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ABSTRACT 

In this paper, a comparison is provided for volatility estimation in Bayesian and 

frequentist settings. We compare the predictive performance of these two approaches 

under the generalized autoregressive conditional heteroscedasticity (GARCH) model. 

Our results indicate that the frequentist estimation provides better predictive potential 

than the Bayesian approach. The finding is contrary to some of the work in this line of 

research. To illustrate our finding, we used the six major foreign exchange rate datasets. 
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1. Introduction 

In the last few decades, volatility in financial time series has been of a key interest to 

both academics and practitioners as uncertainty is at the heart of financial decisions. 

Volatility plays a critical role in pricing derivatives, calculating measures of risk, and 

hedging. Since the gold standard abandonment in 1971, asset prices and stock markets 

began to broadly change and searching for predictive volatility modeling has been one 

of the major areas in time series analysis. Early work on volatility includes the ARCH 

(autoregressive conditional heteroscedasticity) of Engle (1982) and the GARCH 

(generalized autoregressive conditional heteroscedasticity) of Bollerslev (1986), which 

have become the benchmark models for estimating the volatility. ARCH/GARCH and 

their extended implementations have been proven to be a successful tool in modeling the 

conditional variance of financial time series data. A few examples are as follow. Wang 

et al. (2010) investigated volatility on Shanghai Stock Exchange with high-frequency 

intraday data. Huang et al. (2012) investigated the performance of GARCH models in 

option pricing. More recently, Jahufer (2015) has used GARCH models to examine Sri 

Lanka stock market using non-parametric specification test. 

The traditional frequentist approach uses the (conditional) maximum likelihood 

estimation (MLE) technique to estimate the parameters in the GARCH or GARCH-type 

models. We briefly describe this method in the next section and one can refer to Fan and 

Yao (2005) for more details. An- other technique that has gained momentum in recent 

years is the Bayesian approach, which takes into account prior information to estimate 

the posterior distribution. Nakatsuma (1999) developed three Bayesian methods: 

Markov chain Monte Carlo, Laplace approximation and quadrature formula to estimate 
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the parameters of the ARMA-GARCH model. Bauwens (1998) explained how a Gibbs 

sampler can be implemented to perform the inferences on Bayesian GARCH models. 

Vrontos (2012) proposed a full Bayesian analysis of GARCH and Exponential-GARCH 

(EGARCH) model on parameter estimation, model selection, and volatility prediction. 

The Bayesian method has been an alternative way to model datasets in many 

different fields. The comparison of GARCH models under frequentist and Bayesian has 

garnered some attention in research. Nakatsuma (1996) conducted a study which focuses 

on this comparison. Based on a small sample Monte Carlo experiment, they found that 

the Bayesian approach performs better than the frequentist approach when comparing 

the mean square errors of the posterior mean in the ARMA-GARCH models. 

Hoogerheide (2012) examined density prediction of stock index returns us- ing GARCH 

models under both frequentist and Bayesian estimation. They showed that there is no 

significant difference between the qualities of whole density forecast, while Bayesian 

estimation exhibits better left-tail fore- cast accuracy. More recently, Sigauke (2016) 

modeled the Johannesburg Stock Exchange (JSE) using the Bayesian and frequentist 

approaches and concluded the Bayesian Autoregressive Moving Average-Generalized 

Autoregressive Conditional Heteroskedasticity (BARMA-GARCH-t) provided a better 

fit for the data than the standard ARMA-GARCH-t model.  In a more general setting, 

studies have been conducted to compare the Bayesian and frequentist methods. 

Wagenmakers et al. (2008) advocate the use of Bayesian inference in the field of 

psychology. Samaniego (2010) gives the comparison of the Bayesian and frequentist 

approaches to estimation. Albers et al. (2018) outline the ramifications of using 

frequentist and Bayesian analyses. In our work, we show that the traditional frequentist 

approach renders better predictive performance than the Bayesian approach. 

The rest of the paper is organized as follows. Section 2 introduces the GARCH 

model along with the maximum likelihood estimation and Bayesian methodologies. 

Section 3 describes the results and Section 4 provides the discussion. 
 

2. Methods 

Let {𝑥𝑡: t ∈ Z}  be a stochastic process that is adapted to filtration {𝐹𝑡: 𝑡 ∈ Z} , 

where 𝐹𝑡  =  σ({𝑥𝑠 ∶  s ≤  t})  and σ({𝑥𝑠})  is a sigma-field generated by {xs}. 

Following Geweke (1993), we assume 

x𝑡 = μ + ϵ𝑡 (
𝑣−2

𝑣
w𝑡σ𝑡

2)
1/2

 𝑡 = 1, … , 𝑇,                                    (1) 

where ϵ𝑡 are innovations and ϵ𝑡|Ft-1 either follow a standard normal distribution or a t-

distribution with v degrees of freedom.  Although the mean, µ, can be time dependent in 

practice and modeled separately, we fix this value to be zero. In this work, we are 

primarily concerned with σt, the volatility, in time series economics. A plethora of works 

have been devoted to modeling this latent variable in the last thirty years and the work is     

still ongoing. As mentioned previously, the pioneer work on volatility is the 

ARCH/GARCH model of Engle (1982) and Bollerslev (1986). The GARCH model with 

order (1,1) (or GARCH(1,1)) assumes 

𝜎𝑡
2   = 𝛼0  + 𝛼1 𝑥𝑡−1

2   + 𝛽 𝜎𝑡−1
2                                                      (2) 

Our main focus is based on this GARCH(1,1) by examining the predictability  of σ2 

under two cases for wt:  (1) fixed wt = v/(v − 2) and (2) wt ∼Inv-Gam(v/2, v/2). The 

details are given in the following subsections. 

In practice, if yt is a stock price then the log-return series xt is defined as 

xt  =  log(yt)  −  log(yt−1) 
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This measures the relative changes in the stock price. The above form can also be 

written as： 

log(yt)  −  log(yt−1)  =  log (1 +  
yt −  yt−1

yt−1
) ≈

yt  − yt−1

yt−1
 

 Many financial studies use the return series xt instead of price series yt for many 

benefits. First, the returns are scale-free. Second, they have more attractive statistical 

properties than the price series and third, they are time-additive. The reader can refer to 

Tsay (2010) for more details and elaboration. 

 

2.1 Frequentist GARCH Estimation 

In the traditional frequentist statistics, the parameters are fixed unknown constants. 

Under this framework, we fix wt = v/(v-2) so that the equation (1) becomes 

xt = µ + ϵ𝑡σt,                                                        (3) 

where ϵ𝑡  follow N (0, 1) or tv. Under a standard normal distribution, the likelihood 

function of x = (x1, ..., xT )T is defined as 

L(α0, α1, β | x)  =
1

(2𝜋)
𝑇
2

∏ [𝜎𝑡
2]−

1

2 exp [− ∑
𝑥𝑡

2

2𝜎𝑡
2

𝑇
𝑡=𝑝+1 ]𝑇

𝑡=𝑝+1                  (4) 

and under a t-distribution with v degrees of freedom, the likelihood function is defined 

as 

 L(α0, α1, β | x)  = ∏ [
Γ(

𝑣+1

2
)

√𝑣𝜋𝜎𝑡
2Γ(

𝑣

2
)

(1 +
𝑥𝑡

2

𝑣𝜎t
2)

−(𝑣+1)/2

]𝑇
𝑡=𝑝+1                     (5) 

The maximum likelihood (ML) estimators are the maximizers of the functions above. 

Note that σt
2 is a function of the unknown parameters α0, α1,and β and it depends on the 

past squared return series and the past squared volatility σt
2. In addition, the likelihood is 

conditioned on (x1
2, x2

2, . . . , xp
2) and (σ1

2, σ2
2, . . . , σp

2). The reader is referred to Fan and 

Yao (2005) for more details. In our work, we used the nonlinear optimization under the 

augmented Lagrange method which is implemented in the R package solvnp of 

Ghalanos (2011) in rugarch of Ghalanos (2016). 

  

2.2 Bayesian GARCH Estimation 

To describe the Bayesian framework, we first write 

xt = 𝜖𝑡 (𝜔𝑡
𝑣−2

𝑣
𝜎𝑡

2)
1/2

                                                  (6) 

by following Geweke (1993). Let 𝑤 =  (𝑤1, . . . , 𝑤𝑇 )’ , and  α =  (α0, α1)’  and we 

regroup the unknown parameters as 𝜃 =  (𝛼, 𝛽, 𝑣)’. Upon defining the T × T diagonal 

matrix: 

Σ = Σ(θ, w) = diag([wt  
𝑣−2

𝑣
σt

2(α, β)]                                   (7) 

the likelihood function of (θ, w), under the normal distribution, is defined as: 

𝐿(𝜃, 𝑤 | 𝑥) ∝  [𝑑𝑒𝑡(𝛴)]−
1
2𝑒𝑥𝑝 [ −

1

2
𝑥′𝛴−1 𝑥]  

The parameters (θ, w) are random variables which are characterized by a prior density, 

denoted by p(θ, w). Inferences are made based on the posterior density defined by 

p(θ, w|x)  =
 L(θ,w|x)p(θ,w)

∫ L(θ,w|x)p(θ,w)dθdw
 .                    (8) 

After observing the data, the posterior distribution gives a probabilistic description of 
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the knowledge about the model parameters. 

Following Ardia (2010), we take the truncated normal prior distributions for the 

GARCH parameters α and β 

𝑝(𝛼)  ∝  𝜙2(𝛼|μ𝛼 , 𝛴𝛼)𝐼[𝛼 ∈ 𝑅+
2  ] 𝑎𝑛𝑑 𝑝(𝛽)  ∝  𝜙1(𝛽|μ𝛽, 𝛴𝛽)𝐼[𝛽 ∈ 𝑅+], 

where 𝜙𝑑 is the d-dimensional normal density, µ. and Σ. are the hyper- parameters, and 

I[·] is the indicator function. Assuming that wt are inde- pendent and identically 

distributed as the inverse gamma with (v/2, v/2), the prior distribution of the vector w 

given v is 

p(w|v) = (
(

𝑣
2)

𝑣
2

Γ (
v
2

)
)

T

(∏ 𝑤𝑡

𝑇

𝑡=1

)

−
𝑣
2

−1

exp (−
1

2
∑

𝑣

𝑤𝑡

𝑇

𝑡=1

) 

 

The prior distribution of v is chosen as the translated exponential with λ > 0 and δ ≥ 2: 

𝑝(𝑣)  =  𝜆𝑒𝑥𝑝[−𝜆(𝑣 −  𝛿)]𝐼[𝑣 > 𝛿]. 
The mass of this prior is mostly concentrated near δ when λ is large and hence, the 

degree of freedom can be constrained in this manner. Deschamp (2006) points out that 

this prior density is useful in two ways. Bounding the degrees of freedom away from 

two may potentially be important from a numerical perspective to avoid a rapid 

divergence of the conditional variance. Next, the normality of the errors can be 

estimated while allowing the prior to remain reasonably constrained, which may allow 

for better convergence of the sampler. 

Assuming the prior independence among the parameters, the joint prior distribution 

is then 

𝑝(𝜃, 𝑤)  =  𝑝(𝛼)𝑝(𝛽)𝑝(𝑤|𝑣)𝑝(𝑣).                                        (9) 

There is no closed form for the joint posterior distribution in (8) and no conjugate prior 

exists for this joint posterior density. Hence, we resort to the Markov chain Monte Carlo 

(MCMC) method for simulation to approximate the density of the posterior distribution. 

The MCMC sampling technique was initially introduced by Metropolis (1953) and was 

later generalized by Hastings (1970). The basic idea of this MCMC sampling method is 

based on the creation of a Markov chain  (𝜃(0), 𝑤(0)), . . . , (𝜃(𝑘), 𝑤(𝑘))  in the parameter 

space. Under some regularity conditions, as k goes to infinity, the asymptotic 

distribution of (θ(k), w(k)) will be (8). To implement the MCMC sampling technique, 

we used the Metropolis-Hastings (MH) algorithm. The details can be found in Chib 

(1995).  This algorithm is  used  to  update  the GARCH parameters in blocks with one 

block for α and one block for β, while the parameter for degrees of freedom is sampled 

through an optimized rejection method from a translated exponential density defined 

earlier. This process is incorporated in the R package bayesGARCH for its MCMC 

sampler which uses the approach of Ardia (2008). 

For 𝑝(𝛼), we specify two cases for the variance-covariance matrix 𝛴𝛼: 

[
1000 0

0 1000
]  𝑎𝑛𝑑 [

0.01 0
0 0.01

] 

The first specification results in a diffuse (non-informative) prior density, whereas the 

second puts a heavy weight near 0 where the values of α will most likely to lie in 

[0, 0.2]  × [0, 0.2]. Similarly, the variance 𝛴𝛽 for p(β) was set to be 1000 and 0.01. Both 

prior means μα and μβ were set to 0. 

 

2.3 Model Assessment 
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In the frequentist setting, we assumed xt = σt𝜖𝑡  with 𝜖𝑡  having the mean 0 and 

standard deviation 1. Therefore,  

𝐸(𝑥𝑡
2)  =  𝐸[𝐸(𝑥𝑡

2 |𝐹𝑡−1)]  =  𝐸[𝐸(𝜎𝑡
2 𝜖𝑡

2 |𝐹𝑡−1)] = 𝜎𝑡
2, 

where, in practice, Ft denotes the past financial information up to time t. This is also true 

under the Bayesian setting because ϵt and wt are independent, and E(wt) =
𝑣

𝑣−2
 . Using 

this fact and the fact that the true squared volatility σt
2 is unknown when we deal with 

the actual datasets, we have used the squared series as a proxy for the squared volatility. 

Hence, we measure the mean square error (MSE) and the mean absolute deviance error 

(MADE) by 

𝑀𝑆𝐸 =
1

𝑇 − 𝑝
∑ (𝜎�̂�

2 − 𝑥𝑡
2)

2
𝑇

𝑡=𝑝+1

=
1

𝑇 − 𝑝
∑ 𝑎𝑡

2

𝑇

𝑡=𝑝+1

 

and 

𝑀𝐴𝐷𝐸 =
1

𝑇 − 𝑝
∑ |𝜎�̂�

2 − 𝑥𝑡
2|

𝑇

𝑡=𝑝+1

=
1

𝑇 − 𝑝
∑ 𝑎𝑡

𝑇

𝑡=𝑝+1

, 

 

where at = |𝜎�̂�
2 − 𝑥𝑡

2|.  As another measure of accuracy, we’ve used the directional 

accuracy (DA), which is defined by: 

𝐷𝐴 =
1

𝑇 − 𝑝
∑ 𝑑𝑡

𝑇

𝑡=𝑝+1

 

dt = {
1, 𝑖𝑓 (𝑥𝑡

2 − 𝑥𝑡−1
2 )(𝜎�̂�

2 − �̂�𝑡−1
2 ) > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The DA gives the average direction of the forecast volatility by measuring the 

correctness of the turning point forecasts. 

To test for significance in forecasting accuracy, we carried out the Diebold and 

Mariano (DM) test proposed by Diebold and Mariano (1995). The underlying 

hypotheses associated with this test are 

𝐻0: 𝐸(𝑧𝑡
𝑟𝑜𝑤) = 𝐸(𝑧𝑡

𝑐𝑜𝑙𝑢𝑚𝑛) 𝑣𝑠. 𝐻1: 𝐸(𝑧𝑡
𝑟𝑜𝑤) ≠ 𝐸(𝑧𝑡

𝑐𝑜𝑙𝑢𝑚𝑛), 

where z𝑡
row and z𝑡

columnare the squared deviance at
2 (and absolute deviance at) from the 

models in the row and the column, respectively. Hence, the null hypothesis indicates the 

“equal accuracy” between the two approaches. In large samples, the DM statistic 

𝐷𝑀 =
√𝑇 − 𝑝(�̅� − 𝜇𝑧)

2𝜋𝑓𝑧(0)
~𝑁(0,1) 

Where �̅� =
1

𝑇−𝑝
∑ 𝑧𝑡

𝑇
𝑡=𝑝+1 =

1

𝑇−𝑝
∑ [𝑧𝑡

𝑟𝑜𝑤 − 𝑧𝑡
𝑐𝑜𝑙𝑢𝑚𝑛]𝑇

𝑡=𝑝+1 ,𝑓𝑧(0) =
1

2𝜋
∑ 𝛾𝑧(𝜏)∞

𝜏=−∞  

is the spectral density of the loss differential at frequency 0, and 𝛾𝑧(𝜏)  = 𝐸[(𝑧𝑡  −

 μ)(𝑧𝑡−𝜏 − μ)] is the auto-covariance function at τ. 
 

3. Results 

In this section, we compare the predictive potentials of the GARCH(1,1) model 

under the frequentist and Bayesian methods using six daily exchange rates. We consider 

the daily exchange rates of six major currencies against US dollars. These currencies are 

Euro (EUR), Japanese yen (JPY), Pound sterling (GBP), Australian dollar (AUD), Swiss 

franc (CHF), and Canadian dollar (CAD). We analyze the most traded pairs of 



 

598                A Comparison between Bayesian and Frequentist Methods in Financial Volatility with Applications to Foreign 

Exchange Rates 

currencies, commonly called the Majors. The Majors are EUR/USD, GBP/USD, 

USD/JPY, AUD/USD, USD/CAD, and USD/CHF. Except for the EUR/USD pair, 

 

 

 
                  Table 1: Numerical summary of the foreign exchange return series. 

Exchange 

Rate 

T Min. Median Mean Max. Std. 

Dev. 

Skewness Kurtosis 

EUR/USD 3635 -0.05 0.00 0.00 0.03 0.01 -0.12 2.06 
GBP/USD 10656 -0.05 0.00 0.00 0.05 0.01 0.20 4.74 
USD/JPY 10650 -0.06 0.00 0.00 0.10 0.01 0.70 9.79 
AUD/USD 10649 -0.01 0.00 0.00 0.19 0.04 3.00 86.11 
USD/CAD 10662 -0.04 0.00 0.00 0.05 0.01 0.09 12.45 
USD/CHF 10656 -0.09 0.00 0.00 0.05 0.01 -0.13 5.44 

 
all exchange rates start from January 4, 1971 and end at June 14, 2013. Since the Euro 

was introduced on January 1, 1999 in the financial market, the EUR/USD data set starts 

from January 4, 1999. These datasets can be downloaded from 
 

http://research.stlouisfed.org/fred2/categories/158. 

 

Several numerical summaries for the datasets are given in Table 1. It is noticeable 

that the skewness and kurtosis of AUD/USD are very high. This indicates that the 

distribution of the return series may be right-skewed and have fat tails. The fat-tail can 

also be noted from other datasets except for EUR/USD. 

We’ve conducted some preliminary analyses of the datasets. Table 2 shows the 

results from Ljung-Box test based on squared return series. Except for EUR/USD when 

Q(1) = 2.103, the results indicate significant serial dependence. 
 

Table 2: Ljung-Box Q Statistics based on square return series. P-values are in the parentheses. 
 EUR/USD GBP/USD USD/JPY AUD/USD USD/CAD USD/CHF 

Q(1) 2.103 163.020 129.083 14.624 357.185 124.861 

 (0.147) (0.000) (0.000) (0.000) (0.000) (0.000) 

Q(5) 53.035 1111.832 256.326 102.310 2406.758 470.215 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Q(10) 337.677 1955.381 331.681 148.410 5228.167 639.815 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Q(20) 689.314 3463.889 500.390 224.587 10978.330 959.078 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Q(50) 1557.367 6280.076 720.771 294.405 19985.733 1351.073 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 

The time series plots of the return series are shown in Figure 1.   It can be seen that 

volatility clustering are present in the datasets. Also, the variability increases in the  

USD/CAD dataset.  These may indicate  that the datasets may not be stationary. Figure 2 

shows the autocorrelation function (ACF) for the squared return series for each dataset. 

It is evident that the squared series seems to be serially correlated indicating a possible 

dependence at a higher moment. 

For each dataset, the in-sample data consist of the first 70% of the dataset to fit the 

model and the out-of-sample data contain the last 30% to test the model.  In practice, in-

http://research.stlouisfed.org/fred2/categories/158
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sample measures do not mean much   since we are interested in predictive nature of the 

model. Table 3 gives the comparison based on these three measures for both in-sample 

and out-of- sample periods. Under the out-of-sample measures, the best measure that 

corresponds to the method is printed in bold for each dataset. The results indicate the 

frequentist approaches are generally better than the Bayesian approaches. 

Table 4 gives the results based on DM test statistics. The values in each table are 

the test statistics indicating the significance of the model in the row versus the model 

in the column. In the table, we are primarily interested in the four upper-right entries 

for each dataset. A negative value indicates that the frequentist maximum likelihood 

approach gives smaller average error and hence, it is a better method. Most values are 

negative except for USD/CAD under MADE. 

 

 

 
 

Figure 1: Time series plots for the return series in percent (%). 
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Figure 2: Autocorrelation function (ACF) plot for the squared return series. 

 

 

 

 

 

 

 
 

Table 3: In-sample and out-of-sample measures for MSE, MADE and DA are shown. ML.normal and ML.t-

dist denote the frequentist maximum likelihood method under normal and t-distribution likelihood functions,  

respectively. MH.diffuse and MH.t-normal denote the Bayesian method under diffuse and truncated normal prior  

distributions. 

    _________________________________________________________________________________ 

In-sample Out-of-sample 

 Dataset Method MSE MAD

E 

DA  MSE MADE DA 

EUR/USD ML.normal 0.5838 0.4229 0.2718  0.8724 0.4745 0.2865 

 ML.t-dist 0.5839 0.4230 0.4945  0.8724 0.4745 0.2883 

 MH.diffuse 0.5847 0.4323 0.2722  0.8756 0.4772 0.2865 

 MH.t-normal 0.5847 0.4319 0.2722  0.8755 0.4767 0.2865 

GBP/USD ML.normal 0.7560 0.4071 0.3104  0.9234 0.4023 0.2782 

 ML.t-dist 0.7559 0.4051 0.4962  0.9243 0.4009 0.2776 

 MH.diffuse 0.9523 0.5566 0.3045  1.1753 0.5480 0.2779 

 MH.t-normal 0.9492 0.5546 0.3045  1.1717 0.5460 0.2779 

USD/JPY ML.normal 2.6038 0.5254 0.3111  1.1365 0.4905 0.2806 

 ML.t-dist 2.6049 0.5212 0.4964  1.1400 0.4881 0.2769 

 MH.diffuse 3.5084 0.8410 0.3121  1.6961 0.8013 0.2787 

 MH.t-normal 3.5063 0.8403 0.3121  1.6946 0.8006 0.2787 

AUD/USD ML.normal 27.7762 0.4585 0.3006  7.0678 0.7561 0.2697 

 ML.t-dist 30.1796 0.4792 0.5060  7.3948 0.8058 0.2794 

 MH.diffuse 32.0382 0.6075 0.2848  7.5718 0.9552 0.2653 

 MH.t-normal 32.0048 0.6050 0.2846  7.5497 0.9517 0.2653 

USD/CAD ML.normal 0.0257 0.0727 0.3021  0.9376 0.3975 0.2815 

 ML.t-dist 0.0257 0.0727 0.5078  0.9356 0.3972 0.2834 

 MH.diffuse 0.0255 0.0712 0.2949  1.0150 0.3448 0.2796 

 MH.t-normal 0.0255 0.0712 0.2950  1.0155 0.3448 0.2799 

USD/CHF ML.normal 1.6863 0.6212 0.2972  2.9657 0.5738 0.2845 

 ML.t-dist 1.6877 0.6192 0.4944  2.9641 0.5717 0.2851 

 MH.diffuse 1.7808 0.6834 0.2990  3.0893 0.6293 0.2854 

 MH.t-normal 1.7841 0.6849 0.2982  3.0952 0.6307 0.2851 
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Table 4: Diebold-Mariano (DM) test statistics for average loss differential based on MSE and MADE .  

Negative values  signify  better  forecast  in the corresponding row.  And denote significance at 5% and 1%, 

respectively. ML.normal and ML.t-dist denote the frequentist maximum likelihood method under normal and 

t-distribution likelihood functions, respectively. MH.diffuse and MH.t-normal denote the Bayesian method 

under diffuse and truncated normal prior distributions. 

 MSE  

Dataset  ML.t-dist MH.diffuse MH.t-normal 

EUR/USD ML.normal -0.442 -1.101 -1.131 

   ML.t-dist – -1.098 -1.128 

 MH.diffuse – – 1.191 

GBP/USD ML.normal 
ML.t-dist 

MH.diffuse 

-1.878 

– 

– 

-4.711∗∗ 

-4.688∗∗ 

– 

  -4.730∗∗ 

  -4.708∗∗       

     5.651∗∗ 

USD/JPY ML.normal 
ML.t-dist 

MH.diffuse 

-1.567 

– 

– 

-8.614∗∗ 

-8.640∗∗ 

– 

  -8.621∗∗ 

  -8.648∗∗      

    11.721∗∗ 

AUD/USD ML.normal -0.82 -0.522 -0.541 

   ML.t-dist – -0.214 -0.241 

 MH.diffuse – –   2.174∗ 

USD/CAD ML.normal 1.473 -1.582 -1.576 

   ML.t-dist – -1.612 -1.607 

 MH.diffuse – –   -4.370∗∗ 

USD/CHF ML.normal 
ML.t-dist 

MH.diffuse 

0.527 

– 

– 

 -3.437∗∗ 

 -3.408∗∗ 

– 

  -3.417∗∗ 

  -3.391∗∗ 

  -3.146∗∗ 

   

MADE 

  

  ML.t-dist MH.diffuse MH.t-normal 

EUR/USD ML.normal -1.17 -1.338 -1.658 

   ML.t-dist – -1.328 -1.649 

 MH.diffuse – –    13.493∗∗ 

GBP/USD ML.normal 

ML.t-dist 

MH.diffuse 

13.938∗∗ 

– 

– 

-23.72∗∗ 

-23.88∗∗ 

– 

  -23.829∗∗ 

  -23.987∗∗     

    27.237∗∗ 

USD/JPY ML.normal 
ML.t-dist 

MH.diffuse 

5.456∗∗ 

– 

– 

-34.950∗∗ 

-35.334∗∗ 

– 

 -34.977∗∗ 

 -35.360∗∗    

   43.493∗∗ 

AUD/USD ML.normal 
ML.t-dist 

MH.diffuse 

-4.177∗∗ 

– 

– 

-9.339∗∗ 

-8.387∗∗ 

– 

-9.426∗∗ 

-8.491∗∗  

 13.378∗∗ 

USD/CAD ML.normal 
ML.t-dist 

MH.diffuse 

1.87 

– 

– 

9.240∗∗ 

9.181∗∗ 

– 

9.248∗∗ 

9.190∗∗ 

4.302∗∗ 
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USD/CHF ML.normal 

ML.t-dist 

MH.diffuse 

9.331∗∗ 

– 

– 

-17.798∗∗ 

-18.370∗∗ 

– 

 -17.794∗∗ 

 -18.391∗∗ 

 -11.848∗∗ 

 

 

4.Conclusion 

Our main interest in this study was to compare the frequentist and Bayesian 

estimation approaches using the GARCH(1,1) as a basis model. In contrary to the 

existing literature, we have found that the frequentist method pro- vides better predictive 

potential than the Bayesian method. We considered six foreign exchange rate datasets.  

We computed MSE, MADE, and DA  to compare different model outcomes and the out-

of-samples indicate that the frequentist performed better. We also carried out DM test to 

observe the significance in these results.  We have  observed that it remains true,   in 

general, that the frequentist provide more accurate predictive potential than the Bayesian 

approach. Finally, the current study is limited to the GARCH(1,1) as the basis model; 

however, one can use other basis model such as Exponential GARCH or Integrated 

GARCH models as well. 
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Appendix 
 

 

 

Figure 3: Trace plots and densities from diffuse prior (top 8) and truncated normal (bottom 8) 

for EUR/USD dataset. 
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Figure 4: Trace plots and densities from diffuse prior (top 8) and truncated normal (bottom 8) for 

GBP/USD dataset. 
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Figure 5: Trace plots and densities from diffuse prior (top 8) and truncated normal (bottom 8) for 

USD/JPY dataset. 
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Figure 6: Trace plots and densities from diffuse prior (top 8) and truncated normal (bottom 8) for 

AUD/USD dataset. 
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Figure 7: Trace plots and densities from diffuse prior (top 8) and truncated normal (bottom 8) for 

USD/CAD dataset. 
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Figure 8: Trace plots and densities from diffuse prior (top 8) and truncate normal (bottom 

8) for USD/CHF dataset.  
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