ = 0.0, 0.1, 0.2, . . . , 5.0; (b) the discrete threshold w(d) = I(x ≥ c) in PCR with c = 50.0, 

approximated with the expit weight w(d) = expit{a (d − c)} for a = {0.1, 0.2, . . . , 50.0}.  

 

The specific forms of GCV, AIC, and BIC can be obtained accordingly. We treat the 

model selection as an objective function for λ.   The best tuning parameter λ̂ can then be 

estimated by optimization. Since λ is of low dimension, the optimization can be solved 

efficiently. This saves the computational cost in selecting the tuning parameter for a great 

deal. 

 

3. WOCR Models 

We show how several conventional models relate to WOCR with different weight 

specifications and different ways of constructing the orthogonal components U = XA 

and how the WOCR formulation can help improve and expand them. In this section, 

we first discuss how WOCR helps determine the optimal tuning parameter λ in ridge 

regression and make inference accordingly. Next, we show that WOCR facilitates an 

efficient computational method for selecting the number of components in PCR. The 

key idea is to approximate the 0-1 threshold function with a smooth sigmoid weight 

function. Several natural variants of RR and PCR that are advantageous in predictive 

modeling are then derived within the WOCR framework. 

 

3.1 Pre-Tuned Ridge Regression 

The ridge regression (Hoerl and Kennard, 1970) can be formulated as a penalized least 

squares (LS) optimization problem 

min ‖𝒚 − 𝑿𝜷‖2 + 𝜆‖𝜷‖2 
with tuning parameter λ. The solution yields the ridge estimator 
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�̂�𝑅 = (𝑿𝑇𝑿 + 𝜆𝑰𝑃)−1𝑿𝒚. 
The singular value decomposition (SVD) of data matrix X offers a useful insight into RR 

(see, e.g., Hastie, Tibshirani, and Friedman, 2009).  Suppose that the SVD of X is given 

by 

𝑿 = 𝑼𝑫𝑽𝑇 = ∑ 𝑑𝑗𝒖𝑗𝒗𝑗 ,
𝑚

𝑗=1
                                                 (9) 

where both U = [u1, . . . , um] ∈ Rn×m 
 
and V = [v1, . . . , vm] ∈  Rp×m have orthonormal 

column vectors that form an orthonormal basis for the column space C(X) and the row 

space C(XT ) of X, respectively, and matrix D = diag (dj) with singular values satisfying 

d1 ≥ d2 ≥ · · · ≥ dm > 0. Noticing that XT X = VD2VT ,  the  column  vectors  of  V  

yield  the  principal  directions.  Since Xvj = djuj, it can be seen that uj is the j-th 

normalized principal component. 

The fitted vector in RR conforms well to the general form (1) of WOCR, as established 

by the following proposition. The proof is deferred to the appendix. 

 

Proposition  3.1.  Regardless of the magnitude of {n, p, m}, the fitted vector 

 �̂� = 𝒙�̂�𝑹 in ridge regression can be written as 

 �̂�𝑹 = 𝑿(𝑿𝑇𝑿 + 𝜆𝑰𝑃)−1𝑿𝒚 = 𝑼𝑾𝑼𝑻𝒚 = ∑ 𝑑𝑗
2/(𝑑𝑗

2 + 𝜆)
𝑚

𝑗=1
⟨𝑦, 𝑢𝑗⟩𝑢𝑗𝑢𝑗,    (10) 

with W=diag{wj}and wj = dj
2/(dj

2 + λ) for j=1,…m. 

 

One natural ordering of the principal components ujs is based on their associated 

singular values dj. Hence, the weight function wj = w(dj; λ) = dj
2/(dj

2 + λ) is monotone 

in dj and parameterized with one single parameter λ. See Figure 1(a) for a graphical 

illustration of this weight function. In view of XV = UD, matrix A in WOCR is given 

as A = VD−1. 

Since RR is most useful for predictive modeling without considering component 

selection, GCV is an advisable criterion for selecting the best tuning parameter λ̂.  With 

our WOCR approach, we first plugging (10) into GCV to form an objective function for 

λ and then optimize it with respect to λ  ,On the basis of (4) and (8), the specific form 

of GCV(λ) is given up to some irrelevant constant, 

 

𝐺𝐶𝑉(𝜆) ∝
𝑆𝑆𝐸

(𝑛−𝐸𝐷𝐹)2
=

‖𝑦‖2−𝛴𝑗=1
𝑚 (𝑤𝑗

2−2𝑤𝑗)𝛾𝑗
2

(𝑛−𝛴𝑗=1
𝑚 𝑤𝑗)

2 .                                  (11) 

GCV has a wide applicability even in the ultra-high dimensions. Alternatively, AIC 

can be used instead. If limn→∞ m/n = 0, GCV is asymptotically equivalent to AIC(λ) 

∝  n ln(SSE) + 2·EDF. 

The best tuning parameter in RR can be estimated as λ̂ = argminλ GCV(λ). 

Bringing λ̂ back to (10) yields the final RR estimator. Since the tuning parameter is 

determined beforehand, we call this method ‘pre-tuning’. We denote this pre-tuned RR 

method as RR(d; λ), where the first argument d indicates the ordering on which basis 

the components are sorted and the second argument indicates the tuning parameter λ. 

We shall use this as a generic notation for other new WOCR models. As we shall 

demonstrate with simulation in Section4.1, RR(d; λ) provides nearly identical fitting 

results to RR; however, pre-tuning dramatically improves the computational efficiency, 

especially when dealing with massive data. 
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Remark 1. One statistically thorny issue with regularization is selection of the 

tuning parameter. First of all, this is a one-dimensional optimization, yet done in an 

inefficient way in the current practice by selecting a grid of values and evaluating the 

objective function at each value. The pretuned version helps amend this deficiency. 

Secondly, although the tuning parameter λ is often selected adaptively and hence is a 

statistic, no statistical inference is made for the tuning parameter unless within the 

Bayesian setting. The above pre-tuning method yields a convenient way of making 

inference on λ.  Since the objective function GCV(λ) is smooth in λ, the statistical 

properties of λˆ  follow well through standard M-estimation arguments. However, this 

is not part of the theme in this paper, thus we shall not pursue further. 

 

3.2 Pre-Tuned PCR 

PCR regresses the response on the first k (1 ≤ k ≤ m) principal components as 

given by the SVD of X in (9). The fitted vector in PCR can be rewritten as 

 

�̂�𝑃𝐶𝑅 = ∑⟨𝒚, 𝒖𝑗⟩𝒖𝑗

𝑘

𝑗=1

= ∑ 𝛿𝑗𝛾𝑗𝒖𝑗

𝑚

𝑗=1

, 

where γj = <y, uj> and δj = I(j ≤ k) for j = 1, . . . , m. Clearly, PCR can be put in the 

WOCR form with wj = δj. Conventionally, the ordering of principal components is 

aligned with the singular values {dj}; thus we may rewrite δj = δ(dj; c) = I(dj ≥ c) with 

a threshold value c = dk if k is known. Either the number of components k or the 

threshold c is the tuning parameter. Selecting the optimal k by examining many PCR 

models with leading components is a discrete process. 

To facilitate pre-tuning, we replace the indicator weight δ(x; c) = I(x ≥ c) with a 

smooth sigmoid function. While many other choices are available, it is convenient to 

use the logistic or expit function π(x) = expit(x) = {1 + exp(−x)}-1 so that 

wj = π(dj; a, c) = expit{a(dj − c)}                       (12) 

 

Figure 1(b) plots expit{a(x − c)} with c = 50.0 for different choices of a > 0. It 

can be seen that a larger a value yields a better approximation to the indicator function 

I(x ≥ 0), while a smaller a yields a smoother function which is favorable for 

optimization. In order to emulate PCR, the parameter a can be fixed a priori at a 

relatively large value.  Our numerical studies show that   the performance of the 

method is quite robust with respect to the choice of a. On that basis, we recommend 

fixing a in the range of [1, 100]. 

Since PCR involves selection of the optimal number of PCs, BIC, given by BIC(λ) ∝  

n ln(SSE)+ ln(n) · DF, is selection-consistent (Yang,2005) and often has a superior 

empirical performance in variable selection. The hat matrix H in PCR is idempotent, so 

is In − H. Thus the SSE can be reduced a little bit as yT (In − H)y, which then can be 

approximated by substituting δ(dj; c) with π(dj; a, c). The DF can be approximately in a 

similar way as DF = 𝑘 = ∑ 𝛿(𝑑𝑗; 𝑐)𝑗 ≈ ∑ 𝜋(𝑑𝑗; 𝑎𝑐)𝑗 . This results in the following form 

for BIC 

𝐵𝐼𝐶(𝑐) ∝ 𝑛𝑙𝑛(‖𝑦‖2 − ∑ 𝑤𝑗𝛾𝑗
2

𝑚

𝑗=1
) + 𝑙𝑛(𝑛) ∑ 𝑤𝑗

𝑚

𝑗=1
 ,                                  (13) 

 

which is  treated  as  an  objective  function  of  c.   We estimate the best cutoff point ĉ  by 
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optimizing BIC(c) with respect to c. This is a one-dimensional smooth optimization 

problem with a search range c ∈ [d1, dm].  Once  ĉ  is  available,  we  use  it  as  a  threshold  

to  select  the  components  and  fit a regular PCR. We denote this pre-tuned PCR approach 

as PCR(d; a). Compared to the discrete selection in PCR, PCR(d; a) is computationally 

more efficient. 

 

3.3 WOCR Variants of RR and PCR Models 

Not only can many existing models be cast into the WOCR framework, but it also 

suggests new favorable variants. We explore some of them. One immediate variant of 

PCR is to leave both a and c free in  (13).  More  specifically,  we  first  obtain  (â, ĉ) = 

argmina,c BIC(a, c)  and  then  compute  the WOCR  fitted  vector  in  (1)  with  weight  wj  

= exp{â(dj − ĉ)} for  j  = 1, . . . , m.  This will give PCR more flexibility and adaptivity 

and hence may lead to improved predictive power. In this approach, selecting 

components is no longer a concern; thus GCV or AIC can be used as the objective 

function instead. We denote this approach as PCR(d; a, c). 

The principal components are constructed independently from the response. Artemiou 

and Li (2009) and Ni (2011) argued that the response tends to be more correlated with the 

leading principal components. However, this is usually not the case in reality; see, e.g., 

Jollife (1982) and Hadi and Ling (1998) for real-life data illustrations. Nevertheless, there 

has not been a principled way to deal with this issue in PCR. WOCR can provide a 

convenient solution:  one simply bases the ordering of uj on the regression coefficients γj 

and defines the weights wj via a monotone function of |γj| or, preferably, γ2. Doing so 

will induce dependence on the response to the weights. As a result, the associated DF has 

to be computed differently, as established in Proposition3.2. 

 
Proposition 3.2. Suppose that the WOCR model (1) has orthogonal components uj 

constructed independently of y and weights wj = w(γ2; λ), where w(·) is a smooth 

monotonically increasing function and λ is the parameter vector. Its degrees of freedom 

(DF) can be estimated as 

𝐷�̂� = ∑ (2𝛾𝑗
2�̇�𝑗 + 𝑤𝑗)

𝑚

𝑗=1
                                            (14) 

Where �̇�𝑗 = 𝑑𝑤(𝛾𝑗
2; 𝜆)/𝑑(𝛾𝑗

2). 

 

Clearly both PCR and RR can be benefited from this reformulation. As a variant of 

RR, the weight now becomes wj  = w(γ2; λ) = γ2/(γ2 + λ) and hence ẇj  = λ/(γ2 + λ)2.  

It follows that the estimated DF is 

𝐷�̂� = ∑(𝛾𝑗
4 + 3𝜆𝛾𝑗

2)/(𝛾𝑗
2 + 𝜆)

2
𝑚

𝑗=1

 

The best tuning parameter λ̂ can be obtained by minimizing GCV. Using similar 

notations as earlier, we denote this RR variant as RR(γ; λ). It is worth noting that RR(γ; 

λ) is, in fact, not a ridge regression model. Its solution can no longer be nicely 

motivated by a regularized or constrained least squares optimization problem as in the 

original RR. But what really matters in these methods is the predictive power.  By 

directly formulating the fitted values ŷ, the WOCR model (1) facilitates a direct and 

flexible model specification that focuses on prediction. 
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Table 1: WOCR Variants of ridge regression (RR) and principal components regression 

(PCR) models, both based on the normalized principal components {uj : j = 1, . . . p}. 

 
For PCR, the weight becomes 𝑤𝑗 = 𝜋(𝛾𝑗

2; 𝑎, 𝑐), hence �̇�𝑗 = 𝑎𝑤𝑗(1 − 𝑤𝑗) and 

𝐷�̂� = ∑ 𝑤𝑗(2𝑎𝛾𝑗
2 + 1 − 2𝑎𝑤𝑗𝛾𝑗

2)

𝑚

𝑗=1

 

 

Depending on whether or not we want to select components, we may fix a > 0 at a 

larger value or leave it free. This results in two PCR variants, which we denote as PCR(γ; 

c) and PCR(γ; a, c), respectively. 

Table1summarizes the WOCR models that we have discussed so far. Among them, 

RR(d; λ)  and PCR(d; c) resemble the conventional RR and PCR, yet with pre-tuning. 

Depending on the analytic purpose, we also suggest a preferable objective function for 

each WOCR model. In general, we have recommended using GCV for predictive 

purposes, in which scenarios AIC can be used as an alternative. AIC is equivalent to GCV 

if limn→∞ p/n = 0, both being selection-efficient in the sense prescribed by Shibata (1981). 

On the other hand, if selecting components is desired, using BIC is recommended. 

 
Remark 2. It is worth noting that the WOCR model PCR(γ; c) has a close connection 

with the  MIC (Minimum approximated  Information  Criterion) sparse estimation  method  

of Su (2015)  and Su et al. (2016,2018). MIC yields sparse estimation in the ordinary 

regression setting by solving a p-dimensional smooth optimization problem 

min𝛾   𝑛 ln‖𝒚 − 𝑿𝑾𝜸‖2 + log(n) tr(𝐖), 

where W=diag(wj) with diagonal elements wj=tanh(a γj
2 ) approximating the indictor 

function I(γ2 ≠  c). Comparatively, PCR(γ;c) solves a one-dimensional optimization 

problem 

minc   𝑛 ln‖𝑦 − 𝑼𝑾𝜸‖2 + log(n) 𝑡𝑟(𝑾), 
 

where W=diag(wj) with diagonal elements wj=expit(a(γj
2 − c))   approximating I(γj

2 ≥ c) 

The substantial simplification in PCR(γ; c) is because of the orthogonality of the design 

matrix U. Hence the coefficient estimates γ in multiple regression are the same as those in 

simple regression and can be computed ahead. Furthermore, the orthogonal regressors uj, 

i.e., the columns of U, are naturally ordered by γ2. This allows us to formulate a one-

parameter smooth approximation to the indicator function I(γ2 ≥ c), which achieves 

selection of uj in this PCR variant. 
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3.4 Implementation: R Package WOCR 

The proposed WOCR method is implemented in an R package WOCR. The 

current version is hosted on GitHub at https://github.com/xgsu/WOCR. The main 

function WOCR() has an argument model= with options in RR.d.lambda, 

RR.gamma.lambda, PCR.d.c, PCR.gamma.c, PCR.d.a.c, and PCR.gamma.a.c, which 

correspond to the six WOCR variants listed in Table 1. Among them, RR(d; λ), RR(γ; 

λ), PCR(d; c), and PCR(γ; c) each involve a one-dimensional smooth optimization. 

This can be solved via the Brent (1973) method, available in the R function 

optim(). Owing to the nonconvex nature, dividing the search range of the decision 

variable can be helpful. The other two methods, PCR(d; a, c) and PCR(γ; a, c), each 

involve a two-dimensional smooth nonconvex optimization. Mullen (2014) provides a 

comprehensive comparison of many global optimization algorithms currently available in 

R (R Core Team,2018). We have followed her suggestion to choose the generalized 

simulated annealing method (Tsallis and Stariolo, 1996), available from the R package 

GenSA (Xiang et al., 2013).  More details of the implementation can be found in the 

help file of    the WOCR package. 

 

[1] Simulation Studies 

This section presents some of the simulation studies that we have conducted to 

investigate the performance of WOCR models and its comparison with other methods. 

 

4.1 Comparing Ridge Regression with RR(d; λ) 

We first compare the conventional ridge regression with its pretuned version, i.e., 

RR(d; λ). The data are generated as follows. We simulate the design matrix X ∈ Rn×p 

from a multivariate normal distribution N (0, Σ) with Σ = (σjj’) and σjj’ = ρ|j−j’| for 

j, j’= 1, …, p. Apply SVD to extract matrix U and D. Then we form the mean response 

as 

Model A: y =∑ 𝐛𝐣𝐮𝐣 + ε with m = p ∧  n and ε ∼  N(0, σ2In),             (15) 

where b = (bj) = [m, m − 1, . . . , 1]T /10. For each simulated data set, we apply RR (as 

implemented by the R function lm.ridge) and RR(d; λ), both selecting λ with 

minimum GCV. 

To compare,  we  consider the mean square error (MSE) for prediction.  To this end, a 

test data set of 500 observations is generated in advance.  The fitted RR and RR(d; λ) 

from each simulation  run will be applied to the test set and the MSE is obtained 

accordingly. The ‘best’ tuning parameter λ̂  is also recorded.  We only report the results 

for the setting ρ = 0.5, σ2 = 1, p = 100, b = (bj) =(p, p − 1, . . . , 1)T /10. Two sample 

sizes n ∈  {50, 500} are considered. For each model configuration, a total of 200 

simulation runs are considered. 

In the simulation, we found how to specify the search points could be a problem in the 

current practice of ridge regression. Initially, we found the ridge regression gave inferior 

performance com- pared to RR(d; λ) in many scenarios. However, after adjusting its 

search range, the results became 

https://github.com/xgsu/WOCR
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Figure 2: CPU Computing time comparison between ridge regression (RR) and its WOCR variant 

RR(d; λ) in selecting the best λ via minimum GCV: (a) with varying p and fixed  n = 100 and (b)  

with varying p and fixed n = 100. 

 

nearly identical to what RR(d; λ) had. This point will be further illustrated in 

Section4.3. It is also worth noting that the minimum GCV tends to select a very small 

λ in the ultra-high dimensional case with p > n. 

To demonstrate the computational advantages of RR(d; λ) over RR, we generated 

data from the same model A in (15). We first fix n = 100 and let p vary in {10, 20, . . . , 

100, 200, . . . 1000}. And then we fix p = 100 and let n vary in {10, 20, . . . , 100, 200, . . . , 

1000, 2000, . . . , 10000}. For each setting, we recorded the CPU computing time for RR 

and RR(d; λ) averaged from three simulation runs. We have set the search range for λ 

as {0.1, 0.2, . . . , 100}. The results are plotted in Figure2(a) and2(b). It can be seen that 

RR(d; λ) is much faster than RR, especially when either p or n gets large. 

 

4.2 Comparing PCR Variants 

Next we compare PCR with its WOCR variants. Data are generated from Model A in 

(15) with two sets of dimensions: {n = 1, 000, p = 200} and {n = 200, p = 1, 000}, of 

which the latter illustrates a p > n scenario. We consider two choices of coefficients b = 

(bj) ∈ Rpas follow 

Model A1: bj = {

10                  𝑗 = 1, . . . ,5
−10                   𝑗 = 6, . . . ,10  
    0                      𝑗 = 11, . . . , 𝑝

 

Model A2: bj = {

0                   𝑗 = 1, . . . ,50
10                  𝑗 = 51, . . . ,55

−10                   𝑗 = 56, . . . ,60  
0                     𝑗 = 61, . . . , 𝑝

                        (16) 

 

In Model A1, the underlying assumption in PCR that the leading principal components 

associated  with larger singular values dj are more important in predicting y is met, while 

this is not case in  Model A2. In both models, the true number of important components 

is 10. 
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For PCR, we included four methods for selecting the optimal number of components: 

10-fold cross validation (CV) as implemented in R Package pls (Mevik and Wehrens, 

2007), AIC, BIC, and LASSO (Tibshirani, 1996), following the suggestion of a referee. 

Owing to high dimensions, best subset selection with AIC or BIC is not available.  Thus 

we have restricted their selection process to conform to the PCR assumption by 

considering subsets of leading components only. As a result, only LASSO is able to select 

components on basis of |γj|. With orthogonal components, the LASSO solution has an 

explicit form �̂�j
𝐿𝐴𝑆𝑆𝑂 = 𝑠𝑔𝑛(𝛾𝑗)(|𝛾𝑗| − 𝜆)

+
 with a tuning parameter λ ≥ 0 and x+ = 0 ∨ x. 

The 10-fold CV as implemented in R Package ncvreg (Breheny, 2018) is used to 

determine the optimal tuning parameter λ in LASSO. For comparison, all four WOCR 

variants for PCR in Table1are included. In PCR( d; c) and PCR(γ; c), the fixed 

parameter a = 50 is used as default. 

A total of 200 simulation runs are used for each model configuration. For a generated 

dataset, the number of selected components is recorded for every method. To investigate 

predictive performance, a test sample of size 500 is generated beforehand and the resultant 

mean square error (MSE) is obtained for each method in each simulation run. Table 2 

reports the averaged MSE (± SE) and the median number of selected components out of 

200 simulation runs. 

In terms of component selection, PCR(γ; c) clearly stands out prominently. It is not 

surprising that PCR with AIC or BIC, and PCR(d; c) may work well in Model A1, but 

fail badly in Model A2, where the assumption underlying PCR is unmet. BIC is better 

than AIC in selecting components for PCR in most settings. The 10-fold cross 

validation tends to overfit by selecting more components than necessary. In terms of 

prediction accuracy, PCR(γ; a, c) wins out substantially, owing to its adaptability to 

γj and flexibility in weighting other components with parameters (a, c). LASSO also 

does well, but it performance has been compromised by its biased solution with soft 

thresholding. The PCR(γ; c) method comes next; it seems to suffer from its rigid 

selection of components. We have also experimented with the different a choices for 

PCR(d; c) and PCR(γ; c); results are not reported here. For any reasonably large value 

of a ∈ [1, 100], the performances of PCR(d; c) and PCR(γ; c) are quite stable with 

some minor variations. On this basis, we recommend simply fixing a = 50 for 

standardized predictors. 

 

Table 2: Comparison of PCR and its WOCR variants. Data are generated from Model A. 

Performance measures include the averaged mean square error (MSE) for prediction (average ± 

standard error), and the median number of selected components by each method, out of 200 

simulation runs  for each configuration. 
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4.3 Predictive Performance Comparisons 

 
To assess the predictive performance of all WOCR models, we generate data of size 

n = 500 from two nonlinear models in Friedman(1991), as given below: 

Model B: y= 0.1 exp(4x1) + 4expit{20(x2 − 0.5)} + 3x3 + 2x4 + x5 + ε;     (17)  

    Model C: y=   10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + x5 + ε   .                        (18) 

The covariates of dimension p are independently generated from the uniform[0,1] 

distribution and the random error term ε follows N (0, 1). In both models, only the first 

five predictors are involved in the mean response function. Two choices of p ∈ {5, 50} are 

considered. For each simulated data set, ridge regression, PCR, and six WOCR variants in 

Table1are trained with the default or recommended settings. In particular, we fix the scale 

parameter a = 50 in PCR(d; c) and PCR(γ; c).  To apply ridge regression, we have used λ 

∈ {0.01, 0.02, . . . , 200}. To assess the predictive performance, a test data set of 500 

observations is generated and each trained model is applied to make predictions. The 

results are integrated over 200 simulation runs. Table3presents the prediction MSE (mean  

and SE) and the median number of selected components by each method. 

First of all, the ridge regression appears to provide the worst MSE results in several 

scenarios.  This is again because of the deficiencies involved in the current practice of 

ridge regression. Ridge estimators are computed for   discrete set of λ values within a user-

specified range, which may not even include the true global GCV minimum point.   
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Comparatively, RR(d; λ) provides a computationally efficient and reliable way of 

finding the ‘best’ tuning parameter. We could have refit the ridge regression  according  

to  λ̂  suggested  by  RR(d; λ).  Another  interesting  observation  is  that  RR(γ; λ) tends to 

give more favorable results than RR(d; λ), which comes as no surprise since sorting the 

components according to |γj| borrows strength from the association with the response. 

Among PCR variants, neither PCR(d; c) nor PCR(γ; c) performs well. On the basis of 

BIC, they are aimed to find a parsimonious true model when the true model is among the 

candidate models, which, however, is not the case here. In terms of prediction accuracy, it 

can be seen that RR(γ; λ), PCR(d; a, c), and PCR(γ; a, c) are highly competitive, all 

yielding similar performances to PCR. Note that PCR determines the best tuning 

parameter via 10-fold cross-validation, while PCR(d; a, c) and PCR(γ; a, c) are based on 

a smooth optimization of GCV and hence are computationally advantageous. In the 

simulation settings under consideration, PCR has selected all components and hence 

simply amounts to the OLS fitting. 
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5. Real Data Examples 
 

For further illustration, we apply WOCR to two well-known data sets, which are 

BostonHousing2 and concrete. The Boston housing data relate to prediction the 

median value of owner-occupied homes for 506 census tracts of Boston from the 1970 

census. We used the corrected version BostonHousing2 available from R package 

mlbench (Leisch and Dimitriadou, 2012), with dimension n = 506 observations and 

p = 17 predictors. The concrete data are available from the UCI Machine Learning 

Repository (https://archive.ics.uci.edu/ml/datasets/). The goal of this data set is to 

predict the concrete compressive strength based on a few characteristics of the 

concrete. The data set has n = 1, 030 observations and p = 8 predictors. 

Figure 3 plots the singular values dj and the regression coefficients in absolute 

value, |γj|, for both data sets. It can be seen that dj decreases gradually as expected. The 

bar plot of |γj|, however, shows different patterns. In the BostonHousing2 data, the very 

first component is highly correlated with the response, while others shows alternate 

weak correlations. In the concrete data, the third component is most correlated with 

the response, followed by the 6th and 5th principal components. The first two components 

are only very weakly correlated.  This data set shows a good example where the top 

components are not necessarily the most relevant components in terms of association with 

the response. 

 

 

 
Figure 3: Bar plots of the singular values dj and the absolute values of coefficients |γj| for six real 

data sets. 

 

To compare different models, a unified approach is taken. We randomly partition the 

data into a training set and a test set with a ratio of approximately 2:1 in sample sizes. The 

training set is used to construct models and then the constructed models are applied to the 

0
 0
 

https://archive.ics.uci.edu/ml/datasets/
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test set for prediction. The default settings in Table1are used for each WOCR, while the 

default 10-fold CV method is used to select the best tuning parameter for ridge regression 

and PCR. We repeat this entire procedure for 200 runs. The prediction MSE and the 

number of components for every method is recorded for each run. The results are 

summarized in Table4. 

 

Table 4: Comparison on predictive accuracy of ridge regression (RR), principal components 

regression (PCR) with their WOCR variants on two real data sets: BostonHousing2 and concrete. 

The best performers are highlighted in boldface. 

 

 
 

While most methods provide largely similar results, some details are noteworthy. For 

ridge regression, RR(d; λ) outperforms the original ridge regression slightly but it is 

much faster in computation time. Comparatively, RR(γ; λ) improves the prediction 

accuracy by basing the weights on γj’s for the concrete data, where the top components 

are not the most relevant  to the response as shown  in Figure3. Among the PCR 

models, both PCR( d; a, c) and PCR(γ; a, c) are among top performers in terms of 

prediction. 

Neither PCR(d;c) nor PCR(γ;c) performs as well as others in terms of prediction 

accuracy owing to their different emphasis. Concerning component selection, PCR(γ;c) 

yields simpler models than PCR(d; c) and PCR. This is determined by the nature of each 

method and the data sets. Referring to Figure 3, PCR(γ;c) clearly helps extract 

parsimonious models with simpler structures. 

6. Discussion 

We have proposed a new way of constructing predictive models based on orthogonal 

components extracted from the original data. The approach makes efficient use of the 

natural monotonicity associated with those orthogonal components. It allows 

streamlined determination of the tuning parameters. The framework results in several 

interesting alternative models to RR and PCR. These new WOCR variants make 

improvement on either predictive performance or selection of the components. 

Overall speaking, RR(γ; λ), PCR(d; a, c), and PCR(γ; a, c) are highly competitive in 
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terms of predictive performance. PCR(γ; c) better aims for model parsimony by 

making selection on the basis of association with the response. 

WOCR can be implemented with more flexibility. First of all, we have advocated the 

use of logistic or expit function in regulating the weights. The logistic function 

expit{a(x−c)} is rotationally symmetric about the point (c, 0.5). To have more flexible 

weights, we may consider a generalized version of the expit function, gexpit(x; a, b, c) = 

1/ [1 + b exp{−a(x − c)}] . The range of the gexpit function remains (0, 1). Since its value 

at x = c is now 1/(1 + b), the parameter b > 0 changes the rotational symmetry unless b = 

1. Secondly, selecting the number of principal components is a major concern in PCR. We 

have used BIC in both PCR(d; c) and PCR(γ; c) for this purpose. BIC is derived in the 

fixed dimensional setting (i.e., fixed p and n → ∞). It is worth noting that the dimension 

in the WOCR family is m instead of p. If m is close to n, the modified or generalized BIC 

(see, e.g., Chen and Chen,2008) can be used instead. In particular, the complexity penalty 

[ln {ln(m)} ln(n)] suggested by Wang,  Li, and Leng(2009) to replace ln(  n) in (13) for 

diverging dimensions fits well  for WOCR models since the dimension m cannot exceed 

n.  If there is prior information or belief   that the optimal k is less than some pre-specified 

number, it is helpful to further restrain the search range of c on the basis of {dj : j = 1, . . . , 

m}. 

The WOCR model framework generates several future research revenues.  First of all, 

WOCR can be directly applicable to regression with components after a varimax rotation 

(Kaiser, 1958). WOCR can also be extended to PLSR and CR models. In those approaches, 

extraction of the orthogonal components takes associations with the response into 

consideration; thus both matrices A and W relate to y. To select the tuning parameter, v-

fold cross validation can be conveniently used on the basis of Equations (5) and (6). To 

implement pre-tuning, finding the degrees of freedom involved in these approach 

becomes more complicated but remains doable by following Krämer and Sugiyama 

(2011). The weighting and pre-tuning strategy introduced in WOCR may help make 

improvement in terms of predictive accuracy, computational speed, and model parsimony 

for these methods. Secondly, the simulation results for Model B in (17) and Model C 

in (18) with p = 50 presented in Section4.3highlight the variable selection issue in high-

dimensional modeling.  To this end, Bair (2006) considered a univariate screening step; 

Ishwaran and Rao (2014) showed the generalized ridge regression (Hoerl and 

Kennard,1970) can help suppress the influence of unneeded predictors in certain 

conditions. Both approaches may be incorporated into WOCR to improve its predictive 

ability. Finally, WOCR can be extended to generalized linear models, e.g., via a local 

quadratic approximation of the log-likelihood function. The kernel trick (see, e.g., Rosipal 

and Trejo 2002, Rosipal, Trejo, and Cichoki, 2011, and Lee and Liu, 2013)  can be 

integrated into WOCR as well. 

APPENDIX 

A Proof 

Proof of Proposition (3.1). The proof when m = p (i.e., p ≤ n and hence V−1 = VT) can 

be found in, e.g., Hastie, Tibshirani, and Friedman (2009).  We consider the general case 

including the p > n scenario. With the general SVD form (9) of X, we have UT U = VT V 

= Im, but it is not necessarily true that UUT = In, nor for VVT = Ip. 

First, plugging the SVD of X into ŷR yields 
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ŷR = UDVT(VD2VT  + λIp)
-1VDUT y.                               (19) 

Define V' = [v1, · · · , vm, vm+1, . . . , vp] ∈ Rp×p by completing an orthonormal basis for Rp. 

Hence V' is invertible with V'−1 = V'T . Also define U0 = [U, O] ∈ Rp×p and D0 = 

diag{d1, . . . , dm, 0, . . . , 0} ∈ Rp×p  by appending 0 matrix O or components to U and D. 

Then it can be easily checked that ŷR in (19) can be rewritten as 

𝒚 ̂ =  𝑼𝟎𝑫𝟎𝑽′𝑻 (𝑽𝑫𝟎
𝟐  𝑽𝑻 + 𝝀𝑰𝒑)

−𝟏
𝑽′𝑫𝟎𝑼𝟎

𝑻  𝒚 

=  𝑼𝟎𝑫𝟎𝑽′𝑻 {𝑽(𝑫𝟎
𝟐 + 𝝀𝑰𝒑)𝑽′𝑻}−𝟏𝑽′𝑫𝟎𝑼𝟎

𝑻  𝒚 

=  𝑼𝟎𝑫𝟎𝑽′𝑻𝑽 ′ (𝑫𝟎
𝟐 + 𝝀𝑰𝒑)

−𝟏
𝑽′−𝟏𝑽′𝑫𝟎𝑼𝟎

𝑻  𝒚 

=  𝑼𝟎𝑫𝟎(𝑫𝟎
𝟐 + 𝝀𝑰𝒑)

−𝟏
𝑫𝟎𝑼𝟎

𝑻  𝒚 

with W = diag{dj
2/(dj

2 + λ)}. 

 

 

Proof of Proposition (3.2). The WOCR model in this case is �̃� = 𝛴𝑗=1
𝑚 𝑤𝑗𝛾𝑗𝒖𝑗, with 𝛾𝑗 =

𝒖𝑗
𝑇𝒚, 𝑤𝑗 = 𝑤(𝛾𝑗

2; 𝜆).  It follows by chain rule that 

𝑑�̃�

𝑑𝑦
= 𝛴𝑗=1

𝑛 (2𝛾𝑗
2 �̇�𝑗 + 𝑤𝑗)𝒖𝑗𝒖𝑗

𝑇 = 𝑼 𝑑𝑖𝑎𝑔(2𝛾2𝑤�̇� + 𝑤𝑗)𝑼𝑇 . 

Following the definition of DF by Efron (2004), an estimate is given by 

tr(
d�̃�

d𝐲
) = diag(2γj

2 ẇj + wj)𝐔T𝐔 = Σj=1
m (2γ2wj̇ + wj), 

which completes the proof. 
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