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ABSTRACT 

     In this paper we introduce the generalized extended inverse Weibull finite 

failure software reliability growth model which includes both 

increasing/decreasing nature of the hazard function. The increasing/decreasing 

behavior of failure occurrence rate fault is taken into account by the hazard of 

the generalized extended inverse Weibull distribution. We proposed a finite 

failure non-homogeneous Poisson process (NHPP) software reliability growth 

model and obtain unknown model parameters using the maximum likelihood 

method for interval domain data. Illustrations have been given to estimate the 

parameters using standard data sets taken from actual software projects. A 

goodness of fit test is performed to check statistically whether the fitted model 

provides a good fit with the observed data. We discuss the goodness of fit test 

based on the Kolmogorov-Smirnov (K-S) test statistic. The proposed model is 

compared with some of the standard existing models through error sum of 

squares, mean sum of squares, predictive ratio risk and Akaikes information 

criteria using three different data sets. We show that the observed data fits the 

proposed software reliability growth model. We also show that the proposed 

model performs satisfactory better than the existing finite failure category 

models. 

 

Keywords:  Akaikes information criterion; Generalized extended inverse 

Weibull distribution; Hazard function; Predictive ratio risk. 

 

1. Introduction 

Due to the rapid development of computer and information technology, society 

increasingly depends on software-intensive systems. Software is embedded in many modern 

systems, including expensive scientific computing systems, financial banking systems, 

industrial applications, university computer centers and home personal computers. Since the 

demands for complex and large scale software systems are increasing more rapidly, the 

possibility of programmers’ design error in the system will grow appreciably. Consequently, 

the possibility of crises due to software failure will continue to increase. These failures can 

generate enormous losses of revenues to many enterprises. A metric is needed to enhance 

software quality. One such quantitative metric of quality that is commonly used in software 

engineering practice is software reliability. 

Software reliability is a probabilistic measure and can be defined as the probability that 

the software faults do not cause a failure during a specified exposure period in a specified 

use environment. For more precise definition one can refer Goel (1985). Research activities 

in software reliability engineering have been conducted over the past 30 years, and many 

models have been developed for the estimation of software reliability [see; Wood (1996), 
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Pham (2006), and Chen (2010)].  

Hanagal and Bhalerao (2016) proposed generalized inverse Weibull software reliability 

growth model (SRGM). Hanagal and Bhalerao (2017, 2018) recently proposed extended 

inverse Weibull SRGM and delayed S-shaped SRGM with time dependent fault content rate 

function. 

Traditionally there are two common types of failures data: time domain data and interval 

domain data. These data are usually used by practitioners when analyzing and predicting 

reliability applications. This paper presents the work using interval-domain data. The interval 

domain approach is characterized by counting the number of failures occurring during a 

fixed period (e.g., test session, hour, week, and day). Using this method, the collected data 

are a count of the number of failure in the interval. Most of the existing finite failure 

category models describe the failure rate either a constant, increasing or decreasing over 

time, for further information regarding this, one can refer Lyu (1996) and Pham (2006). In 

reality this may not be true because in early stage of testing, the testers are new to the 

software and they need time to adjust. It implies less testing of failures at the beginning of 

testing stage. As testing progress testers get good exposure to software resulting in increase 

in detection of failures, thus detection of faults increasers in this period of time. When most 

of the faults are eliminated and failures of software decreases as time increases. 

This phenomenon of increasing/decreasing failure behaviors is not discussed much in the 

literature in the existing finite failure models. This motivated us for the development of a 

new model taking into account the increasing/decreasing behaviors of the software failures 

by its hazard rate function, see Hjorth (1980). The notion of failure rate is crucial in 

reliability and survival analysis. However, obtaining the failure rate in many practical 

situations is often not so simple because of the structure of the system.  For instance, it can 

be rather complex, or the process of the failure development cannot be described in a simple 

way. In these case a “proper model” can help a lot in deriving reliability characteristics. The 

purpose of this paper is to introduce a generalized extended inverse Weibull software 

reliability model which includes both increasing/decreasing nature of the hazard function. 

The model can be effectively used for deriving and analyzing the corresponding failure rate. 

Reliability and other relevant measures are then computed from the fitted model. 

The remainder of the paper is organized as follows: In Section 2, we describe a finite 

failure NHPP class of software reliability growth model (SRGM), and offer a decomposition 

of mean value function (MVF) to the finite failure NHPP models which enables us to relate 

the nature of failure intensity of the software to the hazard function and examine the 

suitability of some finite failure models. In Section 3, we discuss some of the existing finite 

failure reliability models and also we discuss the need for the development of new model 

which takes into account both increasing/decreasing nature of hazard function. In Section 4, 

we propose a generalized extended inverse Weibull finite failure NHPP model which 

describes the increasing/decreasing nature of the failure occurrence rate per fault and we also 

discuss the estimation of unknown model parameters by maximum method. The MLE’s are 

consistent and asymptotically normally distributed as the sample size increases; see Zhao Xie 

(1996). In Section 5, we discuss the procedure of data analysis for software reliability 

assessment based on three different data sets DS I, DS II and DS III. Finally, Section 6 

contains the major conclusions of the study. 

 

2. Software Reliability Growth Model (SRGM)  

Non-homogeneous Poisson Process (NHPP) model: During the testing phase, computer 

software is subject to software failures caused by errors latent in the software [Yamada 
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(1991)]. Test data such as times of software failures or the numbers of detected errors can be 

observed. If it is assumed that the correction of errors does not introduce any new errors, the 

cumulative number of detected errors increases as they are corrected and the mean time 

interval between software errors becomes longer. This means that the probability of no 

failure occurring in a fixed time interval, that is, the reliability increases with the progress of 

software testing. A mathematical tool that describes such an error-detection or failure 

occurrence phenomenon is called a software reliability growth model (SRGM). Many 

SRGM’s have been developed for measuring an assessing software reliability, for details 

readers may refer to Jelinski and Moranda (1972), Goel and Okumoto (1979), and Musa 

(1980). 

This is a class of time-domain data where software failures display the behavior of a non-

homogeneous Poisson process [see Obha and Yamada (1984)].  The non-homogeneous 

Poisson process model (NHPP) that represents the number of failures experienced up to time 

𝑡 is a non-homogeneous Poisson process {𝑁(𝑡), 𝑡 ≥ 0}. The main issue in the NHPP model 

is to determine an appropriate mean value function to denote the expected number of failures 

experienced up to a certain time. Consider a non-homogeneous Poisson process with 

intensity 𝜆(𝑡) at time 𝑡. The parameter 𝜆(𝑡) denotes the failure intensity of the software at 

time 𝑡, is time dependent. Let 𝑁(𝑡) denote the cumulative number of faults detected by time 

𝑡, and 𝑚(𝑡) denotes its expectation. Then 𝑚(𝑡) = 𝐸[𝑁(𝑡)], and the failure intensity 𝜆(𝑡) is 

related as follows: 

𝑚(𝑡) = ∫ 𝜆
𝑡

0
(𝑠)𝑑𝑠   and   

𝜕𝑚(𝑡)

𝜕𝑡
= 𝜆(𝑡) 

 

The NHPP model is based on the following assumptions: 

 

1. The failure has an independent increment i.e. the number of failure during the time 

interval (𝑡, 𝑡 + 𝑠) depends on the current time 𝑡 and the length of the time interval 𝑠, and 

does not depend on the past history of the process. 

 

2. The failure rate of the process is given by: 

P{exactly one failure in (𝑡, 𝑡 + ∆𝑡) } = 𝑃{𝑁(𝑡 + ∆𝑡) − 𝑁(𝑡) = 1} = 𝜆(𝑡)∆𝑡 + 𝑜(∆𝑡)      

where 𝜆(𝑡) is the intensity function. 

 

3. During a small interval ∆𝑡, the probability of exactly one failure is negligible, that is, 

P{two or more failure in (𝑡, 𝑡 + ∆𝑡)}= 𝑜(∆𝑡). 

 

4. The initial condition is 𝑁(0) = 0. 

 

 

On the basis of these assumptions the probability of exactly 𝑛 failures occurring during 

the time interval (0, 𝑡) for the NHPP is given by: 

𝑃{𝑁(𝑡) = 𝑛} =
[𝑚(𝑡)]𝑛

𝑛!
𝑒−𝑚(𝑡)   ,   𝑛 = 0,1,2, … , ∞. 

Various time domain models have been proposed in literature which describes the 

stochastic failure process by a NHPP. These models differ in their failure intensity function 

𝜆(𝑡) and hence 𝑚(𝑡). The NHPP models can further be classified into finite failure and 

infinite failure categories. Finite failure NHPP models assume that the expected number of 

faults detected given infinite amount of time will be finite, whereas infinite failure models 

assume that an infinite number of faults that would be detected in infinite testing time. 



 

578              MODELING ON GENERALIZED EXTENDED INVERSE WEIBULL SOFTWARE RELIABILITY 

Let 𝑎 denote the expected number of faults that would be given infinite testing time in 

case of finite failure NHPP models. Then, the MVF of the finite failure NHPP models can 

also be written as: 

𝑚(𝑡) = 𝑎𝐹(𝑡)                                                         (2.1) 

 

where 𝐹(𝑡)  is the distribution function and 𝑎 = 𝑚(∞). From the equation (2.1), the 

instantaneous failure intensity, 𝜆(𝑡) for the finite failure NHPP model is given by: 𝜆(𝑡) =
𝑎𝐹′(𝑡) and this can be written as: 

𝜆(𝑡) = [𝑎 − 𝑚(𝑡)]
𝐹′(𝑡)

1−𝐹(𝑡)
= [𝑎 − 𝑚(𝑡)]ℎ(𝑡)                            (2.2) 

where ℎ(𝑡) is the hazard function or the failure occurrence rate per fault of the software, 

or the rate at which the individual faults manifest themselves as failures during testing. The 

quantity [𝑎 − 𝑚(𝑡)] denotes the expected number of faults remaining in the software at time 

𝑡. Since [𝑎 − 𝑚(𝑡)] is a monotonically non-increasing function of time, the nature of overall 

failure intensity 𝜆(𝑡), is governed by the nature of failure occurrence rate per fault ℎ(𝑡), from 

the equation (2.2).   

 

3. Some Existing NHPP Models 

A number of analytical models have been proposed to address the problem of software 

reliability measurements. These approaches are based mainly on the failure history of 

software and can be classified according to nature of the failure process studied as indicated 

below: 

1. Times between failure models 

2. Failure count models 

3. Fault seeding models 

4. Input domain based model 

 

[Jelinski and Moranda (JM) (1972)] model comes under the class times between failure. 

This is one of the earliest and probably the most commonly used model for assessing 

software reliability. A lot of variations in the JM model are proposed to describe testing 

situations where faults are not removed until the occurrence of a fatal one at which time the 

accumulated group of faults is removed. Schick and Wolverton (1973) model is based on the 

same assumption as the JM model except that the hazard function is assumed to be 

proportional to the current fault content of the program as well as to the failure time elapsed 

since the last failure. 

The above two models assume that the faults are removed with certainty when detected. 

However, in practice Thayer et al. (1976) showed that it is not always the case. To overcome 

this limitation, Goel and Okumoto (1979b) proposed an imperfect debugging model which is 

basically an extension of the JM model. Littlewood (1980) took a different approach to the 

development of a model for times between failures. He argued that software reliability 

should not be specified in terms of the number of errors in the program. 

Most popular and most basic fault seeding model is Mill’s (1972) hypergeometric model. 

This model requires that the number of faults be randomly seeded in the program to be 

tested. Nelson (1978) model is an input domain based model, the reliability of a software is 

measured by running the software for a sample of 𝑛  inputs. The 𝑛  inputs are randomly 

chosen from the input domain set. 

Langberg and Singapurwalla (LS) (1985) have developed a model by introducing total 

number of program instructions or commands into the failure rate. Van Pul (1992) has 
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considred a general class of failure rate intensity functions. A unification of SRM’s is 

proposed by Chen and Sigapurwalla (1997) by self-exciting point process technique and they 

showed some of the existing models are special case of this model. Zhang et al. (2007) had 

introduced concept of equivalent failure time into JM model and its applications. Recently 

Mahapatra and Roy (2012) have developed a modified JM model which assumes the 

imperfect debugging process in fault removal activity during the testing phase. In this model 

authors assume that whenever a failure occurs, the detected fault is not perfectly removed 

and there is a chance of introducing new fault/s due to wrong diagnosis or incorrect 

modification in the software. 

The failure occurrence rate per fault ℎ(𝑡) can be a constant, increasing, decreasing, or 

increasing/decreasing. Here we describe some of the existing finite failure NHPP models, 

along with their hazard functions. The Goel-Okumoto (GO) model has received a lot of 

attention in the literature in software reliability modeling. Where 𝑎 is the expected initial 

fault content prior to the testing, and 𝑏 is the failure detection rate per fault. The failure 

occurrence rate per fault is constant in the case of the GO model. Musa-Okumoto model 

[Musa and Okumoto (1985)] is similar to the GO model, the primary difference being that it 

is based on execution time data, whereas the GO model uses the calendar time failure data. 

Table 1 gives the expressions for 𝑚(𝑡), 𝜆(𝑡) and ℎ(𝑡) for the GO model. 

However, in most of the real life testing scenario, the software failure intensity increases 

initially and then decrease. The generalized GO model [Goel (1985)] had captured this 

notion of increasing/decreasing nature of the failure intensity the nature of the failure 

occurrence rate per fault is determined by the parameter 𝛾, and is increasing for 𝛾 > 1 and 

decreasing for 𝛾 < 1 . Table 1 gives expressions of 𝑚(𝑡), 𝜆(𝑡)  and ℎ(𝑡)  for the Goel-

Okumoto, Weibull and delayed S-shaped models. The NHPP delayed S-shaped model is a 

stochastic model for a software error detection process based on NHPP in which the growth 

curve of the number of detected software errors for the observed failure data is S-shaped, 

called delayed S-shaped NHPP model [Yamada et al (1984)]. The software reliability growth 

curve is an S-shaped curve which means that the curve crosses the exponential curve from 

below and the crossing occurs once and only once. The detection rate of faults, where error 

detection rate changes with time, becomes the greatest at a certain time after testing begins 

after which it decreases exponentially. The S-shaped SRGM captures the software error 

removal phenomenon in which there is a time dela between the actual detection of the fault 

and its reporting. The testing process in this case can be seen as consisting of two phases: 

fault detection and fault isolation. The expressions for 𝑚(𝑡), 𝜆(𝑡)  and ℎ(𝑡) for the S-shaped 

model are presented in Table 1.  

 

 

 

Table 1: Existing Finite Failure NHPP Models 

 
Model Name 𝑚(𝑡) 𝜆(𝑡) ℎ(𝑡) 

GO 𝑎(1 − 𝑒−𝑏𝑡) 𝑎𝑏𝑒−𝑏𝑡 b 

Weibull 𝑎(1 − 𝑒−𝑏𝑡𝛾
) 𝑎𝑏𝛾𝑡𝛾−1𝑒−𝑏𝑡𝛾

 𝑏𝛾𝑡𝛾−1 

S-shaped 𝑎[1 − (1 + 𝑏𝑡)𝑒−𝑏𝑡] 𝑎𝑏2𝑡𝑒−𝑏𝑡 𝑏2𝑡

1 + 𝑏𝑡
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We present graph of data set DS I only as explained in Section 6 which led us to the 

development of new SRMs. The data set consists of 26 failures in 250 days (DS I). The plot 

of hazard rate of GO models, Weibull model and S-shaped model are shown in Figure 1. The 

plot of hazard rates of GO models, Weibull model and S-shaped model is plotted using the 

estimated values of parameters given in Table 3 of the respective models that is GO, Weibull 

and S-shaped models.  

 

 
Figure 1: Plot of Hazard Rate for Existing NHPP Models 

 

In reality this may not true because in the early stage of testing the tester is new to the 

software environment and they need time to adjust. This implies, less detection of failure 

caused by faults at the beginning. As testing progresses testers get good exposure to the 

software. This implies that there is an increase in the detection of failures and thus detection 

of faults increases in this period of time. When most of the software faults are eliminated, 

failures of software decreases as time increases. This idea leads us to the developed of a new 

model taking into account both increasing/decreasing behavior of the software failures by its 

hazard function. 

 

4. Generalized Extended Inverse Weibull Finite Failure NHPP Model 

It is well known that the Weibull distribution is one of the most widely used lifetime 

distribution in reliability engineering. The Weibull distribution has been used quite 

extensively when the data indicate a monotone hazard function (refer to Figure 1), i.e., the 

Weibull distribution does not exhibit a bathtub or upside-down bathtub shaped hazard rate 

function. Due to this limitation it cannot be used at all if the data indicate a non-monotone 

and unimodal hazard function. Thus it cannot be used to model the complex life time of a 

system. Hence, a number of extensions of the Weibull distribution are introduced to 

overcome this shortage. For example, Mudholkar and Shrivastava (1993) proposed an 

exponential Weibull distribution. Xie and Lai (1995) presented an additive Weibull 

distribution. Marshal and Olkin (1997) studied a Marshal-Olkin extended Weibull 

distribution. Jiang and Murthy (1998) discussed the shape of the hazard rate function for the 

mixture Weibull distribution. Xie et al. (2002) introduced different modified Weibull 

distributions with bathtub shape failure rate function. Pham and Lai (2007) presented the 

elaborate overviews of the various developments in extensions of the Weibull distribution. 

More recently Xiuyun and Zaizai (2014) presented an extended Weibull distribution. In this 
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paper, we introduce a generalized extended inverse Weibull (GEIW) distribution which has 

an increasing/decreasing form of hazard function. If empirical studies indicate that the 

hazard function might be unimodal then the GEIW distribution may be appropriate model. 

Let 𝐺(𝑥) be the CDF of extended Weibull distribution discussed by Xiuyun and Zaizai 

(2014), is given by: 

𝐺(𝑥) = 1 − exp (−𝛼𝑥𝛽 exp (−
𝜆

𝑥
)),    𝑥 > 0                                   (4.1) 

Let 𝑡 =
1

𝑥
 then, the CDF of extended inverse Weibull distributions can be defined by 

 𝐺1(𝑡) = exp(−𝛼𝑡−𝛽 exp(−𝜆𝑡)) ,    𝑡 > 0.                                   (4.2) 

 

The probability density function of extended inverse Weibull distribution is given by: 

 

𝑔1(𝑡) = 𝛼𝑡−𝛽(𝛽𝑡−1 + 𝜆) exp(−𝛼𝑡−𝛽 exp(−𝜆𝑡)) ,    𝑡 > 0                    (4.3) 

 

and zero otherwise. Where 𝛼 > 0  is scale parameter and 𝛽 > 0  and 𝜆 ≥ 0  are shape 

parameters. 

The CDF of the generalized extended inverse Weibull distribution can be defined by: 

𝐹(𝑡) = 1 − (1 − exp(−𝛼𝑡−𝛽 exp(−𝜆𝑡))
𝜃

, 𝑡 > 0                        (4.4) 

The probability density function of generalized extended inverse Weibull distribution is 

given by: 

𝑓(𝑡) = 𝜃𝛼𝑡−𝛽(𝛽𝑡−1 + 𝜆)exp (−𝜆𝑡 − 𝛼𝑡−𝛽 exp(−𝜆𝑡) (1 − exp(−𝛼𝑡−𝛽 exp(−𝜆𝑡)))
𝜃−1

  

(4.5) 

 

and zero otherwise. Where 𝛼 > 0 is scale parameter and 𝛽 > 0, 𝜆 ≥ 0 and 𝜃 > 0 are 

shape parameters.   

  

We observe that this model has simple explicit formula and it does not involve any 

special functions. In this section, we develop a SRM which includes both 

increasing/decreasing behavior of the failure occurrence rate per fault can be taken into 

account by the hazard of GEIW model. The hazard rate function ℎ(𝑡) of the generalized 

extended inverse Weibull SRM is given as follows: 

ℎ(𝑡) = 𝜃𝛼 𝑡−𝛽(𝛽𝑡−1 + 𝜆)𝑒𝑥𝑝(−𝜆𝑡 − 𝛼𝑡−𝛽 exp(−𝜆𝑡)) [1 − exp(−𝛼𝑡−𝛽 exp(−𝜆𝑡))]
−1

    

(4.6) 

The parameters 𝜆 ≥ 0 and 𝛽 > 0 are the shape parameters. The shape parameters govern 

the shape of the pdf, the hazard function and the general properties of the extended inverse 

Weibull distribution. The hazard function takes the increasing/decreasing nature of failure of 

software system into account. The corresponding MVF 𝑚(𝑡) is 

𝑚(𝑡) = 𝑎𝐹(𝑡)          

  = 𝑎 (1 − (1 − exp(−𝛼𝑡−𝛽 exp(−𝜆𝑡)))
𝜃

)      (4.7) 

it is noted that: 𝑚(0) = 0    and 𝑚(∞) = 𝑎 and failure intensity function is 

𝜆(𝑡) = 𝑎𝛼𝑡−𝛽(𝛽𝑡−1 + 𝜆)exp (−𝜆𝑡 − 𝛼𝑡−𝛽 exp(−𝜆𝑡)) 𝜃(1 − exp(−𝛼𝑡−𝛽 exp(−𝜆𝑡)))
𝜃−1

       

(4.8) 
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Figure 2: Hazard Rates of Generalized Extended Inverse Weibull (GEIW) Model for the data set 

DS-I 

 

In Figure 2, we plot the hazard rates of our proposed GEIW model for that data set DS I 

only using the estimated values of parameters given in Tables 3. From the Figure 2, we 

observe that the estimated hazard rate (or failure occurrence rate) of generalized extended 

inverse Weibull (GEIW) Model is increasing in the beginning of software failure time till 50 

days and decreasing linearly after failure time 50 (days). 

Software Reliability 

Let 𝑆𝑖 (𝑖 = 1,2,3, … )  be a random variable representing the 𝑖𝑡ℎ  software failure 

occurrence time. Define 𝑋𝑖 = 𝑆𝑖 − 𝑆𝑖−1, (𝑖 = 1,2,3, … ); 𝑆0 = 0  is a random variable 

representing the time interval between the (𝑖 − 1)𝑡ℎ and 𝑖𝑡ℎ software failure occurrence. The 

conditional probability that the 𝑖𝑡ℎ software failures does not occur between (𝑡, 𝑡 + 𝑥], (𝑥 ≥

0) on the condition that the (𝑖 − 1)𝑡ℎ software failure has occurred at testing time 𝑡, is given 

by: 

 

𝑅(𝑥|𝑡) = 𝑃{𝑋𝑖 > 𝑥|𝑆𝑖−1 = 𝑡} = exp[−{𝑚(𝑥 + 𝑡) − 𝑚(𝑡)}] , 𝑡 ≥ 0, 𝑥 ≥ 0          (4.9) 

 

Substituting 𝑚(𝑡) in the equation (4.9), we have the software reliability for finite failure 

generalized extended inverse Weibull model as: 

𝑅(𝑥|𝑡) = exp [− {𝑎 (1 − (1 − 𝑒𝑥𝑝(−𝛼(𝑡 + 𝑥)−𝛽 𝑒𝑥𝑝(−𝜆(𝑡 + 𝑥))))
𝜃

) − 𝑎 (1 −

(1 − 𝑒𝑥𝑝(−𝛼𝑡−𝛽 𝑒𝑥𝑝(−𝜆𝑡)))
𝜃

)}] ,   𝑡 ≥ 0, 𝑥 ≥ 0                                                                      

(4.10) 

 

The reliability function 𝑅(𝑡), defined as the probability that there are no failures in the 

time interval (0, 𝑡) is given by 𝑅(𝑡) = 𝑃[𝑁(𝑡) = 0] = 𝑒−𝑚(𝑡). 

 

5.Parameters Estimation 

Parameter estimation is of primary importance in software reliability data analysis. We 

discuss statistical inference procedure for the NHPP model discussed in Section 4 based on a 

method of maximum likelihood which is the most important and widely used formal 
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estimation technique. We now proceed for estimating parameters of generalized extended 

inverse Weibull software reliability model using interval domain data. 

 

Estimation using interval Domain Data 

Suppose that 𝑛 pairs of observations (𝑡𝑖, 𝑦𝑖)(𝑖 = 1,2,3, … , 𝑛; 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛) are 

made during the testing phase where 𝑦𝑖 denote the number of software faults detected up to 

the testing time 𝑡𝑖 , 𝑖 = 1,2, … , 𝑛. The corresponding probability mass function is 𝑃[𝑁(𝑡1) =

𝑦1, 𝑁(𝑡2) = 𝑦2, … , 𝑁(𝑡𝑛) = 𝑦𝑛] and hence the likelihood function for the interval domain 

data is given by 

𝐿 = ∏
(𝑚(𝑡𝑖)−𝑚(𝑡𝑖−1))

𝑦𝑖−𝑦𝑖−1

(𝑦𝑖−𝑦𝑖−1)!

𝑛
𝑖=1 exp [−𝑚(𝑡𝑖) − 𝑚(𝑡𝑖−1)]                      (5.1) 

Where 𝑡0 = 0 and 𝑦0 = 0. Taking the natural logarithm of the equation (5.1) yields log-

likelihood function, that is 

𝑙𝑛𝐿 = ∑ (𝑦𝑖 − 𝑦𝑖−1) ln[𝑚(𝑡𝑖) − 𝑚(𝑡𝑖−1)] − 𝑚(𝑡𝑛) −𝑛
𝑖=1 ∑ ln(𝑦𝑖 − 𝑦𝑖−1) !𝑛

𝑖=1             (5.2) 

 

substituting mean value function 𝑚(𝑡) into the equation (5.2), we get logarithmic of 

likelihood function as (excluding the terms independent of parameters), 

 

𝑙𝑛𝐿 = ∑ (𝑦𝑖−𝑦𝑖−1) ln [𝑎 (1 − (1 − exp(−𝛼𝑡𝑖
−𝛽

exp(−𝜆𝑡𝑖)))
𝜃

) − 𝑎 (1 − (1 −𝑛
𝑖=1

exp(−𝛼𝑡𝑖−1
−𝛽

exp(−𝜆𝑡𝑖−1)))
𝜃

)] − 𝑎 (1 − (1 − exp(−𝛼𝑡𝑛
−𝛽

exp(−𝜆𝑡𝑛)))
𝜃

)                                                                                                          

                                                                                                                                           

(5.3) 

Taking partial derivative of the equation (5.3) w.r.t. 𝑎 𝛼, 𝛽, 𝜆, 𝜃 and equating to zero we 

get the likelihood equation. Closed form expressions for MLEs of 𝑎, 𝛼, 𝛽, 𝜆 and 𝜃 cannot be 

obtained. However, the MLEs can be obtained by iterative solution procedure. Setting the 

derivatives of the log-likelihood functions for (𝑎, 𝛼, 𝛽, 𝜆, 𝜃) to zero, the MLEs (�̂�, �̂�, �̂�, �̂�, 𝜃) 

are obtained by iterative solution procedure i.e., Newton-Raphson method. We have used R-

software for the iterative solution procedure. Let �̂�, �̂�, �̂�, �̂� and 𝜃 be the MLEs of 𝑎, 𝛼, 𝛽, 𝜆 

and 𝜃  respectively. Then MLE of MVF and intensity function is obtained by replacing 

𝑎, 𝛼, 𝛽, 𝜆 and 𝜃 by its MLEs �̂�, �̂�, �̂�, �̂� and  𝜃 in the equations (4.7) and (4.8) respectively. 

Software reliability can be estimated from the equation (4.10). 

 

6. Analysis of Three Data Sets 

The Data Set I is about US Naval Tactical Data Systems (NTDS) given by [Goel and 

Okumoto (1979a)]: the software data set was extracted from information about failures in the 

development of software for the real time multi-computer complex of the US Naval Fleet 

Computer Programming Centre of the US Naval Tactical Data System (NTDS). The 

software consists of 38 different project modules. The time horizon is divided into four 

phases: Production phase, test phase, user phase and subsequent test phase. The 26 software 

failures were found during the production phase, five during the test phase and the last 

failure was found on 4th Jan 1971. One failure was observed during the user phase, in 

September 1971, and two failures during the test phase in 1971. The Data Set II is about 

Online Data Entry IBM Software Package: The data reported by [Obha (1984)] are recorded 

from testing an on-line data entry software package developed at IBM. The Data Set III is 
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about Real-Time Command and Control System: - The data set was reported by [Musa et al. 

(1987)] based on failure data from a real-time command and control system, which 

represents the failure during system testing for 25 hours of CPU time.  

 

Goodness of Fit Test for the GEIW Model: 

It is important to perform goodness-of –fit test to check statistically whether the applied 

software reliability model (SRGM) provides a good fit with the observed data. We discuss 

 

Table 2: MLEs, K-S Statistics, p-values for GEIW Model 

Data Set No. K-S Statistic p-value 

DS-I 0.136865 0.66484 

DS-II 0.15877 0.58158 

DS-III 0.077251 0.99991 

 

The goodness of fit test based on the Kolmogorov-Smirnov (K-S) test statistics [Conover 

(1980)] for an NHPP model [Yamada (1991)], which is useful even if the sample size of the 

observed data is small. The Kolmogorov-Smirnov test statistic is given by: 𝐷 = 𝑚𝑎𝑥(𝐷𝑖),  

where 𝑖 = 1,2,3, … , 𝑛 − 𝑖 

𝐷𝑖 = max {|
𝑚(𝑡𝑖)̂

𝑡𝑛
−

𝑖

𝑛−1
| , |

𝑚(𝑡𝑖)̂

𝑡𝑛
−

𝑖−1

𝑛−1
|}                                    (6.1) 

 

For the failure-occurrence time data 𝑡𝑖, (𝑖 = 1,2,3, … , 𝑛). Using the value of the test statistic 

in the equation (6.1), p-value is computed using the formula for the sample size 𝑛 for the 

specified level of significance 𝛼 . If the p-value is greater then, the specified level of 

significance 𝛼 then we may conclude that the observed data fits the applied software reliability 

growth model (SRGM).   

We used the Kolmogorov-Smirnov goodness-of-fit test for checking the adequacy of the 

model. For details of this test see Goel (1982). Basically, the test provides a statistical 

comparison between the actual data and the model proposed. This test is applied to all the three 

data sets DS-I, DS-II and DS-III, i.e. K-S statistics and p-values are computed from the values 

of K-S statistic and p-value in the Table 2, we conclude that the proposed GEIW model fits 

well for all the three data sets, so we conclude that the proposed model could be considered to 

be a good choice for the data. 

Applying data sets DS I, DS II and DS III on the generalized extended inverse Weibull 

model discussed above, we obtain the maximum likelihood (ML) estimates and goodness of fit 

measures, such a sum of squares due to error (SSE), mean squares error (MSE), predictive ratio 

risk (PRR) [Pham and Deng (2003)] and Akaikes information criterion (AIC) for the model 

comparison. The values of SSE, MSE, PRR and AIC for existing and for the proposed finite 

failure models are summarized in Table 3, 4 and 5 respectively. 

Further we have plotted the actual data and the estimated values of cumulative faults (or 

Mean Value Function (MVF)) of finite models against time for data sets DS I, DS II, DS III as 

shown in Figures 3, 4 and 5 respectively. The existing models like GO, Weibull and S-shaped 

models and the models finite generalized exponential distribution(FGED),  finite generalized 

inverse exponential distribution(FGIED), proposed by Manjunatha and Harishchandra (2011), 

generalized inverse Weibull(GIW) and extended inverse Weibull(EIW) proposed by Hanagal 

and Bhalerao (2016, 2017)  are compared with the proposed generalized extended inverse 

Weibull(GEIW) finite failure NHPP  model.  
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Table 3: MLEs and AICs of Finite Failure for DS I 

Model Estimates  SSE MSE PRR AIC 

GO �̂� =34.0152 

�̂� =0.0058 

129.0067 5.3753 1.4056 169.3803 

Weibull �̂� =15.3157 

�̂� =0.0001 

𝛾 =2.7791 

2556.511 111.1527 24083.41 199.4800 

S-Shaped �̂� =27.5041 

�̂� =0.0186 

1208.813 50.3672 27.2446 169.8360 

FGED �̂� =15.3157 

�̂� =0.0001 

�̂� =2.7791 

96.5955 4.1998 94.0674 167.5664 

FGIED �̂� =15.3157 

�̂� =0.0001 

�̂� =2.7791 

65.5712 4.8986 2.8509 168.6538 

GIW �̂� =36.8148 

�̂� =40.66 

�̂� =0.99 

𝛾 =2.10 

65.3842 2.972 4.6387 70.6464 

EIW �̂� =33.2683 

�̂� =42.0 

�̂� =0.84 

�̂� =0.002 

58.0075 2.6367 0.5221 71.0302 

GEIW �̂� =26.1 

�̂� =52 

�̂� =0.002 

�̂� =0.002 

𝜃 =2 

50.941261 2.42577 0.2507 68.7395 

 

From the Table 3, we observe that the SSE, MSE, PRR and AIC values of our proposed 

generalized extended inverse Weibull (GEIW) model are less as compared to the existing 

models. Hence we conclude that our proposed model performs better than the existing 

models for this data set i.e., DS I. 

 
 

Figure 3: Plot of data and Estimated Cumulative Faults against time for Data set I 

 

From the Figure 3, we observe that the shape of the mean value function for the proposed 

generalized extended inverse Weibull model is closer to the shape of mean value function of 
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the observed data, as compared to GO, Weibull and S-shaped models for data set DS I. 

Hence from Figure 3, we conclude that our proposed model GEIW explains the data better 

than GO, Weibull and S-shaped models. 

From the Table 4, we observe that the SSE, MSE, PRR and AIC values of our proposed 

generalized extended inverse Weibull (GEIW) model are less as compared to the existing 

models. Hence we conclude that our proposed model performs better than the existing 

models for this data set i.e., DS II. 

Table 4: MLEs and AICs of Finite Failures for DS II 
Model Estimates  SSE MSE PRR AIC 

GO �̂� =25.4892 

�̂� =0.0029 

44.4372 2.2219 18.8628 195.3148 

Weibull �̂� =29.3242 

�̂� =0.0058 

𝛾 =0.8400 

39.8159 2.0956 4.6564 193.8581 

S-Shaped �̂� =22.6199 

�̂� =0.0080 

467.2066 23.2603 12460.87 202.2326 

FGED �̂� =27.7642 

�̂� =0.0021 

�̂� =0.8147 

156.7386 8.2494 17.0705 193.9031 

FGIED �̂� =91.9977 

�̂� =18.0629 

�̂� =0.0720 

40.0537 2.1081 4.4855 193.7165 

GIW �̂� =24.9348 

�̂� =117 

�̂� =1.05 

𝛾 =1.09 

22.5784 1.2544 0.087 84.844 

EIW �̂� =26.8684 

�̂� =8.7 

�̂� =0.37 

�̂� =0.002 

37.345 2.0747 0.3613 67.66 

GEIW �̂� =25 

�̂� =6.2 

�̂� =0.31 

�̂� =0.003 

𝜃 =0.9 

33.73487 1.984404 0.230296 65.4064 

 
Figure 4：Plot od Data and Estimated Cumulative Faults against Time for DS II 
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Table 5: MLEs and AICs of Finite Failures for DS III 

Model Estimates  SSE MSE PRR AIC 

GO �̂� =23.4121 

�̂� =0.0035 

5.8191 0.4476 0.4104 124.2018 

Weibull �̂� =3.5128 

�̂� =0.0001 

𝛾 =1.9695 

771.0485 64.254 5472.873 151.4680 

S-Shaped �̂� =16.4356 

�̂� =0.0137 

24.3006 1.8693 54.5298 124.4217 

FGED �̂� =21.1765 

�̂� =0.0044 

�̂� =1.1052 

3.825 0.3188 11.6132 124.1545 

FGIED �̂� =63.2471 

�̂� =36.6030 

�̂� =0.1230 

6.9954 0.8851 0.5829 123.8616 

GIW �̂� =19.4955 

�̂� =30 

�̂� =1.05 

𝛾 =2.9 

17.1171 1.5561 104.2216 43.73 

EIW �̂� =27.6785 

�̂� =15.0 

�̂� =0.51 

�̂� =0.001 

2.7 0.2538 0.1380 37.58 

GEIW �̂� =37 

�̂� =9 

�̂� =0.39 

�̂� =0.001 

𝜃 =0.75 

2.108723 0.210872 0.050359 35.3 

 

 

      From the Table 5, we observe that the SSE, MSE, PRR and AIC values of our proposed 

generalized extended inverse Weibull (GEIW) model are less as compared to the existing 

models. Hence we conclude that our proposed model performs better than the existing 

models for this data set i.e., DS III. 
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Figure 5: Plot of Data and Estimate Cumulative Faults against Time of DS III 

 

From the Figure 5, we observe that the shape of the mean value function for the proposed 

generalized extended inverse Weibull model is closer to the shape of mean value function of 

the observed data, as compared to GO, Weibull and S-shaped models for data set DS III. 

Hence from Figure 5, we conclude that our proposed model GEIW explains the data better 

than GO, Weibull and S-shaped models 

 

7. Conclusions and Remarks 

Since the existing finite failure non-homogeneous Poisson process (NHPP) models are 

inadequate to describe failure process underlying increasing/decreasing phenomenon, in this 

paper we have proposed an alternative model namely the generalized extended inverse 

Weibull software reliability growth model. We use decomposition of the mean value 

function (MVF) of finite failure NHPP model to enable us to include the increasing and 

decreasing nature of the failure intensity to the failure occurrence rate per fault. The model 

parameters are estimated using ML method by using the interval domain data type. 

Kolmogorov-Smirnov goodness-of-fit test is carried out for the proposed model and the 

proposed model fits well for all the three data sets. The different existing models and the 

proposed model is compared using or sum of squares due to error, mean squares error, 

predictive ratio risk and Akaikes information criteria. It may be observed that the proposed 

model performs better than the existing finite failure category models. 
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