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Abstract 

Compound distributions gained their importance from the fact that natural 

factors have compound effects, as in the medical, social and logical 

experiments. Dubey (1968) introduced the compound Weibull by 

compounding Weibull distribution with gamma distribution. The main aim of 

this paper is to define a bivariate generalized Burr (compound Weibull) 

distribution so that the marginals have univariate generalized Burr distributions. 

Several properties of this distribution such as marginals, conditional 

distributions and product moments have been discussed. The maximum 

likelihood estimates for the unknown parameters of this distribution and their 

approximate variance- covariance matrix have been obtained. Some 

simulations have been performed to see the performances of the MLEs. One 

data analysis has been performed for illustrative purpose. 

 

Keywords: Burr distribution; Compound Weibull distribution; Weibull 

gamma distribution; Generalized Burr distribution; Maximum likelihood 
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1. Introduction 

Dubey (1968) introduced the generalized Burr distribution for the first time  by  

compounding Weibull distribution with gamma distribution.  She derived the compound 

Weibull distribution by assuming a conditional random variable X follow the Weibull 

distribution, and its scale parameter follow a gamma distribution. The resulting 

unconditional pdf is called the compound Weibull (CW) distribution. Because of, the Burr 

distribution which defined by Burr (1942)  is resulted as a special case of CW distribution , 

she renamed the CW distribution  by generalized Burr distribution. 

A random variable with the generalized Burr (GB) distribution has a pdf and a cdf, for 

x > 0, in the following form 
1

1( ; , , ) 1 , ( ; , , ) 1 1GB GB

x x
f x x F x

  


     
  

  

    
       

   
 

Respectively, where the quantities δ>0 is a scale parameter and  α>0  and  ϑ>0 are shape 

parameters respectively. From now on it will be denoted by 𝐺𝐵(𝛼, 𝛿, 𝜗). 

It is clear that, for 𝛿 = 1, the GB distribution reduces to the Burr distribution. 

The GB distribution  has a considerable attention in one dimension  by many  authors 

such as  Gottschalk et al (1997),  Mahmoud et al  (2014) and  Qutb and  Rajhi (2016).  

The aim of this paper is to consider  the GB distribution  in two dimension by 

constructing  the bivariate GB distribution for the first time . The proposed bivariate 

generalized Burr (BGB)  distribution is constructed from three independent GB distributions 

using a minimization process according to Marshall and Olkin (1967) . These authors 

introduced a multivariate exponential distribution whose marginals have exponential 

distributions and proposed a bivariate Weibull distribution. 

The new BGB distribution is a singular distribution, and it can be used quit conveniently 

if there are ties in the data. The BGB distribution can be interpreted as Competing risk, 

Shock, Stress and Maintenance Model. 

The paper is organized as follows: In Section 2,  the BGB distribution is introduced and 

the representations for the joint survival function  and pdf are obtained. The conditional and 

marginal distributions, joint cdf, joint hazard function and product moments of the BGB 

model are presented in Section3. The maximum likelihood estimation, approximate  

variance-covariance matrix and asymptotic confidence intervals for BGB distribution are 

provided in Section 4. Related distributions to BGB distribution are presented in Section 5. 

An absolutely continuous BGB distribution is introduced in Section 6. For illustrative 

purpose an empirical application is presented in Section 7. Finally conclude the paper in 

Section 8. 

 

2. Bivariate Generalized Burr distribution  

Suppose 𝑈1, 𝑈2and 𝑈3are three independent random variables such that 𝑈𝑖~ 𝐺𝐵(𝛼, 𝛿, 𝜗𝑖) 

for 𝑖 = 1,2,3.  Define 𝑋1 = 𝑚𝑖𝑛(𝑈1, 𝑈3)  and  𝑋2 = 𝑚𝑖𝑛(𝑈2, 𝑈3) , then it is said that the 

bivariate vector (𝑋1, 𝑋2) has BGB distribution with parameters    (𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿)   denoted 

by  BGB (𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿). Then, the joint survivor function of  BGB distribution is given as 

follows 
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xxSBGB                               (2.1) 

where 𝑥3 = max(𝑥1, 𝑥2). 
The following Propositions will provide the joint survival  function , joint pdf, the 

marginal distributions and conditional pdf. 

Proposition 2.1: If (𝑋1, 𝑋2) ~ 𝐵𝐺𝐵(𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿). Then, the joint survival function  of 

(𝑋1, 𝑋2) can be written as 

1 1 2 1 2

1 2 2 1 2 2 1

3 1 2

( , ) 0

( , ) ( , ) 0

( ) 0 ,

BGB

S x x if x x

S x x S x x if x x

S x if x x x

   


    
     

                 (2.2) 

Where 

 𝑆1 (𝑥1, 𝑥2) = 𝑆𝐺𝐵(𝑥1; 𝛼, 𝛿, 𝜗1)𝑆𝐺𝐵(𝑥2; 𝛼, 𝛿, 𝜗23) 

𝑆2 (𝑥1, 𝑥2) = 𝑆𝐺𝐵 (𝑥1; 𝛼, 𝛿, 𝜗13)𝑆𝐺𝐵(𝑥2; 𝛼, 𝛿, 𝜗2) 

𝑆3 (𝑥) = 𝑆𝐺𝐵(𝑥 ; 𝛼, 𝛿, 𝜗123), 

And 𝜗13 = 𝜗1 + 𝜗3,  𝜗23 = 𝜗2 + 𝜗3 and 𝜗123 = 𝜗1 + 𝜗2 + 𝜗3 

Proposition 2.2: If (𝑋1, 𝑋2) ~ 𝐵𝐺𝐵(𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿) . Then, the joint pdf of  (𝑋1, 𝑋2)  is 

given as  

  

 

 
1 1 2 1 2

1 2 2 1 2 2 1

3 1 2

,  if 0

, ,  if 0

( )  if 0

BGB

f x x x x

x x f x x x x

f x x x x

f

   


    
     

                                         (2.3) 

Where 

𝑓1 (𝑥1, 𝑥2) = 𝑓𝐺𝐵 (𝑥1; 𝛼, 𝛿, 𝜗1) 𝑓𝐺𝐵(𝑥2; 𝛼, 𝛿, 𝜗23) 

𝑓2 (𝑥1, 𝑥2) = 𝑓𝐺𝐵(𝑥1; 𝛼, 𝛿, 𝜗13) 𝑓𝐺𝐵(𝑥2; 𝛼, 𝛿, 𝜗2) 

and 

𝑓3 (𝑥) =  
𝜗3
𝜗123

  𝑓𝐺𝐵(𝑥  ; 𝛼, 𝛿, 𝜗123). 

Proof. The expressions for 𝑓1(∙,∙)  and 𝑓1(∙,∙) can be obtained simply by taking 

1 2

2

, 1 2

1 2

( , )X XS x x
x x



 
 for 

1 2x x  and 
2 1x x   respectively. But 

3(.)f cannot be obtained 

in the same way. Using the fact that  

2 1

1 1 2 1 2 2 1 2 2 1 3

0 0 0 0 0

( , ) ( , ) ( ) 1,

x x

f x x dx dx f x x dx dx f x dx

  

        
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2

1
1 1 2 1 2

1230 0

( , )

x

f x x dx dx






   and 

1

2
2 1 2 2 1

1230 0

( , )

x

f x x dx dx





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Hence 

3
3

1230

( )f x dx






  

Note that   

123 11 3
3 3

1230 0

( ) (1 ) .
x

f x dx x dx


 


  

 

     

Therefore, the results follow. 

It should be mentioned that the BGB distribution has both an absolute continuous part 

and a singular part, similar to Marshall and Olkin's bivariate exponential model. The joint 

survival function  of (𝑋1, 𝑋2) can be expressed explicitly as a mixture of an absolutely 

continuous part and a singular part in the following form 

      
1 2

312
, 1 2 1 2 3

123 123

, ,X X a sS x x S x x S x


 
    (2.4) 

where 𝑥3 = max(𝑥1, 𝑥2),𝑆3(𝑥3) = 𝑆𝐺𝐵(𝑥3, 𝛼, 𝛿, 𝜗123) and  

123
a 1 2 1 1 2 2 3 3

12

3
3 123

12

( , ) ( ; , , ) ( ; , , ) ( ; , , )

( ; , , )

GB GB GB

GB

S x x S x S x S x

S x


        




  







 

Here (.,.)sS and 𝑆𝑎(∙,∙)  are the singular and the absolutely continuous part respectively. 

As a result, the joint pdf of (𝑋1, 𝑋2)can be also expressed as a mixture of an absolutely 

continuous part and a singular part in the following form 

      
1 2

312
, 1 2 1 2 3

123 123

, ,X X a sf x x f x x f x


 
    (2.5) 

where     

1 1 2 2 3 1 2123
1 2

1 1 3 2 2 1 212

( ; ) ( ; )
( , )

( ; ) ( ; )

GB GB

a

GB GB

f x f x if x x
f x x

f x f x if x x

  

  

  
 

  
 

and 

3 3 123( ) ( ; ).s GBf x f x   

Clearly, here 
1 2( , )af x x and 

3( )sf x  are the absolutely continuous and singular part 

respectively. 
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a) b)  

c)  d)  

Figure1: Surface plots of the absolutely continuous part of the joint pdf of the BGB distribution for 

different values of ( 𝑣1, 𝑣2, 𝑣3, 𝛼, 𝛿): (a) (2, 3, 4, 1, 10), (b) (0.2, 0.3, 0.4, 4,0.002), (c) (0.2, 0.3, 0.4, 4, 

1) and (d) (0.2, 0.3, 0.4, 4, 2). 

 

The absolutely continuous part of the BGB density may be unimodal depending on the 

values of  𝛼, 𝛿 
1 2,   and 

3  that is 
1 2( , )af x x  is unimodal and the respective modes are 

{[
 𝛿 (𝛼−1)

𝛼 𝜗1+1
]−𝛼 , [

 𝛿 (𝛼−1)

𝛼(𝜗23)+1
]−𝛼}    and    {[

 𝛿 (𝛼−1)

𝛼(𝜗13)+1
]−𝛼 , [

 𝛿 (𝛼−1)

𝛼 𝜗2+1
]−𝛼} 

The median for the BGB distribution is obtained as  

[𝛿(21 𝜗123 ⁄ − 1)]
1
𝛼. 

 

3. Different Properties 

This section is devoted to introduce some basic properties of the BGB model. First, the 

marginal and conditional distributions of BGB model will provide. 

Proposition 3.1:   If  (𝑋1, 𝑋2) ~ 𝐵𝐺𝐵(𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿).Then, 

1. 𝑋1 ~𝐺𝐵(𝛼, 𝛿, 𝜗13) and 𝑋2 ~𝐺𝐵(𝛼, 𝛿, 𝜗23) 
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2. 𝑚𝑖𝑛(𝑋1, 𝑋2)~𝐺𝐵(𝛼, 𝛿, 𝜗123) 
3. Conditional density is given by 

(1)

/

(2)

/ 1 2 /

(3)

/

( / )

( , ) ( / )

( / ) ,

i j i j i j

i j i j i j j i

i j i j i j

f x x if x x

f x x f x x if x x

f x x if x x

 


 




 

where 

1 1(1) 11
/ ( / ) (1 ) ,i

i j i j i

x
f x x x


 

 

    

13 3( ) 1(2) 113 2
/

23

( )
( / ) (1 ) (1 ) ,

( )

ji
i j i j i

xx
f x x x


   

   

     

1123
123

1
( ) 1(3) 3

/ 1

23

( / ) (1 ) (1 ) .
( )

ji i
i j i j

j

xx x
f x x

x


 







  




 


    

Proof: They can be obtained by routine calculation. 

The joint cdf of the BGB distribution is given a 

𝐹𝐵𝐺𝐵(𝑥1, 𝑥2) = {

𝐹𝐺𝐵(𝑥1; 𝜗13) − 𝐹𝐺𝐵(𝑥1; 𝜗1)[1 − 𝐹𝐺𝐵(𝑥2; 𝜗23)], 𝑥1 < 𝑥2  

𝐹𝐺𝐵(𝑥2; 𝜗23) − 𝐹𝐺𝐵(𝑥2; 𝜗2)[1 − 𝐹𝐺𝐵(𝑥1; 𝜗13)], 𝑥2 < 𝑥1
1 − 𝐹𝐺𝐵(𝑥; 𝜗123),                                                        𝑥1 = 𝑥2 = 𝑥.

  

The joint hazard function of the BGB distribution is given as 

 

ℎ𝐵𝐺𝐵(𝑥1, 𝑥2) =

{
 
 
 

 
 
 ( 

𝛼

𝛿
)
2

(𝜗23)𝜗1  𝑥1
𝛼−1 𝑥2

𝛼−1 (1 +
 𝑥1
𝛼 

𝛿
)

−1

(1 +
 𝑥2
𝛼 

𝛿
)

−1

, 𝑥1 < 𝑥2

( 
𝛼

𝛿
)
2

(𝜗13)𝜗2  𝑥1
𝛼−1 𝑥2

𝛼−1 (1 +
 𝑥1
𝛼 

𝛿
)

−1

(1 +
 𝑥2
𝛼 

𝛿
)

−1

, 𝑥1 > 𝑥2

𝛼

𝛿
 𝜗3 𝑥

𝛼−1  (1 +
 𝑥𝛼 

𝛿
)

−1

,                                                𝑥1 = 𝑥2 = 𝑥.

 

Algorithm to generate from BGB distribution 

Step 1. Generate 
1,U  

2U  and 
3U  from  𝑈(0,1), 

Step 2. Compute  

𝑍1 = [𝛿 (𝑈1

−1
𝜗1 − 1)]

1

𝛼

, 𝑍2 = [𝛿 (𝑈2

−1
𝜗2 − 1)]

1

𝛼

𝑎𝑛d  𝑍3 = [𝛿 (𝑈3

−1
𝜗3 − 1)]

1

𝛼

 

Step3. Obtain  
1 1 3min( , )X Z Z  and 

 2 2 3min( , )X Z Z . 

Proposition 3.2.  If  (𝑋1, 𝑋2) ~ 𝐵𝐺𝐵(𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿).Then, the  𝑟𝑡ℎ and  𝑠𝑡ℎ moment of 

𝑋1 and 𝑋2 is given as: 
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      𝐸(𝑋1
𝑟𝑋2

𝑠) =
𝜗1𝜗23𝛿

𝑟+𝑠
𝛼

𝑟
𝛼 + 1

 𝐵 [(
𝑟 + 𝑠

𝛼
+ 2) , (𝜗23 −

𝑟 + 𝑠

𝛼
− 1)] 

                       3𝐹2 [(
𝑟 + 𝑠

𝛼
+ 2) , (

𝑟

𝛼
+ 1) , (1 − 𝜗1 +

𝑟

𝛼
) ; (

𝑟

𝛼
+ 2) (𝜗23 + 1); 1] 

                     +
𝜗2𝜗13𝛿

𝑟+𝑠
𝛼

𝑠

𝛼
+1

 𝐵 [(
𝑟+𝑠

𝛼
+ 2) , (𝜗13 −

𝑟+𝑠

𝛼
− 1)] 

                     .  3𝐹2 [(
𝑟 + 𝑠

𝛼
+ 2) , (

𝑠

𝛼
+ 1) , (1 − 𝜗2 +

𝑠

𝛼
) ; (

𝑠

𝛼
+ 2) (𝜗13 + 1); 1] 

                        +𝜗3𝛿
𝑟+𝑠
𝛼  𝐵 [(

𝑟 + 𝑠

𝛼
+ 1) , (𝜗123 −

𝑟 + 𝑠

𝛼
)]. 

Where  
1

1 1

0

( , ) (1 )B u u du          is the beta function, 

1

1 1

1

...( ) ( )
( ,..., ; ,..., ; )

( )... !( )0

P

P q

q

ib b ui ib b c c uFp q c ici i i


 



  is a hypergeometric function, 

   
( )

( 1)...( 1) ( 0, 1,2,...).( )
( )

b i
b b b i b ib i b

 
      


 and p,q are nonnegative 

integers. 

 

4.  Maximum Likelihood Estimation 

In this section, the maximum likelihood estimators (MLEs) of the unknown parameters 

of the BGB distribution will be considered. Suppose 
11 21 1 2{( , ), ,( , )}n nx x x x is a random 

sample from
 
𝐵𝐺𝐵(𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿) distribution. Consider the following notation  

1 1 2 2 1 2 3 1 2 1 2 3{ ; }, { ; }, { },i i i i i i iI i x x I i x x I x x x I I I I          , 

1 1 2 2 3 3, , ,I n I n I n    and  
1 2 3 .n n n n    

The log-likelihood function of the sample of size n is given by 

1 2 3

1 1 2 2 1 2 3ln ( ) ln ( , ) ln ( , ) ln ( )i i i i i

i I i I i I

L f x x f x x f x
  

      
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1 2 1 2

3 1 1

2

1 2 3 1 2 3 1 1 2 2

3 3 1 23 2 13 1 2

1 1 23 2

13 1 2
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ln( ) ln( ) ln( ) ( 1)[ ln ln
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I I I I
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I

L n n n n n n n n

n n n x x

x c x c x

c x c x
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   
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   

 
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 

  
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2 3

2 123; , ) ( 1) ( ; , ).i i

I I
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where  
1 2 3( , , , , )      and ( ; , ) ln(1 ).i

i

x
c x



 


   

The likelihood equations are as follows 
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ˆˆ

321

11

13

2

1

1  
I

i

I

i

I

i xcxcxc
nn



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2

2  
I

i

I

i

I
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nn
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
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2
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1

3

3  
I

i

I

i

I

i xcxcxc
nnn




 

1 1

2 2 3

1 2 1 2 3

1 2 3
1 1 2 3 2

2 2 13 1 123

1 2

(2 2 ) ˆ ˆ ˆ ˆ ˆˆ ˆ( 1) ( ; , ) ( 1) ( ; , )
ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( 1) ( ; , ) ( 1) ( ; , ) ( 1) ( ; , )

ln ln ln ,

i i

I I

i i i

I I I

i i i

I I I I I

n n n
d x d x

d x d x d x

x x x

      


        

 

 
    

     

  

 

  

  

 

and 

1 1

2 2 3

1 2 3
1 1 23 2

2 2 13 1 123

(2 2 ) ˆ ˆ ˆ ˆˆ ˆ( 1) ( ; , ) ( 1) ( ; , )
ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( 1) ( ; , ) ( 1) ( ; , ) ( 1) ( ; , ).

i i

I I

i i i

I I I

n n n
g x g x

g x g x g x

     


        

 
    

     

 

  
 

where 

1ˆˆ( ; , ) (1 ) ln
x x

d x x
 

 
 

   

and 

    
1ˆˆ( ; , ) (1 )

x x
g x

 

 
 

  . 
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The numerical solutions for these equations will be considered to obtain 
1 2 3
ˆ ˆ ˆ ˆ, , ,      

and ̂ .The evaluation of the MLEs was performed based on the following quantities for 

each sample size: the Average Estimates (AE) , the Mean Squared Error, (𝑀𝑆𝐸)  and 

Relative Absolute Bias (RAB) are estimated from  𝑅   replications for 
1 2 3
ˆ ˆ ˆ ˆ, , ,     and ̂  

the sample size  has been considered  at  𝑛 = 20,40  and 70, and some values for the 

parameters   
1 2 3, , ,     and   have been considered. It can be noted that from Table 1 

that the estimates are work well and 𝐸 , RAB decreases as the sample size increases. 

The approximate variance-covariance matrix is given by  
1

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a



 
 
 
 
 
 
 
 

 

Where 

1 2 3

2

1 2
11 2 2 2

ˆ ˆ ˆ ˆ1 1 13ˆ, , , ,

ln
,

ˆ ˆ( )

L n n
a

    
  


   


 

1 2 3

2

12

ˆ ˆ ˆ ˆ1 2 ˆ, , , ,

ln
0,

L
a

    
 


  

 
 

1 2 3

2

2
13 2

ˆ ˆ ˆ ˆ1 3 13ˆ, , , ,

ln
,

ˆ( )

L n
a

    
  


  

 
 

1 2 3
1 2 3

2

14 1 1

ˆ ˆ ˆ ˆ1 ˆ, , , ,

ln ˆ ˆ ˆˆ ˆ ˆ( ; , ) ( ; , ) ( ; , )i i i

I I I

L
a d x d x d x

    

     
 


    

 
    

1 2 3
1 2 3

2

15 1 2

ˆ ˆ ˆ ˆ1 ˆ, , , ,

ln ˆ ˆ ˆˆ ˆ ˆ( ; , ) ( ; , ) ( ; , )i i i

I I I

L
a g x g x g x

    

     
 


    

 
    

1 2 3

2

2 1
22 2 2 2

ˆ ˆ ˆ ˆ2 1 23ˆ, , , ,

ln
,

ˆ ˆ( )

L n n
a

    
  


   


 

1 2 3

2

2
23 2

ˆ ˆ ˆ ˆ2 3 23ˆ, , , ,

ln
,

ˆ( )

L n
a

    
  


  

 
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1 2 3
1 2 3

2

24 1 2

ˆ ˆ ˆ ˆ2 ˆ, , , ,

ln ˆ ˆ ˆˆ ˆ ˆ( ; , ) ( ; , ) ( ; , )i i i

I I I

L
a d x d x d x

    

     
 


    

 
    

1 2 3
1 2 3

2

25 2 2

ˆ ˆ ˆ ˆ2 ˆ, , , ,

ln ˆ ˆ ˆˆ ˆ ˆ( ; , ) ( ; , ) ( ; , )i i i

I I I

L
a g x g x g x

    

     
 


    

 
    

1 2 3

2

3 1 2
33 2 2 2 2

ˆ ˆ ˆ ˆ3 3 23 13ˆ, , , ,

ln
,

ˆ ˆ ˆ( ) ( )

L n n n
a

    
   


    


 

1 2 3
1 2 3

2

34 2 1

ˆ ˆ ˆ ˆ3 ˆ, , , ,

ln ˆ ˆ ˆˆ ˆ ˆ( ; , ) ( ; , ) ( ; , ),i i i

I I I

L
a d x d x d x

    

     
 


    

 
    

1 2 3
1 2 3

2

35 2 1

ˆ ˆ ˆ ˆ3 ˆ, , , ,

ln ˆ ˆ ˆˆ ˆ ˆ( ; , ) ( ; , ) ( ; , )i i i

I I I

L
a g x g x g x

    

     
 


    

 
    

1 21 2 3

1 2 3

2

1 2 3
44 1 1 2 22 2

ˆ ˆ ˆ ˆˆ, , , ,

23 2 13 1 123

ln 2 2 ˆ ˆ ˆ ˆˆ ˆ( 1) ( ; , ) ( 1) ( ; , )
ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( 1) ( ; , ) ( 1) ( ; , ) ( 1) ( ; , )

i i

I I

i i i

I I I

L n n n
a h x h x

h x h x h x

    

     
 

        

  
      



     

 

  
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23 2 13 1 123

ln 2 2 ˆ ˆ ˆ ˆˆ ˆ( 1) ( ; , ) ( 1) ( ; , )
ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( 1) ( ; , ) ( 1) ( ; , ) ( 1) ( ; , ),

i i

I I

i i i

I I I

L n n n
a q x q x

q x q x q x

    

     
 

        

  
       



     

 

  

 

2 2ˆˆ( ; , ) (ln ) (1 )
x x

h x x
 

 
 

   ,  
2 2 2ˆˆ( ; , ) (ln )( ) ,p x x x x         

And 
2 2 2ˆˆ( ; , ) (2 )( ) .q x x x x           

 Now, The asymptotic normality results will be considered to obtain the asymptotic 

confidence intervals of 
1 2 3, , ,      and  ,  It can be stated as follows 
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i i

I I

i i i
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a p x p x
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    

     
 

         


      

 
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       1

1 1 2 2 3 3 5
ˆ ˆ ˆ ˆˆ( ), ( ), , , 0, ( )  as n N I n                  

 
  (4.1) 

Where
1( )I 

 is the variance-covariance matrix,
 1 2 3

ˆ ˆ ˆ ˆ ˆ( , , , , )      and 1 2( , ,    

3, , )   ,Since   is unknown in (6), 
1( )I 

 is estimated by
1 ˆ( )I 

; the asymptotic 

variance-covariance matrix that defined above and this can be used to obtain the asymptotic 

confidence intervals of 
1 2 3, , ,      and  . 

 

5.  Bivariate Distributions Related to BGB Distribution 

The interrelations between particular cases of the BGB distribution and other 

distributions will be considered in this section such as bivariate Burr Type XII distribution, 

bivariate Pareto II distribution, bivariate Lomax distribution, bivariate Degum distribution 

and bivariate Burr Type III. 

The BGB distribution  has the following survival function   

1 2 3

1 2

1 2 3
, 1 2 3 1 2( , ) 1 1 1 , max( , ).X X

x x x
S x x x x x

  
  

  

  

     
         
     

 

By some changes to 𝛼 and   the following cases will be considered  

i) Bivariate Burr Type XII (Signh-Maddala) Distribution 

Set  𝛿 = 1,  

     1 2 3

1 2, 1 2 1 2 3 3 1 2( , ) 1 1 1 , max( , ).X XS x x x x x x x x
  

  
  

      

ii) Bivariate Pareto Type II 

Set  𝛿 = 1 and 𝛼 = 1 

     1 2 3

1 2, 1 2 1 2 3 3 1 2( , ) 1 1 1 , max( , ).X XS x x x x x x x x
    

      

iii) Bivariate Lomax Distribution 

Set 𝛼 = 1 

1 2 3

1 2

1 2 3
, 1 2 3 1 2( , ) 1 1 1 , max( , ).X X

x x x
S x x x x x

  

  

  

     
         
     

 

Which is the joint survival function of bivariate Lomax distribution that  defined by Attia 

et al (2014) 

iv) Bivariate Inverted Generalized Burr (Bivariate Dagum) Distribution 

Set 𝑍 =
1

𝑋
  and 𝜆 =

1

𝛿
 

          
1 2 3

1 2, 1 2 1 2 3 3 1 2, 1 1 1 , min ,
v

Z ZF z z z z z z z z
 

    
  

         (5.1) 

Which is the joint cdf of the bivariate Dagum distribution that introduced by Muhammed 

(2017).
 

v) If 𝜆 = 1  Bivariate Dagum distribution defined by eq.(7) reduces to bivariate 

Burr Type III (bivariate inverted Burr type XII) distribution with the following  joint 

cdf  
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     1 2 3

1 2, 1 2 1 2 3 3 1 2( , ) 1 1 1 , min( , )Z ZF z z z z z z z z
  

  
  

        

 

6.  Bivariate  Absolutely Continuous BGB Distribution 

Based on the idea of  Block and Basu (1974), an absolutely continuous bivariate 

Generalized Burr (𝐵𝐺𝐵𝑎𝑐)  distribution will be  introduced by removing the singular part and 

remaining only the absolutely continuous part.  
A random vector (𝑌1, 𝑌2) follows a 𝐵𝐺𝐵𝑎𝑐  distribution if its  pdf  is given by 

1 2

1 1 2 1 2

, 1 2

2 1 2 1 2

1 1 2 23 1 2

1 13 2 2 1 2

( , )
( , )

( , )

( ; ) ( ; )
. ,

( ; ) ( ; )

Y Y

GB GB

GB GB

c f y y if y y
f y y

c f y y if y y

f y f y if y y
c

f y f y if y y

 

 


 



 
 

 

 

Where 𝑐 is the normalizing constant and 𝑐 =
𝜗123

𝜗12
. 

 It will be denoted by  (𝑌1, 𝑌2) ~𝐵𝐺𝐵𝑎𝑐(𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿). 
Proposition 6.1. Let (𝑌1, 𝑌2) ~𝐵𝐺𝐵𝑎𝑐(𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿). The associated survival function 

is given by 

𝑆𝑌1,𝑌2(𝑦1, 𝑦2) =
𝜗123
𝜗12

𝑆𝐺𝐵(𝑦1; 𝛼, 𝛿, 𝜗1) 𝑆𝐺𝐵(𝑦2; 𝛼, 𝛿, 𝜗2)𝑆𝐺𝐵(𝑦; 𝛼, 𝛿, 𝜗3)

−
𝜗3
𝜗12

𝑆𝐺𝐵(𝑦; 𝛼, 𝛿, 𝜗123); 

Where 𝑦 = max (𝑦1, 𝑦2). moreover, the marginal survival functions are given by  

𝑆𝑌1(𝑦1) =
𝜗123
𝜗12

𝑆𝐺𝐵(𝑦1; 𝛼, 𝛿, 𝜗13)  −
𝜗3
𝜗12

𝑆𝐺𝐵(𝑦1; 𝛼, 𝛿, 𝜗123) 

𝑆𝑌2(𝑦2) =
𝜗123
𝜗12

𝑆𝐺𝐵(𝑦2; 𝛼, 𝛿, 𝜗23)  −
𝜗3
𝜗12

𝑆𝐺𝐵(𝑦2; 𝛼, 𝛿, 𝜗123) 

The marginal pdfs associated with the survival function given in Proposition 6.1 are as 

follows 

                           𝑓𝑌1(𝑦1) = 𝑐𝑓𝐺𝐵(𝑦1; 𝛼, 𝛿, 𝜗13)  − 𝑐
𝜗3
𝜗123

𝑓𝐺𝐵(𝑦1; 𝛼, 𝛿, 𝜗123),   

And  

𝑓𝑌2(𝑦2) = 𝑐𝑓𝐺𝐵(𝑦2; 𝛼, 𝛿, 𝜗23)  − 𝑐
𝜗3
𝜗123

𝑓𝐺𝐵(𝑦2; 𝛼, 𝛿, 𝜗123). 

Unlike those of the BGB distribution, the marginals of the BGBac distribution are not GB 

distributions. If  𝜗3 → 0+, then  Y1 and Y2 follow GB distributions and in this case, Y1 and Y2 

become independent .  

Proposition 6.2. The product moments of (𝑌1, 𝑌2) ~𝐵𝐺𝐵𝑎𝑐(𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿). are given by 
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      𝐸(𝑌1
𝑟𝑌2

𝑠) = 𝑐
𝜗1𝜗23𝛿

𝑟+𝑠
𝛼

𝑟
𝛼 + 1

 𝐵 [(
𝑟 + 𝑠

𝛼
+ 2) , (𝜗23 −

𝑟 + 𝑠

𝛼
− 1)] 

                       3𝐹2 [(
𝑟 + 𝑠

𝛼
+ 2) , (

𝑟

𝛼
+ 1) , (1 − 𝜗1 +

𝑟

𝛼
) ; (

𝑟

𝛼
+ 2) (𝜗23 + 1); 1] 

+𝑐
𝜗2𝜗13𝛿

𝑟+𝑠
𝛼

𝑠
𝛼 + 1

 𝐵 [(
𝑟 + 𝑠

𝛼
+ 2) , (𝜗13 −

𝑟 + 𝑠

𝛼
− 1)] 

                     .  3𝐹2 [(
𝑟 + 𝑠

𝛼
+ 2) , (

𝑠

𝛼
+ 1) , (1 − 𝜗2 +

𝑠

𝛼
) ; (

𝑠

𝛼
+ 2) (𝜗13 + 1); 1]. 

Proposition 6.3.  Let (𝑌1, 𝑌2) ~𝐵𝐺𝐵𝑎𝑐(𝜗1, 𝜗2, 𝜗3, 𝜆, 𝛿). Then  

i. Stress- Strength  parameter has the following form;  

𝑅 = 𝑃(𝑌1 < 𝑌2) =
𝜗1

𝜗1 + 𝜗2
, 

ii. 𝑚𝑖𝑛(𝑌1, 𝑌2)~  𝐺𝐵(𝜗231). 
 

7.  Data Analysis 

For illustrative purposes  one data set has  been analyzed to see how the proposed model 

works in practice. The data set has been obtained from Meintanis (2007). The data represent 

the football (soccer) data where at least one goal scored by the home team and at least one 

goal scored directly from a penalty kick, foul kick or any other direct kick (all of them 

together will be called as kick goal) by any team have been considered. Here  𝑋1  represents 

the time in minutes of the first kick goal scored by any team and  𝑋2 represents the first goal 

of any type scored by the home team. In this case all possibilities are open, for example  

𝑋1 < 𝑋2 or  𝑋1 > 𝑋2 or  𝑋1 = 𝑋2 = 𝑋. 
These data were analysed by Meintanis (2007), who considered the Marshall–Olkin 

bivariate exponential distribution, and  by  many authors such as Kundu and Dey (2009),  

Kundu and Gupta (2009), Muhammed (2016) and Muhammed (2017) they considered the 

Marshall–Olkin bivariate Weibull, bivariate generalized exponential, bivariate inverse 

Weibull and bivariate Dagum distributions, respectively. Here, these data will be analyzed 

using the BGB distribution. 

The Kolmogorov-Smirnov distances between the fitted distribution and the empirical 

distribution function for 𝑋1 , 𝑋2  and min (𝑋1, 𝑋2)  with GB(1.163,3.73,0.013), 

GB(1.01,3.73,0.013) and GB(1.697,3.73,0.013) are( 0.278) , (0.283)  and (0.235) 

respectively.  It indicates that the GB distribution can be used for analyzing 𝑋1, 𝑋2and 

min(𝑋1, 𝑋2). Although it does not guarantee that (𝑋1, 𝑋2)will have BGB distribution, but 

at least it gives an indication that the BGB model may be used to analyze this bivariate data 

set. 

A 95% confidence intervals of 𝜗1, 𝜗2, 𝜗3, 𝛼, 𝛿 also computed and they are as follows; 

(0.558, 0.816), (0.501,0.567), (0.445, 0.508), (-0.031, 0.131), (0.011, 0.015) 

The Akaike information criterion (AIC), Bayesian information criterion (BIC),  the 

consistent Akaike information criterion (CAIC) and Hannan-Quinn information criterion 



 

 

 

 

 

548                           Bivariate Generalized Burr and Related Distributions: Properties and Estimation 

 

(HQIC) are also calculated for BGB distribution, based on the above estimates the log-

likelihood value is -43.509, The corresponding AIC, BIC, CAIC and HQIC values are 

(97.018, 105.073, 98.954, and 99.858) respectively. 

Now from the confidence intervals, from the log-likelihood values and also from the 

Kolmogorov-Smirnov distances, it is clear that BGB is preferable in this case. 

 

8.  Conclusions 

In this paper the BGB distribution has been introduced for the first time, whose 

marginals are univariate GB distributions. The BGB distribution is a singular distribution 

and it has an absolute continuous part and a singular part. Since the joint distribution 

survival function and the joint density function are in closed forms, therefore this 

distribution can be used in practice for non-negative and positively correlated random 

variables. The interrelations between particular cases of the BGB distribution and other 

distributions have been considered such as bivariate Burr Type XII distribution, bivariate 

Pareto II distribution, bivariate Lomax distribution, bivariate Degum distribution and 

bivariate Burr Type III. 

 The maximum likelihood estimates for the five unknown parameters of this distribution 

and their approximate variance- covariance matrix are obtained. Some simulations are 

performed to see the performances of the MLEs. One data analysis has been performed for 

illustrative purpose. An absolute continuous version of the BGB distribution also obtained. 

Work is in progress in this direction and it will be reported elsewhere. 
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for BGB Model 

 

𝑛 

 

parameters 

 

AE 

 

𝑀𝑆𝐸 

 

RAB 

 

 

 

 

20 

1    (0.3) 0.177 0.015 0.409 

2   (1.1) 1.328 0.052 0.208 

3   
(1.5) 1.405 0.009 0.064 

    (2.5) 3.512 0.425 0.261 

 𝛿    (0.05) 0.015 0.000

1 

0.694 

 

 

 

40 

1    (0.3) 0.244 0.000

45 

0.92 

2   (1.1) 1.35 0.000

54 

0.91 

3   
(1.5) 2.387 0.017

9 

0.97 

    (1) 1.384 0.002 0.95 

  𝛿    (0.05) 0.014 0.03 0.89 

 

 

 

70 

1    (0.7) 0.913 0.045 0.304 

  2   (1.41) 1.417 0.000

045 

0.00477 

3   
(1.5) 2.533 0.477 0.689 

    (2) 2.954 0.91 0.477 

 𝛿    (0.8) 1.111 0.097 0.388 

 

 


