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ABSTRACT 

We propose distributed generalized linear models for the purpose of 

incorporating lagged effects. The model class provides a more accurate 

statistical measure of the relationship between the dependent variable and a 

series of covariates. The estimators from the proposed procedure are shown to 

be consistent. Simulation studies not only confirm the asymptotic properties of 

the estimators, but exhibit the adverse effects of model misspecification in terms 

of accuracy of model estimation and prediction. The application is illustrated by 

analyzing the presidential election data of 2016. 
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1. Introduction 

We propose a new model class, which is motivated by incorporating lag effects of 

covariates on the dependent variable. Our paper aims at providing a more accurate statistical 

analysis for the relationship, for example, between the outcome of an event that occurs once 

every few years and the covariates that have observations every year. Lag effects have 

received a great deal of attention since Almon's paper, see Almon (1965). She proposed linear 

distributed lag models to model the dependence of time series on several regressors from a 

correlated sequence. In particular, she predicted quarterly capital expenditures in 

manufacturing industries from present and past appropriations. Greene (2002, Chapter19) is a 

comprehensive reference for a detailed summary of the development of this model class. 

Gasparrini et al (2010) extended the ideas to the generalized linear model setting where a 

dependent variable from an exponential family was linked to covariates from a time series. 

They modeled the relationship between the mortality count, which follows a Poisson 

distribution, and temperatures. Rushworth et al (2013) applied a distributed lag model to 

analyze hydrological data. 

We propose to study generalized linear distributed lag models (GLDLM). The proposed 

model class is closely related to generalized linear models and longitudinal models with 

discrete response variables. However, the advantage of our model class is that it can be used 

to describe how much a link, which is function of the mean of a dependent variable 𝑦, is 

linearly explained by a sequence of random covariates {𝑥𝑡−𝑘; 0 ≤ 𝑘 ≤ 𝐾} and some other 

covariates {𝑧𝑗}
𝑗=1

𝐽
. The covariates 𝒛 = (𝑧1, 𝑧2, … , 𝑧𝐽)

𝑇
can be either fixed or random: in the 

paper, we assume they are random and independent, and they are also independent of 𝒙 =
(𝑥1, 𝑥2, … , 𝑥𝑡−𝐾)𝑇. Throughout the paper, we use lower case letters to denote both random 

variables and their realizations, when the meaning is obvious according to the context. The 

conditional density function of 𝑦 belongs to an exponential family defined by 

  ( | , ; ) exp ( ) ( ) ,f y y b c y    x z  (1) 

where the link 𝜂 = 𝑔(𝜇)  is function of 𝜇 = E(y|𝐱, 𝐳) , 𝑏(𝜂)  and 𝑐(𝑦)  are respectively 

functions of 𝜂 and 𝑦 only, and the dependence of on the covariates 𝒙 and 𝒛 is through 𝜂. The 

density function ( | , ; )f y x z  satisfies some regularity conditions, which can be found, for 

example, in Fahrmeir and Kaufmann (1985). 

For the density function in (1), we focus on the canonical link function which is a function 

of the mean of the dependent variable and which is also a linear function of the covariates (c.f. 

McCullagh and Nelder (1989)): 

 
0 1

0 1

K J

k t k j j

k j

x z    

 

    . 
 

(2) 

A generalized linear model (GLM) is a special case of (2), in that a GLDLM becomes a GLM 

when 𝐾 = 0. It happens that the dependent variable is observed only once while a covariate 

has several data points in the same period. To the best of our knowledge, there is no systematic 

discussion on analysis of such data, whereas many phenomena exhibit such a pattern. For 

instance, a college student who drops out due to poor academic performance has usually been 
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struggling for several semesters; a patient usually has been suffering high blood pressure for 

a while before a stroke happens; a presidential election happens every four years while some 

variables that could have a significant impact on the outcome have observations every year. 

If the model just includes one variable in the sequence, our simulation studies in Section 3 

show that the results could be very misleading. The statistical analysis for such data is much 

more informative and provide a more accurate prediction if the information in previous years 

is included. 

However, it is known that two highly correlated covariates could result in multicollinearity. 

The adverse consequence of multicollinearity includes, for example, instability of parameter 

estimates and distortion of standard errors. Cheng and Wu (2006) tackled multicollinearity 

using partial least squares regression an Kutner et al (2005) is a good reference for this issue 

in linear regression models. Many researchers have paid attention to the issue and have 

proposed some methods to overcome it for generalized linear models. For example, 

Mackinnon and Puterman (1989) proposed a method to detect it, Shen and Gao (2008) 

provided a solution by a double penalized maximum likelihood approach, and Huanga et al 

(2016) attempted to solve the problem by a new collinearity diagnostic tool based on variance 

inflation factor. We utilize the built-in correlated structure of the sequence and propose an 

estimation procedure so that the estimators not only possess asymptotic normality under very 

general conditions, but they quantify more accurately how much the dependent variable relies 

on a covariate in the past as well. Sometimes such information is important for the purpose of 

avoiding negative outcomes. 

The advantages of the new model class are explored by simulation studies, which show 

that taking the correlated covariates into account can improve accuracy of both prediction and 

estimation substantially. In most cases of the simulations, the reductions of the standard errors 

of the estimates and the increases of the relative frequencies of making correct prediction are 

not trivial. 

The paper is organized as follows. The estimation procedure of the model parameters 

along with theoretical justifications is discussed in Section 2; the intensive simulation studies 

and data analysis are presented in Sections 3-4; the paper is concluded by remarks in Section 

5. The proofs for asymptotics of the estimators in Section 2 is given in the appendix. 

 

2. Estimation for Model Coefficients 

We assume that {𝑥𝑡} is an autoregressive time series with order one (AR(1)) satisfying 

1t t tx x    

where {𝜖𝑡}  is independent and identically distributed white noise with 𝐸(𝜖𝑡) = 0  and 

𝑣𝑎𝑟(𝜖𝑡) = 𝜎2. Denote 𝑚 = 𝐾 + 𝐽 + 2. Note that if the true value 𝜙0 is known, (2) can be 

written as 

 1

0 1 1 1

0 1

( )?
K J

k t k K t K K j j

k j

x z      


     

 

      d  
 

(3) 

where 𝜂(𝜃) is used to emphasize the dependence of 𝜂  on 𝜃 = (𝜃0, … , 𝜃𝑚−1)𝑇 , the 𝑚 × 1 

vectors 𝑑 = (1, 𝑑1, … , 𝑑𝑚−1)𝑇 =(1, 𝜖𝑡, … , 𝜖𝑡−𝐾+1，𝑥𝑡−𝐾, 𝑧1, … , 𝑧𝐽)
𝑇

 and the parameter 𝜃  is 

determined by {𝜔0, 𝜙, 𝛽1, … , 𝛽𝐾+1, 𝜔1, … . , 𝜔𝐽}. In particular, 𝛽1 = 𝜃1 and for 1 ≤ 𝑘 ≤ 𝐾, 
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For the canonical link function, it is known that the density function in (1) implies that the 

conditional mean of 𝑦  is 𝜇(𝜃) =
𝜕𝑏(𝜂(𝜃))

𝜕𝜂
 and the conditional variance 𝑉(𝜃) =

𝜕2𝑏(𝜂(𝜃))

𝜕𝜂2 =

𝜕𝜇(𝜃)

𝜕𝜂
 given {𝑥, 𝑧}, and thus they depend on the parameter 𝜃. 

Compared with (2), model (3) has several advantages. First, (2) confounds the dependence 

of the link on 𝑥𝑡−𝐾 due to the correlation of 𝑥𝑡−𝐾 and {𝑥𝑡−𝐾}𝑘=0
𝐾 , whereas (3) reveals how 

much 𝜂 relies on 𝑥𝑡−𝐾; secondly, the estimates of (3) are much more stable since the design 

matrix does not have multicollinearity; thirdly, the estimators of (3) are efficient as illustrated 

later --- they are asymptotically normally distributed. 

Suppose there are 𝑛  independent observations {𝑦𝑖, 𝑥𝑖 , 𝑧𝑖}𝑖=1
𝑛 with 𝑥𝑖 = (𝑥𝑖,𝑡, … , 𝑥𝑖,𝑡−𝐾)

𝑇
 

and 𝒛𝑖 = (𝑧𝑖,𝑡, … , 𝑧𝑖,𝑡−𝐾)
𝑇
, and the canonical link function for the 𝑖-th subject is 

𝜂𝑖(𝜃) = 𝜃0 + ∑ 𝜃𝑘+1𝜖𝑖,𝑡−𝑘 + 𝜃𝐾+1𝑥𝑖,𝑡−𝐾 + ∑ 𝜃𝐾+1+𝑗𝑧𝑖,𝑗.

𝐽

𝑗=1

𝐾−1

𝑘=0

 

Define the 𝑛 × 𝑚 design matrix 𝑫 = (𝐷𝑖,𝑗) as follows: 

 

 

 

 

 

(4) 

The maximum likelihood estimates (MLE) �̃� for 𝜃 can be obtained by maximizing the 

following objective function 𝑙(𝜃), 

 
𝑙(𝜃) = ∑{𝑦𝑖𝜂𝑖(𝜃) − 𝑏(𝜂𝑖(𝜃)) + 𝑐(𝑦𝑖)}

𝑛

𝑖=1

 
 

(5) 

The objective function depends on the linear coefficients 𝜃 through {𝜂𝑖}𝑖=1
𝑛 . Since (5) is 

not a linear function of the parameters 𝜃, and there is no explicit formula for �̃�, the calculation 

of �̃� relies on numerical methods, such as the Newton-Raphson algorithm. 

 

Assumptions: 

1. The parameter space Θ ⊂ ℝ𝑚  is an open compact set, and the true value 𝜃 =
(𝜃0, … , 𝜃𝑚−1)𝑇 is an interior point of Θ. 

2. The expectation 𝐸(𝑉(𝜃)𝒅𝒅𝑻)  exists and positive definite, the expectation 

𝐸𝑠𝑢𝑝𝜃∈Θ𝑁
||𝑉(𝜃)𝒅𝒅𝑻||) exists for a compact neighborhood Θ𝑁  of 𝜃0 , where ∥∙∥is a 

matrix norm. 

3. The autoregressive time series {𝑥𝑡} is causal stationary with a continuous spectral 

density function; that is, ∑ 𝑟(𝑘) < ∞∞
𝑘=0 , where 𝑟(𝑘) = 𝑐𝑜𝑣(𝑥𝑡, 𝑥𝑡−𝑘). 

The assumption (1) is very typical and ensures the asymptotical normality of the maximum 

likelihood estimator �̃�. The assumption (2) implies the consistence of estimators for the linear 

regression coe cients. The assumption (3) is needed for consistency of �̂� in (6). The details 

can be found, for example, in Brockwell and Davis (2002). 
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Theorem 1 Under the assumptions (1)-(2), the maximum likelihood estimators �̃�  is 

asymptotically normally distributed. That is as 𝑛 → ∞, 

√𝑛(�̃� − 𝜃0)
𝐷
→ 𝑁(0, 𝛤−1), 

where the (𝑗, 𝑘) -entry of the 𝑚 × 𝑚  matrix Γ  is 𝐸 (𝑑𝑗𝑑𝑘𝑉(𝜃))  which is the information 

matrix in one sample.  

 

The proof is straightforward and is given in the appendix for interested readers. The 

difficulty of the above approach is that {𝜖𝑖,𝑡} in (3) is not observable. Thus we propose a two-

step method, in which the error term 𝜖𝑖,𝑡  is replaced by the residual 𝜖�̂�,𝑡 . In particular, we 

follow the approach of Lund et al (2016) and estimated the 𝐴𝑅(1) coefficient by: 

 
�̂� =

(𝐾 + 1) ∑ ∑ 𝑥𝑖,𝑡−𝑘𝑥𝑖,𝑡−𝑘+1
𝐾−1
𝑘=0

𝑛
𝑖=1

𝐾 ∑ ∑ 𝑥𝑖,𝑡−𝑘
2𝐾−1

𝑘=0
𝑛
𝑖=1

 
 

(6) 
 

which under the assumption (3) is asymptotically normally distributed 

 
√𝑛(�̂� − 𝜙0)

𝐷
→ 𝑁(0,1 − 𝜙0

2) 
 

 

where 𝜙0 is the true value. Then the residual of 𝐴𝑅(1) {𝜖𝑖,𝑡, 1 ≤ 𝑖 ≤ 𝑛} is  

 𝜖�̂�,𝑡 = 𝑥𝑖,𝑡 − �̂�𝑥𝑖,𝑡−1  

The MLE 𝜃 maximizes the objective function (5) with {𝜖𝑖,𝑡} replaced by {𝜖�̂�,𝑡} 

𝑙(𝜃) = ∑{𝑦𝑖�̂�𝑖(𝜃) − 𝑏(�̂�𝑖(𝜃)) + 𝑐(𝑦𝑖)}

𝑛

𝑖=1

 

where  

�̂�𝑖(𝜃) = 𝜃0 + ∑ 𝜃𝑘+1𝜖�̂�,𝑡−𝑘
𝐾−1
𝑘=0 + 𝜃𝐾+1𝜖�̂�,𝑡−𝐾 + ∑ 𝜃𝐾+1+𝑗𝑧𝑖,𝑗

𝐽
𝑗=1 . 

The MLE 𝜃 is different from �̃�, however. The following theorem indicates that 𝜃 is consistent 
for the true value 𝜃0. 

 

Theorem 2 under the assumption (1)-(3), as 𝑛 → ∞,𝜃 converges to the true value 𝜃0 in 

probability; that is, 𝜃 −  𝜃0  
𝑃
→ 0. 

 

3. Simulation Studies 

Simulations are conducted on binary and Poisson data with a variety of AR(1) models for 

sample sizes from 𝑛 = 100  to  𝑛 = 2000 . The coe cients of  AR(1) range from as low as 

|𝜙0| = 0.2  to as high as |𝜙0| = 0.8 , and the white noise is from the standard normal 

distribution. Table 1 includes the true values of (𝛽1, 𝛽2, 𝛽3, 𝛽4) along with the corresponding 

true values (𝜃0,1, 𝜃0,2, 𝜃0,3, 𝜃0,4) used in the simulations for the models with the lag 𝐾 =  3. It 

is known that the canon-ical link functions are respectively 𝜂 = log {
𝜋

1−𝜋
} for a Bernoulli 

distribution with the probability  𝑃(𝑦 =  1) = 𝜋 , and 𝜂 = log 𝜇  for a Poisson distribution 

with 𝐸(𝑦) = 𝜇. We simulate 1000 sample paths for each model. All the calculations are carried 

out by the free statistical computing and graphics environment 𝑅 (2015). 

 

Table 1: True Values of Parameters 
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𝜙0 

Binary Data Poisson Data 

𝛽1 = 15 𝛽2  = 10 𝛽3  =  2 𝛽4 =  1 𝛽1 = 1.5 𝛽2= 1 𝛽3   = 0.2 𝛽4 = 0.1 

𝜃0,1 𝜃0,2 𝜃0,3 𝜃0,4 𝜃0,1 𝜃0,2 𝜃0,3 𝜃0,4 

 -0.8 

 -0.4 

 -0.2 

 0.2 

 0.4 

0.8 

15.000 -2.000 -3.600 -1.880 

15.000 4.000 0.400 0.840 

15.000 7.000 0.600 0.880 

15.000 13.000 4.600 1.920 

15.000 16.000 8.400 4.360 

15.000 22.000 19.600 16.680 

1.500 -0.200 0.3600 -0.188 

1.500 0.400 0.040 0.084 

1.500 0.700 0.060 0.088 

1.500 1.300 0.460 0.192 

1.500 1.600 0.840 0.436 

1.500 2.200 1.960 1.6680 

 

The simulation results for the estimates are summarized in Tables 2-3. The estimates 𝜃 

approach the true values with smaller and smaller sample standard errors as the sample size 

increases, which is in agreement with Theorem 2. Such asymptotic accuracy of estimators is 

also illustrated by the decreasing size of the boxes in Figure 1. It is tempting to conclude that 

the estimators are  efficient or they have the same asymptotical distribution as �̃�, which needs 

to be verified. Such a property of estimators are termed oracle in, for example, Shao and Yang 

(2017). 

In addition, Tables 2-3 also include the information for the impact of model 

misspecification. In particular, the true model or 𝑀1 in (7) contains {𝑥𝑡−𝑘}𝑘=0
3 , while the fitted 

model or 𝑀2 in (8) is mis-specified as only one covariate 𝑥𝑡: 
 

𝑀1: 𝜂 = 𝜔0 + 𝛽1𝑥𝑡 + 𝛽2𝑥𝑡−1 + 𝛽3𝑥𝑡−2 + 𝛽4𝑥𝑡−3 (7) 

𝑀2: 𝜂 = 𝜔0 + 𝛽1𝑥𝑡 (8) 
 

Table2: Parameter Estimates and Standard Errors for Binary Data 

 

𝜙0 
 

 

𝑛 
 

𝑀1 𝑀2 

           𝜃0,1                  𝜃0,2 𝜃0,3 𝜃0,4 𝜃1 

−0.8 100 

500 

1000 

2000 

12.637 ± 4.393 −1.679 ± 1.026 3.017 ± 1.408 −1.597 ± 0.880 

14.968 ± 2.645 −2.004 ± 0.509 3.597 ± 0.732 −1.877 ± 0.428 

14.977 ± 1.806 −1.990 ± 0.354 3.596 ± 0.496 −1.869 ± 0.293 

14.929 ± 1.232 −1.991 ± 0.237 3.585 ± 0.338 −1.873 ± 0.209 

1.438 ± 0.279 

1.436 ± 0.126 

1.432 ± 0.091 

1.440 ± 0.063 

−0.4 100 

500 

1000 

2000 

13.009 ± 4.434 3.457 ± 1.529 0.355 ± 0.747 0.715 ± 0.711 

15.183 ± 2.581 4.079 ± 0.834 0.400 ± 0.323 0.859 ± 0.319 

14.914 ± 1.684 3.984 ± 0.566 0.401 ± 0.210 0.839 ± 0.209 

15.030 ± 1.236 4.017 ± 0.410 0.410 ± 0.149 0.838 ± 0.153 

2.012 ± 0.413 

1.995 ± 0.176 

1.996 ± 0.121 

1.995 ± 0.087 

−0.2 100 

500 

1000 

2000 

12.794 ± 4.954 5.971 ± 2.438 0.542 ± 0.778 0.738 ± 0.747 

15.072 ± 2.806 7.040 ± 1.388 0.631 ± 0.346 0.882 ± 0.353 

15.045 ± 1.802 7.043 ± 0.901 0.610 ± 0.233 0.886 ± 0.235 

15.003 ± 1.214 6.992 ± 0.619 0.604 ± 0.162 0.886 ± 0.165 

2.256 ± 0.448 

2.255 ± 0.205 

2.256 ± 0.140 

2.258 ± 0.099 

0.2 100 

500 

1000 

2000 

10.985 ± 4.059 9.467 ± 3.515 3.320 ± 1.554 1.433 ± 0.870 

14.987 ± 3.306 12.992 ± 2.934 4.616 ± 1.172 1.932 ± 0.576 

14.958 ± 2.019 12.956 ± 1.790 4.593 ± 0.725 1.924 ± 0.368 

14.989 ± 1.276 12.998 ± 1.142 4.602 ± 0.470 1.923 ± 0.245 

2.774 ± 0.579 

2.739 ± 0.233 

2.748 ± 0.166 

2.743 ± 0.113 
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0.4 100 

500 

1000 

2000 

9.889 ± 3.510 10.450 ± 3.601 5.470 ± 2.116 2.806 ± 1.229 

15.000 ± 3.565 15.959 ± 3.734 8.350 ± 2.012 4.340 ± 1.106 

15.000 ± 2.176 15.970 ± 2.313 8.362 ± 1.289 4.342 ± 0.716 

15.002 ± 1.495 15.984 ± 1.602 8.385 ± 0.894 4.351 ± 0.508 

2.973 ± 0.614 

2.982 ± 0.253 

2.987 ± 0.177 

2.985 ± 0.125 

0.8 100 

500 

1000 

2000 

6.043 ± 2.109 8.811 ± 2.970 7.802 ± 2.661 6.580 ± 2.217 

14.967 ± 5.815 21.946 ± 8.577 19.528 ± 7.738 16.596 ± 6.589 

15.252 ± 3.345 22.349 ± 4.844 19.932 ± 4.354 16.941 ± 3.721 

15.060 ± 2.051 22.093 ± 3.009 19.689 ± 2.698 16.761 ± 2.309 

3.512 ± 0.908 

3.493 ± 0.352 

3.472 ± 0.232 

3.492 ± 0.165 

 

It is worth pointing out that for the true models 𝑀1, when the sample size is as small as 

500, the estimates are very close to the true values for all 𝐴𝑅(1) models. On the other hand, 

for the mis-specified models 𝑀2, the discrepancy of the true value of 𝜃0,1 and the estimate 𝜃1 

could be dramatic even when the sample size is 2000. For example, for binary data 𝜃1 =

14.929 in the true model 𝑀1, and 𝜃1 = 1.440 in the mis-specified model 𝑀2 for 𝜙0 = −0.8 

at 𝑛 = 2000. While the true value 𝜃0,1 = 15. 

 

Table 3: Parameter Estimates and Standard Errors for Poisson Data 
 
𝜙0 
 
 

 
𝑛 

 
 

𝑀1 𝑀2 

𝜃1                    𝜃2 𝜃3 𝜃4 𝜃1 

−0.8 
100 

500 

1000 

2000 

1.507 ± 0.078 −0.201 ± 0.079 0.365 ± 0.078 −0.190 ± 0.060 
1.501 ± 0.028 −0.201 ± 0.033 0.360 ± 0.032 −0.188 ± 0.026 
1.499 ± 0.018 −0.199 ± 0.023 0.361 ± 0.023 −0.188 ± 0.018 
1.500 ± 0.012 −0.200 ± 0.016 0.360 ± 0.015 −0.189 ± 0.012 

0.763 ± 0.143 

0.771 ± 0.079 

0.774 ± 0.064 

0.774 ± 0.046 

−0.4 
100 

500 

1000 

2000 

1.502 ± 0.075 0.396 ± 0.102 0.044 ± 0.069 0.083 ± 0.062 
1.499 ± 0.029 0.400 ± 0.046 0.042 ± 0.026 0.083 ± 0.025 
1.501 ± 0.019 0.401 ± 0.031 0.040 ± 0.019 0.083 ± 0.016 
1.500 ± 0.013 0.400 ± 0.022 0.040 ± 0.013 0.084 ± 0.012 

1.099 ± 0.219 

1.114 ± 0.121 

1.121 ± 0.093 

1.121 ± 0.073 

−0.2 
100 

500 

1000 

2000 

1.502 ± 0.076 0.698 ± 0.110 0.066 ± 0.068 0.087 ± 0.062 
1.500 ± 0.024 0.698 ± 0.044 0.061 ± 0.026 0.086 ± 0.024 
1.500 ± 0.017 0.699 ± 0.031 0.060 ± 0.018 0.087 ± 0.017 
1.500 ± 0.012 0.701 ± 0.022 0.060 ± 0.012 0.088 ± 0.011 

1.266 ± 0.252 

1.293 ± 0.151 

1.300 ± 0.120 

1.302 ± 0.082 

0.2 

100 

500 

1000 

2000 

1.505 ± 0.058 1.295 ± 0.103 0.456 ± 0.102 0.194 ± 0.066 
1.500 ± 0.019 1.298 ± 0.043 0.459 ± 0.045 0.193 ± 0.026 
1.500 ± 0.013 1.301 ± 0.031 0.461 ± 0.032 0.193 ± 0.019 
1.499 ± 0.009 1.300 ± 0.021 0.460 ± 0.023 0.192 ± 0.014 

1.655 ± 0.370 

1.671 ± 0.208 

1.681 ± 0.180 

1.696 ± 0.147 

0.4 

100 

500 

1000 

2000 

1.502 ± 0.049 1.589 ± 0.095 0.829 ± 0.124 0.433 ± 0.101 
1.500 ± 0.015 1.598 ± 0.040 0.838 ± 0.056 0.436 ± 0.045 
1.500 ± 0.010 1.599 ± 0.028 0.840 ± 0.039 0.437 ± 0.031 
1.500 ± 0.006 1.599 ± 0.020 0.838 ± 0.028 0.435 ± 0.022 

1.857 ± 0.465 

1.898 ± 0.284 

1.907 ± 0.256 

1.906 ± 0.195 

0.8 

100 

500 

1000 

2000 

1.500 ± 0.014 2.191 ± 0.050 1.941 ± 0.109 1.645 ± 0.147 
1.500 ± 0.002 2.199 ± 0.021 1.957 ± 0.048 1.665 ± 0.065 
1.500 ± 0.001 2.199 ± 0.015 1.959 ± 0.033 1.666 ± 0.046 
1.500 ± 0.001 2.199 ± 0.010 1.959 ± 0.023 1.667 ± 0.032 

2.381 ± 0.935 

2.354 ± 0.597 

2.381 ± 0.627 

2.375 ± 0.517 
 

 

We also demonstrate the prediction power of the true models and the mis- 

specified models by misclassification which occurs when the fitted model fails to 

correctly identify the true category. We compare the estimated probabilities at the cutoff 
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𝜋 = 0.5 for binary data. We study the performance of 𝑀1  in (7) and 𝑀2  in (8) via three 

indicators: the true positive rate (TPR) or the relative frequency of being correctly identified 

as 𝑦 =  1; the true negative rate (TNR) or the relative frequency of being correctly identified 

as 𝑦 =  0; the accuracy (ACC) or the relative frequency of correct predictions. We randomly 

divide the observations into two parts: the training data set which consists of 70% of the 

observations, and the test data set. We t a model using the training data, and then calculate the 

three indicators (TPR, TNR and ACC) using the test data. Table 4 shows that for all values of 

𝜙0, all the three indicators of M1 are larger than 95% and are at least 10% higher than those 

of 𝑀2 . For each value of 𝜙0 , we also compare 𝑀1  and 𝑀2  by the receiver operating 

characteristic (ROC) curves based on one sample path of size 𝑛 =  1000. An ROC curve is 

obtained by the true positive rates and the false positive rates at various cutoff values of  . All 

the ROC curves in Figure 2 from 𝑀1 are above those from 𝑀2, which implies that 𝑀1 is better 

than 𝑀2. 

 

Table4: Prediction Accuracy for Binary Data 
 
𝜙0 

 
 

 
𝑛 
 

 

M1 M2 

 
TPR TNR ACC 

 
TPR TNR ACC 

−0.8 500 

1000 

0.964 0.970 0.962 

0.964 0.977 0.964 

0.800 0.806 0.800 

0.800 0.811 0.800 

−0.4 500 

1000 

0.963 0.973 0.963 

0.964 0.973 0.964 

0.785 0.792 0.784 

0.790 0.794 0.788 

−0.2 500 

1000 

0.964 0.989 0.964 

0.966 0.968 0.966 

0.794 0.813 0.793 

0.796 0.797 0.796 

0.2 500 

1000 

0.970 0.988 0.971 

0.970 0.988 0.971 

0.820 0.837 0.821 

0.820 0.837 0.821 

0.4 0.844 

1000 

 

0.974 0.988 0.975 

0.975 0.985 0.975 

500 0.845 0.854 

0.844 0.851 0.843 

0.8 500 

1000 

0.985 0.997 0.984 

0.986 0.988 0.986 

0.905 0.915 0.904 

0.905 0.907 0.905 

 

4. Real Data Application 

We illustrate the application of the proposed method by modeling the relationship between 

the presidential election outcome and the unemployment rate. A presidential election is held 

once every four years, while the factors that have impact on it have observations every year. 

It is reasonable to think that the performance of the first term of the president Obama from 

2009-2012 did not a affect the choice of a voter between Hillary Clinton and Donald Trump 

much, whereas his second term from 2013-2016 played a role in a voter's decision. The county 

election data in Figure 3 was downloaded from https://public.opendatasoft.com, and the 

unemployment data from https://www.census.gov. The binary dependent variable  𝑦 is the 

final election outcome of a county in 2016 (𝑦 = 1 if Hillary Clinton was voted for). The 

covariate 𝑥𝑡 is the difference between the log transformed unemployment rate (𝑈𝑅𝑦𝑒𝑎𝑟) (year 

= 2016; 2015; ⋯ ; 2012) of adjacent two years and can be considered as the relative change 

of the unemployment rate. That is, 



 

 

 

 
668                                                                             Hanh Nguyen, Qin Shao 

 

𝑥𝑡 = log 𝑈𝑅2016 − log 𝑈𝑅2015, 

𝑥𝑡−1 = log 𝑈𝑅2015 − log 𝑈𝑅2014, 

𝑥𝑡−2 = log 𝑈𝑅2014 − log 𝑈𝑅2013, 
𝑥𝑡−3 = log 𝑈𝑅2013 − log 𝑈𝑅2012, 

The 𝐴𝑅(1) cefficient estimate is �̂� = 0.289 , and the estimates are by the relative change 

of the unemployment rate as early as in the year of 2013, which was the first year of Obama's 

second term. According to the analysis, the adverse impact of the factor was as much as 

−3.619. There could be some other economic factors and demographic factors that could have 

contributed to the outcome, and thus a more comprehensive analysis should be conducted. 

 

5. Concluding Remarks 

In this paper, we have extended the idea of generalized linear models so as to include 

lagged effects. We utilized the built-in correlated structure of covariates to estimate the 

otherwise confounded effects on the dependent variable, and proposed an estimation 

procedure for model coefficients along with the theoretical justification for an 𝐴𝑅(1) 

sequence. Such a model could be a candidate for analysis of the relation between the 

dependent variable and a sequence of covariates. Our simulations indicated that the lagged 

effects are important and model misspecification could lead to misinterpretations of model 

coefficients and inaccurate predictions. We focused on canonical link functions and our 

conjecture is that similar results can be obtained for some other link functions. Our limited 

simulations for 𝐴𝑅(2) which are not included suggested that GLDM might work well for 

higher order autoregressions. 
 

6. Appendix 

We use 𝐶 to denote a constant, the value of which varies according to the context. We 

characterize the magnitude of a random variable by 𝑂𝑝 (∙) if it is bounded in probability and 

𝑂𝑝 (∙) if it is of smaller order in probability. The detailed definitions can be found, for example, 

in Fuller (1995). Define the 𝑚 × 1 vector of the score functions ∇𝑙𝑗(𝜃) = 𝜕𝑙(θ)/𝜕𝜃 with the 

j-th entry being 

 𝛻𝑙𝑗(𝜃) = ∑ 𝐷𝑖,𝑗(𝑦𝑖 − 𝑢𝑖(𝜃))𝑛
𝑖=1 , 

 

(9) 

where 𝜇𝑖(𝜃) = 𝜕𝑏(𝜂𝑖(θ))/𝜕𝜂 and the 𝑚 × 𝑚 Hessian matrix  ∇2𝑙(𝜃) = 𝜕2𝑙(θ)/𝜕𝜃𝜕𝜃𝑇 with 

the (j,k)-th entry being 

 𝛻2𝑙𝑗,𝑘(𝜃) = − ∑ 𝐷𝑖,𝑗
𝑛
𝑖=1 𝐷𝑖,𝑘𝑉𝑖(𝜃), 

 

(10) 

where 𝑉𝑖(𝜃) =
𝜕2𝑏(𝜂𝑖(θ))

𝜕𝜂2
= 𝜕𝜇𝑖/𝜕𝜂. Note that for any fixed 0 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗, 𝑘 ≤ 𝑚, 

𝐸 {∑ 𝐷𝑖,𝑗(𝑦𝑖 − 𝑢𝑖)

𝑛

𝑖=1

} = 0 

𝐸 {∑ 𝐷𝑖,𝑗

𝑛

𝑖=1

𝐷𝑖,𝑘𝑉𝑖(𝜃)} = 𝐸(𝑑𝑗𝑑𝑘𝑉(𝜃)) 
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Hence the assumptions (1) and (2) imply as 𝑛 → ∞ 

1

𝑛
∑ 𝐷𝑖,𝑗

𝑛

𝑖=1

𝐷𝑖,𝑘𝑉𝑖(𝜃0)
𝑃
→  𝐸(𝑑𝑗𝑑𝑘𝑉(𝜃0)) 

and 

1

√𝑛
𝛻𝑙(𝜃0)

𝑝
→ 𝑁(0, 𝛤−1) 

The Taylor expansion implies that 

√𝑛 {−
1

𝑛
𝛻2𝑙(𝜃∗)} (�̃� − 𝜃0) =

1

√𝑛
𝛻𝑙(𝜃0) 

Proof of Theorem 1. Theorem 1 is the direct result of Fahrmeir and Kaufmann (1985), 
1

√𝑛
(�̃� − 𝜃0)

𝑝
→ 𝑁(0, 𝛤−1) 

The proof is complete. 

Note that (9) and (10) respectively become with 𝜖𝑖,𝑡 replaced by  𝜖�̂�,𝑡 

𝛻𝑙𝑗(𝜃) = ∑ �̂�𝑖,𝑗(𝑦𝑖 − �̂�𝑖(𝜃))

𝑛

𝑖=1

 

and 

𝛻2𝑙𝑗,𝑘(𝜃) = − ∑ �̂�𝑖,𝑗�̂�𝑖,𝑘𝑉𝑖(𝜃)

𝑛

𝑖=1

 

with �̂�𝑖(𝜃) = 𝜕𝑏(�̂�𝑖(θ))/𝜕𝜂  and �̂�𝑖(θ) = ∑ D̂𝑖,𝑗+1
𝑚−1
𝑗=0 θ𝑗 . Furthermore, D̂𝑖,𝑗+1 − 𝐷𝑖,𝑗+1 is 

(𝜙0 − �̂�)𝑥𝑖,𝑡−𝑗 for 1 ≤ 𝑗 ≤ 𝐾 and 0 otherwise. Therefore, it is straight forward that for  1 ≤

𝑗 ≤ 𝐾, 

∑ (D̂i,j+1 − Di,j+1)
2

=𝑛
𝑖=1 ∑ (𝜙0 − �̂�)

2
𝑥𝑖,𝑡−𝑗

2 =𝑛
𝑖=1 𝑂𝑝 (1), 

and for 𝛿 = 1,2, 
  

sup
𝜃

|∑(�̂�𝑖(𝜃) − 𝜂𝑖(𝜃))
𝛿

𝑛

𝑖=1

| 
 

 

 

 

  =sup
𝜃

|∑ {∑ 𝜃𝑗(D̂𝑖,𝑗 − D𝑖,𝑗)𝐾+1
𝑗=2 }

𝛿𝑛
𝑖=1 |  

  

= |𝜙0 − �̂�|
𝛿

sup
𝜃

|∑ {∑ 𝜃𝑗𝑥𝑖,𝑡−𝑗+1

𝐾+1

𝑗=2

}

𝛿
𝑛

𝑖=1

| = 𝑂𝑝(1) 

 

 
(11) 

Proof of Theorem 2. Notice that the Taylor expansions and (11) imply that 

 
𝑠𝑢𝑝

𝜃
|∑(𝑏(�̂�𝑖(𝜃)) − 𝑏(𝜂𝑖(𝜃)))

𝑛

𝑖=1

| = 𝑠𝑢𝑝
𝜃

|∑
𝜕2𝑏(𝜂

𝑖
∗)

𝜕𝜂2
(�̂�𝑖(𝜃) − 𝜂

𝑖
(𝜃))

2
𝑛

𝑖=1

| = 𝑂𝑝(1) 

 

 

where 𝜂𝑖
∗ is between �̂�𝑖(𝜃) and 𝜂𝑖 . Therefore, we conclude 

 
sup

𝜃
𝑛−1|𝑙(𝜃) − 𝑙(𝜃)| = 𝑛−1sup

𝜃
|∑{𝑦𝑖�̂�𝑖(𝜃) − 𝑏(�̂�𝑖(𝜃)) − 𝑦𝑖𝜂𝑖(𝜃) + 𝑏(𝜂𝑖(𝜃))}

𝑛

𝑖=1

| 
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≤  𝑛−1sup

𝜃
|∑ 𝑦𝑖{�̂�𝑖(𝜃) − 𝜂𝑖(𝜃)}

𝑛

𝑖=1

| + 𝑛−1sup
𝜃

|∑{𝑏(𝜂𝑖(𝜃)) − 𝑏(�̂�𝑖(𝜃))}

𝑛

𝑖=1

| 

 

 

 

≤  𝑛−1sup
𝜃

(∑ 𝑦𝑖
2

𝑛

𝑖=1

)

1
2

[∑{�̂�𝑖(𝜃) − 𝜂𝑖(𝜃)}2

𝑛

𝑖=1

]

1
2

+ 𝑛−1sup
𝜃

|∑{𝑏(𝜂𝑖(𝜃)) − 𝑏(�̂�𝑖(𝜃))}

𝑛

𝑖=1

| 

 

 

 = 𝑂𝑝(1)  

which implies 𝜃 − 𝜃0

𝑃
→ 0 according to Amemiya (1985). The proof is complete. 
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Figure 1: Box-plots for Coefficient Estimates of Binary Data 
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Figure 2: ROC Curves for M1 and M2 

 
Figure 3: Presidential Election Map for Counties 

 
 

 

  
 
 
 
 
 
 
 
 
 
 
 

 


