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ABSTRACT 

In this paper, a new five-parameter extended Burr XII model called new 

modified Singh-Maddala (NMSM) is developed from cumulative hazard 

function of the modified log extended integrated beta hazard (MLEIBH) model. 

The NMSM density function is left-skewed, right-skewed and symmetrical. The 

Lambert W function is used to study descriptive measures based on quantile, 

moments, and moments of order statistics, incomplete moments, inequality 

measures and residual life function. Different reliability and uncertainty 

measures are also theoretically established. The NMSM distribution is 

characterized via different techniques and its parameters are estimated using 

maximum likelihood method. The simulation studies are performed on the basis 

of graphical results to illustrate the performance of maximum likelihood 

estimates (MLEs) of the parameters. The significance and flexibility of NMSM 

distribution is tested through different measures by application to two real data 

sets. 

 

Key Words: Moments; Lambert W function; Reliability; Characterizations; 
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1. Introduction 

Burr (1942) suggested 12 distributions as Burr family to fit cumulative frequency 

functions on frequency data. Burr distributions XII, III and X are frequently used. Burr-XII 

(BXII) distribution has wide applications in modeling insurance data in finance and business 

and modeling failure time data in reliability, survival analysis and acceptance sampling plans.      

During recent decades, many continuous univariate distributions have been developed, 

however, various data sets from reliability, engineering, environmental, financial, biomedical 

sciences, among other areas, do not follow these distributions. Therefore, modified, extended 

and generalized distributions and their applications to problems in these areas is a clear need 

of day. 

The modified, extended and generalized distributions are obtained by the introduction of 

some transformation or addition of one or more parameters to the baseline distribution. 

These new developed distributions provide better fit to the data than the competing models. 

The probability density function (pdf ) of BXII distribution has  unimodal or decreasing 

shaped as well as monotone hazard rate function (hrf). However, these properties are 

inadequate, since the empirical approaches to real data are often non-monotone hrf shapes 

such as inverted bathtub hazard rate, bathtub, and various shaped specifically in the lifetime 

applications. Thus, various modified, extended and generalized forms of BXII distribution 

with extra shape and scale parameters are available in the literature such as  multivariate 

BXII (Takahasi; 1965), BXII and related (Tadikamalla;1980), doubly truncated Lomax 

(Saran and Pushkarna;1999), doubly truncated BXII (Begum and Parvin; 2002), extended 

BXII  (Usta; 2013), extended three-parameter BXII (Shao et al.; 2004), six-parameter 

generalized BXII (Olapade; 2008), beta BXII (Paranaíba et al.; 2011), extended BXII (Usta; 

2013), Kumaraswamy BXII (Paranaíba et al.; 2013), generalized log-Burr family (Akhtar 

and Khan; 2014), BXII geometric (Korkmaz and Erişoğlu, 2014), McDonald BXII (Gomes 

et al.;2015), three-Parameter BXii (Okasha and Matter; 2015), BXII power series (Silva and 

Cordeiro; 2015), three-parameter BXII Distribution (Thupeng; 2016), BXII-Poisson 

(Muhammad; 2016), extensions of the BXII (Cadena; 2017),  new extended BXII (Ghosh 

and  Bourguignon; 2017), gamma BXII (Guerra et al.; 2017),  BXII (Kumar; 2017),  BXII 

modified Weibull (Mdlongwa et al.; 2017), BXII (Kayal etal.;2017),  five-parameter BXII 

(Mead and Afify; 2017), new BXII distribution (Yari and Tondpour; 2017), four parameter 

BXII (Afify et al.; 2018), BXII system of densities (Cordeiro et al.;2018), Odd Lindley BXII 

(Abouelmagd et al., 2018 and Korkmaz et al., 2018),  BXII (Gunasekera;2018), Modified log 

BXII (Bhatti et al.;2018), BXII (Chiang et al.;2018), BXII (Chen and Singh;2018) and BXII 

(Keighley et al.;2018).  

The main goal of this paper is to obtain a more flexible distribution for lifetime 

applications called NMSM distribution. The basic motivations for the NMSM distribution 

are: (i) to generate distributions with left skewed, right-skewed and symmetrical shaped as 

well as high kurtosis; (ii) to have increasing, decreasing, bathtub and inverted bathtub hazard 

rate function (iii) to serve as the best alternative model to other current models to explore and 

model the real data in economics, life testing, reliability, survival analysis manufacturing and 

other areas of research and (iv) to provide better fits than other models. 

Our interest is to study NMSM distribution along with its properties, applications and 

examine the usefulness of this distribution for modeling phenomena compared to the 

competing models.  

This paper is divided into the following sections. In section 2, NMSM distribution is 

developed from the cumulative hazard rate of function of MLEIBH model. NMSM 
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distribution is also developed via different transformations and compounding of generalized 

modified Weibull (GMW) and gamma distribution. In section 3, NMSM distribution is 

studied in terms of basic structural properties, descriptive measures based on quintiles, some 

plots and sub-models. In section 4, moments, moments of order statistics, incomplete 

moments, inequality measures, residual and reverse residual life function and some other 

properties are theoretically derived. In section 5, stress-strength reliability, multicomponent 

stress-strength reliability of model and uncertainty measures are studied. In section 6, 

NMSM distribution is characterized via (i) Conditional expectation; (ii) truncated moment; 

(iii) Hazard function and (iv) Mills ratio. In section 7, parameters of NMSM distribution are 

estimated using maximum likelihood method. In Section 8, the simulation studies are 

performed on the basis of graphical results to illustrate the performance of maximum 

likelihood estimates (MLEs) of the NMSM distribution. Section 9 deals with the study of 

goodness of fit of NMSM distribution via different methods. Conclusion and remarks are 

given in section 10. 

 

2. DEVELOPMENT OF NMSM DISTRIBUTION 

The cumulative hazard rate for the integrated beta hazard (IBH) model (Lai et al.; 1998 

and Lai et al.; 2016) is  

   
1

1 , 0, 0, 0, 0 .
b

H x x ax a b x
a

           (1) 

The cumulative hazard rate for the MLEIBH model is 

   ln 1 1
bx

H x ax

   
     
    

.    (2) 

Setting         ln 1H x F x   , we reach at 
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We finally obtain the cumulative distribution function (cdf) of NMSM distribution as 

  1 1 0,xx
F x e x




 


  
      

   

    (3) 

  where , ,   are positive shape parameters and 0, 0    are scale parameters.  The 

corresponding probability density function is  

   

1

1
1 , 0.x xx x

f x x e e x
x


 

  
 
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            (4) 
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Clearly, the ordinary Singh Maddala distribution is obtained for 1 0and   . Hence, we 

generalize Singh Maddala distribution with extra shape parameters   and extra factor 
xe and 

called it as NMSM distribution. In addition, we have the ordinary burr XII distribution for

1, 1 0and     . Other sub-models have been marked in Section 3. 

 

2.1 The Lambert W Function 

The lambert W function was first introduced by Johann Heinrich Lambert (1758) in 

Lambert’s Transcendental equation (
mx x q  ) and Euler (1783) studied special case of

wwe . The Lambert W function also called product logarithm or Omega function is a set of 

functions written as the solution of the equation     

    exp ,W z W z z    

where z  is a complex number. For 
1

z
e

  , the  W z  is a real function. The real branch 

in which  , 1z    is called the negative branch and denoted by 
1W
. The real branch in 

which  1,z   is called the principal branch and denoted by 0W . 

The Lambert W relation is useful to (i) enumerate trees (combinatorics); (ii) find maxima 

of Planck, Bose-Einstein and Fermi-Dirac distributions; (iii) solve delay differential 

equations    1y t a y t    and obtain solution for Michaelis-Menten kinetics (time-course 

kinetics analysis). 
 

2.2 Transformations and Compounding 

In this sub-section, NMSM distribution is derived through (a) certain exponential random 

variable; (b) ratio of exponential and gamma random variables and (c) GMW and gamma 

distributions. 

Lemma (i) If Y has exponential random variable with scale parameter 1, then 

     
1

1 1

0 exp ~ , , , , .X W Y NMSM
 

        
 

 
 

    
 

  

(ii) If 1Z  has exponential random variable with scale parameter 1 and 2Z  has gamma 

random variable with shape parameter 



 and scale parameter 1, then 

  

1

1
0

2

~ , , , , .
Z

X W NMSM
Z

 
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  

 
     
 

  

  

(iii) Let /X  has generalized modified Weibull random variable with , , ,     parameters 

and  has gamma random variable with ,  parameters, then integrating the effect of  

with the help of      
0

; , , , , ; , , / ; ,f x gmw x g d            


  , so  
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 ~ , , , , .X NMSM       

  

 3. STRUCTURAL PROPERTIES OF NMSM DISTRIBUTION 

The survival, hazard, cumulative hazard and reverse hazard functions of a random 

variable X with NMSM distribution are given, respectively, by   

          
  1 ,xx

S x e
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        (5) 

                            
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      (6)
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                  (7) 

and      ( ) ln 1 .xx
H x e






 

  
   

   

  

                  (8) 

The Mills ratio and elasticity    
lnF( )

ln

d x
e x xr x

d x
   for NMSM distribution are, 

respectively, given by

  

  
   

11 1x xx
m x x x e e

x

 

 
   
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.                           (9) 

     

 

  ln 1 1 .
ln

xd x
e x e

d x


 




 
   
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               (10) 

The elasticity of NMSM distribution shows the behavior of the accumulation of 

probability in the domain of the random variable.  

The quantile function of NMSM distribution is    

1

1

0 1 1qx W q
 


 


 



 
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   

 

,  

where  0 ...W  is the Lambert function (Corless et al., 1996). 

The NMSM random number generator is    

1

1 1

0 1X W Z
 


 
 

 
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 
  
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,

 

 

where the random variable Z has uniform distribution on  0,1 .  

3.1 Shapes of the NMSM Density and Hazard Rate Functions 

The following graphs show that shapes of NMSM density are positively, negatively 

skewed and symmetrical. The NMSM distribution has increasing, decreasing and inverted 

bathtub hazard rate function. 
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Figure 3.1: Plots of pdf of NMSM Distribution 

   

Figure 3.2: Plots of hrf of NMSM Distribution 

   

Figure 3.3: Plots of hrf of NMSM Distribution 
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3.2 Sub-Models 

The NMSM distribution has the following sub models. 
Table 1:Sub-models of the NMSM distribution 

Sr.No. X     
      Name of Distribution 

1 X     
      New Modified Singh Maddala(NMSM) 

2 X     
    0 Modified Singh Maddala(MSM) 

3 X     
  1   New modified Burr XII (NMBXII) 

4 X     
  1 0 Modified Burr XII (MBXII) 

5 X     
1     New Singh Maddala(NSM) 

6 X     
1   0 Singh Maddala(SM) 

 (Singh and Maddala; 1976) 

7 X     
1 1 0 Burr XII(BXII) 

7 X 1   
1 1 0 Lomax 

8 X 1   
1 1 0 Log-logistic(LL) 

9 X     0       Generalized modified Weibull (GMW) 

10 X     0     0 Generalized Weibull(GW) 

11 X 1   0       Modified Weibull(GW) (Lie et al.;2003) 

12 X     0   
1 0 Weibull(W) 

13 1

X
 

    
    0 Modified Dagum 

14 1

X
 

    
1   0 Dagum 

15 1

X
 

    
1 1 0 Burr III (BIII) 

16 1

X
 

    0     0 Generalized Frechet (GF) 

 

4. MOMENTS 

Moments, incomplete moments, inequality measures, residual and reverse residual life 

function and some other properties of NMSM distribution are theoretically derived in this 

section. 

 

4.1 Moments about the Origin 

The 𝑟th ordinary moment of NMSM distribution is 
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 
 and using the Lambert function 

property
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where  .,.B is beta function. 

The factorial moments  
1
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n
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E X E X
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  of NMSM distribution are 
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where        ..2 1..1 ..
i

X X X X X i      and r  is Stirling number of the first 

kind. 

The Mellin transform helps to determine moments for a probability distribution. The Mellin 

transform of X with NMSM distribution is   
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The qth central moments, Pearson’s measure of skewness and Kurtosis and cumulants

 

of X 

with NMSM distribution are determined from the relationships 
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The numerical measure of the mean, variance, skewness and kurtosis of the NMSM 

distribution for selected values of the parameters to illustrate their effect on these measures. 
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Table 2: Mean, Variance, skewness and kurtosis of the NMSM distribution 

, , , ,      Mean Variance Skewness Kurtosis 

(1,1,1,1,1) 0.7672 0.5218 2.0776 10.2172 

(1,0.5,1,0.5,1) 0.5939 0.6304 2.4263 11.6752 

(1,2,3,4,5) 0.9259 0.2462 1.9130 9.4936 

(5,4,3,2,1) 1.0299 0.0931 0.5588 4.2718 

(0.5,0.5,0.5,0.5,0.5) 1.4660 3.0627 2.1072 9.5731 

(5,5,5,5,5) 1.1564 0.0373 0.3705 4.3420 

(1,5,5,0.5,0.5) 1.3460 5.1237 6.4715 67.3985 

(0.5,1,2,4,8) 0.6313 0.2110 1.9665 9.3215 

(5,5,0.5,0.5,5) 0.2775 0.0025 -0.3789 3.1452 

(5,5,0.5,5,1) 2.1555 0.1390 -0.4957 3.3395 

 

The graphical displays to describe the parameter  and   that controls skewness and 

kurtosis measures of the NMSM distribution are added. 

 

Figure: 4.1: skewness and kurtosis measures of the NMSM distribution  

4.2 Moments of Order Statistics 

Moments of order statistics have applications in reliability and life testing. Moments of 

order statistics are designed for replacement policy with the prediction of failure of future 

items determined from few early failures.  
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The pdf of m:nX   for NMSM distribution is  
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Moments about the origin of m:nX  for NMSM distribution are  
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4.3 Incomplete Moments 

Incomplete moments are used in mean inactivity life, mean residual life function, and 

other inequality measures.

 

The sth incomplete moment of the NMSM distribution is  
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where  .,.zB is incomplete beta function.   

The mean deviation about the mean is    1 1 1 1 / 1

1 1 1 1 1 12 2
X

MD E X F M         and 

mean deviation about median is    /

12 2MMD E X M MF M MM M     where 𝜇1
′ =

𝐸(𝑋) 𝑎𝑛𝑑  𝑀 = 𝑄(0.5). For a specified probability p, Bonferroni and Lorenz curves are 

computed as   1

1 1B( )p M q p  and  / 1

1 1( )L p M q  where  q Q p . 
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4.4 Residual Life Functions 

The residual life is    
n

nm z E X z X z   
 

. For the random variable X with NMSM 

distribution  nm z is given by  
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The average remaining lifetime of a component at time z, say  1m z , or life expectancy 

called mean residual life (MRL) function is 
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The reverse residual life, say     /
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, of X with NMSM 

distribution has the following nth moment    

 
 

 
 

     /

00

1 1
( ) 1 ,

z n
n s n n s

n s s

s

M z z x f x dx z M z
F z F z





     

    
 

   
  

   

1

0

1
1 1 , .

!
x

k

k ssn
s n n s

n s s x e
s k s

s k k k
M z z B

F z k s
  





   

     
 






 

 
    

        
 

        (17)  

The waiting time z for the failure of a component has passed with condition that this 

failure had happened in the interval [0, z] is called mean waiting time (MWT) or mean 

inactivity time.  The waiting time z for failure of a component for NMSM distribution is 

defined by 
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5. RELIABILITY AND UNCERTAINTY MEASURES 

In this section, different reliability and uncertainty measures for the NMSM distribution are studied. 

 

5.1 Stress-Strength Reliability of NMSM Distribution  

Let    1 1 2 2, , , , ,X , , , ,X NMSM NMSM           and 1X  represents strength and 

2X  represents stress, then reliability of the component is:  
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(i) R is independent of , , and    .  

(ii) 1 2 , 0.5For R   , 1 2  X and X  are identically and independently distributed i.e. 

   1 2 1 2R Pr  > Pr  < X X X X  . 

 

5.2 Multicomponent Stress-Strength Reliability Estimator 
,s kR  Based on NMSM 

Distribution 

Suppose a machine has at least “s” components working out of “k” components. The 

strengths of all the components of the system are 1 2X ,X ,....Xk  and stress Y is applied on 

the system. Both the strengths 1 2X ,X ,....Xk  are i.i.d. and are independent of stress Y. G is 

the cdf of Y and F is the cdf of X. The reliability of a machine is the probability that the 

machine functions properly. 
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The probability ,s kR in the (22) is called reliability in a multicomponent stress-strength 

model.  

5.3 Renyi, Havrda and Chavrat, Tsallis and Q-entropy 

The uncertainty measures are used to study anomalous diffusion, heartbeat intervals 

(cardiac autonomic neuropathy (CAN), DNA sequences, daily temperature fluctuations 

(climatic) and study of information content signals. 

Renyi entropy (1961) for NMSM distribution is  
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Renyi entropy tends to Shannon entropy 1asv   .  

Havrda and Chavrat Entropy (1967) for NMSM distribution is 
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   (26) 

Tsallis and Q-entropies can be obtained in similar way. 
 

6. CHARACTERIZATIONS 

In this section, NMSM distribution is characterized via: (i) Conditional expectation; (ii) 

truncated moment; (iii) Hazard function and (iv) Mills ratio. 
 

6.1   Characterization Based on Conditional Expectation 

The NMSM distribution is characterized via conditional expectation. 

Proposition 6.1.1: Let  : 0,X    be a continuous random variable with cdf  F x   

(  0 1F x   for 0x  ), then for   , X has cdf (3) if and only if 
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 
0

1
t1 .X tX t

E e X t foe r

 

 
   
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       



 

           (27) 

Proof. If X has cdf (3), then  
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            


Upon integration by parts and simplification, we arrive at 
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Conversely if (27) holds, then 
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    (28) 

Differentiating (28) with respect to t, we obtain 
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After simplification and integration we arrive at   1 1 for t 0.tt
F t e


 






  
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6.2 Characterizations Based on Truncated Moment of a Function of the Random Variable 

Here we characterize NMSM distribution via relationship between truncated moment of a 

function of X and another function. This characterization is stable in the sense of weak 

convergence (Glänzel; 1990). 

Proposition 6.2.1 Let   : 0,X    be a continuous random variable and let  
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. The random variable X has pdf (4) if and only if the 

function  h x defined in Theorem 1 has the form  
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Proof   Let the random variable X have pdf (4), then  
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Conversely if  h x  is given as above, then   
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and hence  
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In view of Theorem 1, X has density (4). 

Corollary 6.2.1: Let  : 0,X    be a continuous random variable. The pdf of X is (4) 

if and only if there exist functions    h x and g x  defined in Theorem 1satisfying the 

differential equation     
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(29) 

Remarks:6.2.1 The general solution of (29) in Corollary 6.2.1 is  
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  where D is a constant.  

 

6.3 Characterization Via Hazard Function 

In this sub-section, NMSM distribution is characterized via hazard function. 

Definition 6.3.1: Let  X: 0,   be a continuous random variable. The pdf of X is (4) if 

and only if its hazard function  Fh x  satisfies the differentiable equation
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Proposition 6.3.1  Let X: 0,   be continuous random variable .The pdf of X is (4) if 

and only if its hazard function,  Fh x , satisfies the first order differential equation 

     

2

21 1 .x x x

F F

x x x
xh x h x e x x e e

  

       
  




         

             
          

     (30) 

Proof. If X has pdf (4),  then (30) surly holds. Now if the (30) holds, then  
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 which is the hazard function of NMSM distribution. 
 

 6.4 Characterization Based on Mills Ratio 

Definition 6.4.1: Let  X: 0,  be a continuous random variable having absolutely 

continuous cdf  F x an d pdf  f x .The Mills ratio,  m x , of a twice differentiable 

distribution function, F, satisfies the first order differential equation   
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Proposition 6.4.1:  Let X: 0,   be continuous random variable .The pdf of X is (4) if 

and only if the Mills ratio satisfies the first order differential equation   
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Proof If X has pdf (4), then the (31) surely holds. Now if the (31) holds, then 
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which is Mills ratio of NMSM distribution. 
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7. MAXIMUM LIKELIHOOD ESTIMATION 

In this section, parameter estimates are derived using maximum likelihood method. The 

log-likelihood function for the vector of parameters  , , , ,      of NMSM distribution 

is  

         
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  

 

  (32) 

In order to compute the estimates of parameters of NMSM distribution, the following 

nonlinear equations must be solved simultaneously.  
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8. SIMULATION STUDIES 

In this Section, we perform the simulation study to illustrate the performance of MLE's 

of NMSM distribution. The random number generation is obtained with inverse of its cdf. 

The MLEs, say (�̂�𝑖 , �̂�𝑖, 𝛾𝑖, 𝜃𝑖, �̂�𝑖)  for i=1,2,...,N, have been obtained by CG routine in R 

programme. 

The simulation study is based on graphical results. We generate N=1000 samples of sizes 

n=20,25,…,1000 from NMSM distribution and get true values of , , ,     and   

parameters as 5,6,0.5,1 and 2 respectively for this simulation study. We also calculate the 

mean, standard deviations (sd), bias and mean square error (MSE) of the MLEs. The bias and 

MSE are calculated by (for , , , ,h      ) 
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and  

2
1

1

ˆN

h iN i
MSE h h


  . 

 

The results are given by Figure 8.1. Figure 8.1 reveals that the empirical means tend to 

the true parameter values and that the sds, biases and MSEs decrease when the sample size 

increases. These results are in agreement with first-order asymptotic theory. 
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Figure 8.1. Simulation results of the special NMSM distribution 

 

9. APPLICATIONS 

The NMSM distribution is compared with MSM, SM, MBXII, BXII, Lomax, Log-

logistic distributions. Different goodness fit measures such Cramer-von Mises (W), 

Anderson Darling (A), Kolmogorov- Smirnov statistics with p-values and likelihood ratio 

statistics ( ) are computed using R-package for survival times  of  guinea pigs and  prices 

of thirty one wooden toys. The better fit corresponds to smaller W, A, K-S and  value. 

The maximum likelihood estimates (MLEs) of unknown parameters and values of goodness 

of fit measures are computed for NMSM distribution and its sub-models. 
 

 9.1 Survival times of guinea pigs data  

Survival times of 72 guinea pigs ill with contagious tubercle bacilli conveyed by Bjerkedal (1960) are : 10, 33, 

44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112, 113, 115, 116, 120, 

121, 122, 122, 124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168, 171, 172, 176, 183, 195, 196, 

197, 202, 213, 215, 216, 222, 230,231, 240, 245, 251, 253, 254, 255, 278, 293, 327, 342, 347, 361, 402, 432, 

458, 555.

 The MLEs (standard errors) and goodness-of-fit statistics like  , A, W, K-S with p-values are given in table 
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Table 3: MLEs (standard errors) and Goodness-of-fit statistics for data set I 

Model         
 

  A W 
K-S           

(p-value) 

NMSM 0.009084599 

(0.00667775)   
0.738838064 

(0.8447382)  
0.033090649 

(2.466064) 
67.342644057 

(0.01405517) 
0.034432409 

(101.7066)   
423.4807 0.279015 0.04755605 0.069985            

(0.8723) 

MSM  0.09693605 
(0.6082713) 

  2.57107078 
( 0.4756781) 

  0.05652065    
(0.3552205) 

 0 66.57384308 
(162.5729073)   

425.1213 0.4159587 0.06732784 0.077789 
(0.7763) 

SM 1.588969 

(0.908306) 
2.624544     

(0.4690821)  
1 194.535770 

(64.0228996) 
1 425.1288 0.4023472 0.06430378 0.076968            

(0.7872) 

MBXII 0.0145 
(0.01612) 

12.9000 
(5.5069) 

  0.8079 
(0.0814) 

0 1 490.2748 0.7577 0.1348 0.4812  
(6.55e-15) 

BXII 0.08466762 

(0.1510882) 
2.35980977 

(4.2037699) 
1 0 1 548.261 1.373439 0.1966047 0.51092               

(<2.2e-16) 

Lomax 0.1994794 
(0.02350829) 

1 1 0 1 549.0066 1.267504 0.18015 0.51192             
(<2.2e-16) 

Log-

Logistic 

1 0.3072592    

(0.02793286) 
1 0 1 584.4259 0.8626136 0.119925 0.73405             

(< 2.2e-16) 

 

We can perceive that the NMSM distribution is best fitted model than the other sub-

models because the values of all criteria of goodness of fit are significantly smaller for 

NMSM distribution. 

                 

      

Fig 9.1: plots of fitted pdf, cdf, survival function and the probability-probability (P-P) plot for data set I 

We can perceive that the NMSM distribution is best fitted model because all the plots of 

fitted pdf, cdf, survival function and the probability-probability (P-P) plot for NMSM are 

closer fit to data. 
 

9.2 Prices of Wooden Toys 

The prices of thirty one wooden toys  at Suffolk craft shop in 1991 are: 4.2, 1.12, 1.39, 2, 

3.99, 2.15, 1.74, 5.81, 1.7, 2.85, 0.5, 0.99,  11.5, 5.12, 0.9, 1.99, 6.24, 2.6, 3, 12.2, 7.36, 4.75, 

11.59, 8.69, 9.8, 1.85, 1.99, 1.35, 10, 0.65, 1.45. 

The MLEs (standard errors) and goodness-of-fit statistics like  , A, W, K-S with p-values are given in table 

4. 
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Table 4: MLEs (standard errors) and Goodness-of-fit statistics for data set II 

Model   
 

        A W 
K-S           

(p-value) 
NMSM 1.325543 

(52.352551)    
2.320047 

(1.723071) 
15.087213 

(595.612237) 
  2.357509 

(3.886553) 
5.487198 

(94.768715) 
72.63759 

 

0.2769906 0.03958655 0.094603          

(0.9442) 

MSM 53.671554       
(2527.555518 ) 

1.567199           
(1.425999) 

28.835345  
(1314.262793) 

0 43.542836 
(1373.055860) 

74.73868 0.5838663  0.09555475  0.13574     
(0.6175) 

SM 1.669719 

(5.285228) 
1.607768       

(1.263627) 
1 0 4.595593 

(13.842109) 
74.73887 

 
0.5693017 0.09292011 0.13344 

(0.639) 

MBXII 0.14457996     

(0.06701295) 

 

1.58095022 

(1.29072818) 
0.08069273 

(0.26442258) 
0 1 74.73863 

 
0.5788114 0.09464383  0.13492     

(0.6251) 

BXII 0.2276987 

(0.07832594) 
3.8515546 

(1.18745384) 
1 1 1 76.40228 

 
0.5154045 0.06597862 0.1312       

(0.66) 

Lomax 0.6945145 
(0.1247382) 

1 1 0 1 86.93639 0.374435  0.05615229  0.29516     
(0.009021) 

Log-

Logistic 

1 1.214184       

( 0.1790725) 
1 0 1 88.46715 0.3749721 0.05575932 0.42881     

(2.238e-
05) 

 

We can perceive that the NMSM distribution is best fitted model than the other sub-

models because the values of all criteria of goodness of fit are significantly smaller for 

NMSM distribution. 
 

  

 

Fig 9.2: plots of fitted pdf, cdf, survival function and the probability-probability (P-P) plot for data set II 

We can perceive that the NMSM distribution is best fitted model because all the plots of 

fitted pdf, cdf, survival function and the probability-probability (P-P) plot for NMSM are 

closer fit to data. 
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10. CONCLUDING REMARKS   

We have developed NMSM distribution along with some of its properties such as 

structural properties, descriptive measures based on the quantiles, some plots, sub-models, 

moments, inequality measures, residual and reverse residual life function, stress-strength 

reliability, multicomponent stress-strength reliability model and uncertainty measures. The 

NMSM distribution has been characterized via different techniques. Maximum Likelihood 

estimates have been computed. The simulation studies have performed on the basis of 

graphical results to see the performance of maximum likelihood estimates the parameters. 

Goodness of fit to show that NMSM distribution is a better fit. Applications of the NMSM 

model to survival times of guinea pigs and prices of  wooden toys data illustrated  its 

significance and flexibility. We have proved that NMSM distribution is empirically better for 

lifetime applications.  
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Appendix A 

Theorem1. Let   ,F,P  be given probability space and let  1 2H [ , ]a a   an interval with 1 2a a            

( 1 2,a a   ). Let 1 2: [ , ]X a a  be a continuous random variable
 
with distribution function F and Let 

g  be real function defined on 1 2H [ , ]a a such that 

 

   [ X x]E g X h x x H    is defined with 

some real function  h x should be in simple form. Assume that    1 2[ , ]g x C a a ,    2

1 2[ , ]h x C a a  

and F is a continuously differentiable and strictly monotone function on H: To conclude, assume that the 

equation    g x h x  has no real solution in the interior of H.Then F is obtained from the functions 

   g x and h x  as  
 

   
  exp

x

a

h t
F x k s t dt

h t g t


 

 , where  s t  is the solution of  equation   

 
 

   

h t
s t

h t g t


 


 and k is a constant, chosen to make 

2

1

1.

a

a

dF 
 

 


