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Abstract 

The concept of ranked set sampling (RSS) is applicable whenever ranking on 

a set of sampling units can be done easily by a judgment method or based on 

an auxiliary variable. In this work, we consider a study variable 𝑌 correlated 

with auxiliary variable 𝑋 which is used to rank the sampling units. Further 

(𝑋, 𝑌) is assumed to have Morgenstern type bivariate generalized uniform 

distribution. We obtain an unbiased estimator of a scale parameter associated 

with the study variable 𝑌 based on different RSS schemes and censored RSS. 

Efficiency comparison study of these estimators is also performed and 

presented numerically.   
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1. Introduction 

 The concept of ranked set sampling (RSS) was first introduced by McIntyre (1952) 

for improving the precision of the sample mean, an estimator of population mean and applied 

to the problem of estimating the mean pasture yields. This concept is applicable whenever 

variable of interest is difficult or expensive to measure but ranking on a small set of 

measurement is easily available. For an overview see, Patil, Sinha, and Taillie (1994), Barnett 

(1999), Chen, Bai, and Sinha (2004), Wolfe (2004).  McIntyre (1952) uses judgement method 

for ranking a set of sample units. Judgement method is not suitable when there is ambiguity 

in discriminating the rank of one unit with another. Also, the imperfect ranking of the units in 

RSS leads to larger mean square errors of RSS estimators. To remedy this problem Stokes 

(1977) uses an auxiliary variable for ranking of the sampling units. Stokes (1977) considers a 

situation where the variable of interest, say 𝑌, is difficult or expensive to measure, but an 

auxiliary variable 𝑋 correlated with 𝑌 is easily measurable and can be ordered exactly.  The 

procedure of RSS using auxiliary variable described by Stokes (1977) is as follows. 

Choose 𝑛 independent bivariate samples each of size 𝑛 and observe the value of the 

auxiliary variable 𝑋 on each of these units. For the first sample, select that unit for which the 

measurement on the auxiliary variable 𝑋 is the smallest and measure the 𝑌 variate associated 

with it. In the second sample, choose 𝑌 associated to the second smallest 𝑋. This procedure is 

repeated until 𝑌 associated with the largest 𝑋 in the last sample is measured. The resulting set 

of 𝑛 units as described above is called RSS. Let (𝑋(𝑟)𝑟 , 𝑌[𝑟]𝑟), 𝑟 = 1,2, … , 𝑛  be the pair 

selected from the 𝑟𝑡ℎ pair of sample, where 𝑋(𝑟)𝑟 denote the 𝑟𝑡ℎ order statistic of the auxiliary 

variable in the 𝑟𝑡ℎ sample and 𝑌[𝑟]𝑟 denote the measurement made on the 𝑌 variate associated 

with  𝑋(𝑟)𝑟 . David and Nagaraja (2003) referred 𝑌[𝑟]𝑟  as the concomitant of the  𝑟𝑡ℎ  order 

statistic arising from the 𝑟𝑡ℎ sample.  

RSS procedure described by Stokes (1977) has found many diverse applications in 

environmental, agricultural and ecological studies and used effectively to estimate the 

parameters associated with the environmental variables.  Bain (1978) discusses a striking 

example of RSS where a study variate 𝑌 represents the oil pollution of sea water and the 

auxiliary variable 𝑋 represents the tar deposit in the nearby sea shore. Clearly collecting sea 

water sample and measuring the oil pollution in it is strenuous and expensive. However, the 

prevalence of pollution in the sea water is much reflected by the tar deposit in the 

surrounding terminal sea shore. In this example ranking the pollution level of sea water based 

on the tar deposit on the sea shore is more natural and scientific than ranking it visually or by 

judgement method. 

Stokes (1977) proposes RSS mean as an estimator for the mean of the study variate 𝑌, 

when an auxiliary variable 𝑋 is used for ranking the sample units, under the assumption that 

(𝑋, 𝑌) follow a bivariate Normal distribution. Further Barnett and Moore (1997) obtained the 

best linear unbiased estimator (BLUE) of the mean of the study variate 𝑌, based on a RSS for 

the same situation. Stokes (1980) introduces a modified RSS procedure in which only the 

largest or the smallest judgment ranked unit is chosen for quantification. Stokes (1995) 

studies the estimation of parameters in location-scale family distribution using RSS. Samawi, 

Ahmed, and Abu-Dayyeh (1996) investigated the use of a variety of extreme RSS (ERSS) for 

estimating the population mean. Lam, Sinha, and Wu (1994) used RSS to estimate the 

parameters of a two-parameter exponential distribution.  Further Lam, Sinha, and Wu (1996) 

estimated the location and scale parameters of a logistic distribution using RSS.  
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Another scheme of RSS was investigated by Al-Odat and Al-Saleh (2001) which is 

moving extreme RSS (MERSS). Shaibu and Muttalak (2004) estimated the parameters of the 

Normal, Exponential and Gamma distribution using Median RSS and ERSS. Al-Saleh and 

Al-Ananbeh (2007) proposed the concept of MERSS with concomitant variable for the 

estimation of mean of the bivariate normal distribution. Chacko and Thomos (2007) obtained 

the BLUE of the parameter involved in the study variate 𝑌, based on a RSS for bivariate 

Pareto distribution. Chacko and Thomos (2008) estimated the parameters of Morgenstern 

type bivariate exponential distribution by RSS and censored RSS scheme. Tahmasebi and 

Jafari (2012) obtained several estimators for a scale parameter of Morgenstern type bivariate 

uniform distribution by RSS, Upper ranked set sample (URSS), ERSS and MERSS. Lesitha 

and Thomas (2013) obtained an estimator of scale parameter of Morgenstern type bivariate 

log-logistic distribution by RSS and ERSS. Hanandeh and Al-Saleh (2013) estimated the 

parameters of Downton’s bivariate exponential distribution using MERSS. Tahmasebi and 

Jafari (2014) considered the Morgenstern type bivariate generalized exponential distribution 

and obtained several estimators for the population mean. Singh and Mehta (2015) obtained an 

estimator of scale parameter of a Morgenstern type bivariate uniform distribution by RSS and 

censored RSS scheme. Chacko (2016) investigated a new RSS scheme called ordered 

extreme RSS and obtained an estimator of the parameter for Morgenstern type bivariate 

exponential distribution. Koshti and Kamalja (2017) obtained an estimator of scale parameter 

by RSS and censored RSS for bivariate Lomax distribution.   

The above review of the literature shows the importance of RSS schemes in 

estimation of parameters for different bivariate distributions.  In this paper, we consider a 

Morgenstern type bivariate generalized uniform (MTBGU) distribution and use different RSS 

and censored RSS schemes to estimate the scale parameter associated with study variable. 

The present work is organized as follows.      

In section 2, we discuss the general theory of Morgenstern type bivariate generalized 

(MTBG) distribution and briefly review concomitants of order statistics (COS) for MTBGU 

distribution obtained by Scaria and Thomas (2008). In section 3, we obtain an unbiased 

estimator of scale parameter of MTBGU distribution based on RSS, LRSS, URSS, ERSS and 

MERSS schemes. Further in section 4, we obtain censored RSS estimator of scale parameter 

of MTBGU distribution. We perform an efficiency comparison of estimators obtained in 

section 3 numerically and present them graphically in section 5. Section 6, concludes the 

paper with final remarks. 

 

2. Concomitants of Order Statistics for Morgenstern type bivariate generalized 

uniform distribution 

 

In modelling the bivariate data, when the prior information is in the form of marginal 

distributions, it is of advantage to consider families of bivariate distributions with specified 

marginals. Morgenstern (1956) provides a flexible family in such context.  One important 

limitation of Morgenstern family is that its correlation coefficient is restricted to a narrow 

range (−
1

3
,
1

3
). Accordingly, distributions belonging to Morgenstern family can be used to 

model the data that exhibits low correlation. In order to enhance the range of correlation 

between the variables, several modifications to the Morgenstern family have been suggested 

in the literature. Several researchers like Cambanis (1977), Huang and Kotz (1984, 1999), 

Bairamov, Kotz, and Bekci (2001), Bairamov and Kotz (2002), Veena and Thomas (2008) 

extended Morgenstern family to enhance the range of correlation between variables and to 
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impart more flexibility to a new family. Veena and Thomas (2008) introduced a family of 

distributions which constitutes a natural generalization of the bivariate Morgenstern family.   

The distribution function of Morgenstern type bivariate generalized (MTBG) 

distribution for a bivariate random variable (𝑋, 𝑌) given by Veena and Thomas (2008) is, 

 

 𝐹(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦) + ∑ 𝛼𝑖{𝐹𝑋(𝑥)[1 − 𝐹𝑋(𝑥)]}
𝑚𝑖{𝐹𝑌(𝑦)[1 − 𝐹𝑌(𝑦)]}

𝑝𝑖𝑡
𝑖=1   

 

where 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) are the marginals of 𝐹(𝑥, 𝑦),  𝑚𝑖, 𝑝𝑖  are real constants ≥ 1, 𝛼𝑖  is a 

real constant constrained to lie in an interval about zero and 𝑡 is a positive integer. Scaria and 

Thomas (2008) considered the distribution with 𝑡 = 1 as follows. 

 

  𝐹(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦) + 𝛼{𝐹𝑋(𝑥)[1 − 𝐹𝑋(𝑥)]}
𝑚{𝐹𝑌(𝑦)[1 − 𝐹𝑌(𝑦)]}

𝑝 
 

 For uniform marginals, the distribution function of MTBG (i.e. MTBGU) distribution 

is given by,  

 

𝐹(𝑥, 𝑦) =
𝑥

𝜃1

𝑦

𝜃2
+ 𝛼 [

𝑥

𝜃1
(1 −

𝑥

𝜃1
)]
𝑚

[
𝑦

𝜃2
(1 −

𝑦

𝜃2
)]
𝑝

  ; 0 < 𝑥 < 𝜃1, 0 < 𝑦 < 𝜃2           

 

It is denoted by (𝑋, 𝑌)~𝑀𝑇𝐵𝐺𝑈(𝜃1, 𝜃2, 𝑚, 𝑝, 𝛼)  distribution where 𝜃1, 𝜃2  are scale 

parameters, 𝑚, 𝑝 are shape parameters and 𝛼 is the association parameter.  

The MTBGU distribution with 𝑚 = 1  and 𝑝 = 1  reduces to Morgenstern type 

bivariate uniform (MTBU) distribution. Each marginal of the above MTBGU distribution is 

univariate uniform. Particularly, marginal distribution of 𝑌 is 𝑈(0, 𝜃2).  
 Scaria and Nair (1999) studied the COS for MTBU distribution. (i.e. 

𝑀𝑇𝐵𝐺𝑈(𝜃1, 𝜃2, 1,1, 𝛼)) where as Scaria and Thomas (2008) obtained the COS for MTBGU 

distribution.   The pdf of concomitants of the 𝑟𝑡ℎ order statistic 𝑌[𝑟]𝑛 is given by, 

    

 𝑓 𝑌[𝑟]𝑛(𝑦) =
1

𝜃2
[1 + 𝛼𝑚𝑝

𝐵(𝑚+𝑟−1,𝑚+𝑛−𝑟)

𝐵(𝑟,𝑛−𝑟+1)
 
𝑛−2𝑟+1

2𝑚+𝑛−1
(
𝑦

𝜃2
(1 −

𝑦

𝜃2
))

𝑝−1

(1 −
2𝑦

𝜃2
)]  ; 0 < 𝑦 < 𝜃2  

 

 

where 𝐵(. , . ) denotes beta function. 

 

The mean and variance of 𝑌[𝑟]𝑛 is given by, 

 

𝐸(𝑌[𝑟]𝑛) = 𝜃2𝜉𝑟        and    𝑉𝑎𝑟(𝑌[𝑟]𝑛) = 𝜃2
2𝛿𝑟.    

 

where 𝜉𝑟 = 
1

2
− 𝛼𝑚𝑝

𝐵(𝑚+𝑟−1,𝑚+𝑛−𝑟)

𝐵(𝑟,𝑛−𝑟+1)
 
𝑛−2𝑟+1

2𝑚+𝑛−1

𝐵(𝑝,𝑝+1)

2𝑝+1
 and            

  𝛿𝑟 =
1

12
− (𝛼𝑚𝑝

𝐵(𝑚+𝑟−1,𝑚+𝑛−𝑟)

𝐵(𝑟,𝑛−𝑟+1)
 
𝑛−2𝑟+1

2𝑚+𝑛−1

𝐵(𝑝,𝑝+1)

2𝑝+1
)
2

.   

                  

We observe that the constants 𝜉𝑟 and 𝛿𝑟 satisfy the following for different values of 𝑚 and 𝑝. 
 

i) 𝜉𝑟 + 𝜉𝑛−𝑟+1 = 1, 𝑟 = 1,2, … , 𝑛 and consequently ∑ 𝜉𝑟
𝑛
𝑟=1 = 𝑛/2. 

ii) 𝛿𝑟 = 𝛿𝑛−𝑟+1, 𝑟 = 1,2, … , 𝑛 

iii) 𝛿𝑟 > 0 and ∑ 𝛿𝑟
𝑛
𝑟=1 ≤ 𝑛/12 

iv) 𝜉𝑟 > 0 and ∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1 ≥ 3𝑛  
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3. Estimator of scale parameter 𝜽𝟐 based on different RSS schemes 

 In this section, we obtain an unbiased estimator of the scale parameter 𝜃2 based on 

different RSS schemes when 𝑚, 𝑝 and 𝛼 are known. Further we compare different estimators 

of 𝜃2 obtained by using different RSS schemes. 

 

3.1 RSS estimation 

 

  Suppose 𝑛 random samples each of size 𝑛 are drawn from 𝑀𝑇𝐵𝐺𝑈(𝜃1, 𝜃2, 𝑚, 𝑝, 𝛼) 
distribution. Let 𝑋(𝑟)𝑟 be the 𝑟𝑡ℎ order statistic of the auxiliary variable 𝑋 in the 𝑟𝑡ℎ sample 

and 𝑌[𝑟]𝑟 be the measurement on the 𝑌 variate associated with 𝑋(𝑟)𝑟 , 𝑟 = 1,2, … , 𝑛. Here 𝑌[𝑟]𝑟 

is referred as the concomitant of 𝑟𝑡ℎ order statistic and 𝑌[1]1, 𝑌[2]2, … , 𝑌[𝑛]𝑛 is referred to as 

RSS from 𝑀𝑇𝐵𝐺𝑈  distribution. The handling of these RSS observations for inference 

problem will be easy since observations are uncorrelated as they are drawn from independent 

samples.    

Based on RSS 𝑌[1]1, 𝑌[2]2, … , 𝑌[𝑛]𝑛 from 𝑀𝑇𝐵𝐺𝑈 distribution, we obtain an unbiased 

estimator of a scale parameter 𝜃2  under the assumption that 𝑚, 𝑝 and  𝛼  are known. The 

estimator 𝜃2,𝑅𝑆𝑆 is defined as, 

 

𝜃2,𝑅𝑆𝑆 =
2

𝑛
∑ 𝑌[𝑟]𝑛
𝑛
𝑟=1   

 

Clearly 𝜃2,𝑅𝑆𝑆 is the unbiased estimator of 𝜃2 and its variance is given by, 

 

𝑉𝑎𝑟(𝜃2,𝑅𝑆𝑆) =
4𝜃2

2

𝑛2
∑ 𝛿𝑟
𝑛
𝑟=1 .   

  

The unbiased estimator of 𝜃2 based on a simple random sample (SRS) 𝑦1, 𝑦2, … , 𝑦𝑛 

from 𝑈(0, 𝜃2) distribution is  𝜃2,𝑆𝑅𝑆 = 2𝑦 where 𝑦 =
1

𝑛
∑ 𝑦𝑟
𝑛
𝑟=1  and  𝑉𝑎𝑟(𝜃2,𝑆𝑅𝑆) = 𝜃2

2/3𝑛. 

The efficiency of 𝜃2,𝑅𝑆𝑆 over 𝜃2,𝑆𝑅𝑆 is,  

 

𝑒1 = 𝑅𝐸(𝜃2,𝑅𝑆𝑆|𝜃2,𝑆𝑅𝑆) =
𝑛

12∑ 𝛿𝑟
𝑛
𝑟=1

.   
 

Observe that 𝑒1 ≥ 1, since ∑ 𝛿𝑟
𝑛
𝑟=1 ≤ 𝑛/12. Hence 𝜃2,𝑅𝑆𝑆 is more efficient than 𝜃2,𝑆𝑅𝑆. 

 

3.2 BLUE using RSS 

 

We obtain BLUE of 𝜃2 based on RSS under the assumption that 𝑚, 𝑝 and 𝛼 are known.  

Let 𝒀[𝒏] = (𝑌[1]1 𝑌[2]2 ⋯ 𝑌[𝑛]𝑛)′  be a vector of RSS. Then the mean vector and the 

dispersion matrix of 𝒀[𝒏] is given by,   

 

𝐸(𝒀[𝒏]) = 𝜃2𝝃 ,   

 

𝐷(𝒀[𝒏]) = 𝜃2
2𝐺. 

 

where  𝝃 = (𝜉1 𝜉2 ⋯ 𝜉𝑛)
′  

 

and  𝐺 = 𝑑𝑖𝑎𝑔 (𝛿1, 𝛿2, … , 𝛿𝑛). 
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 The BLUE 𝜃2,𝐵𝐿𝑈𝐸  of 𝜃2  based on RSS using the generalized linear model for 

𝐸(𝒀[𝒏]) = 𝜃2𝝃  with  𝐷(𝒀[𝒏]) = 𝜃2
2𝐺 (David and Nagaraja (2003)) is given by, 

 

𝜃2,𝐵𝐿𝑈𝐸 = (𝝃′𝐺−1𝝃)−1𝝃′𝐺−1𝒀[𝒏].                                                            (1) 
 

The variance of 𝜃2,𝐵𝐿𝑈𝐸 is given by, 

 

𝑉𝑎𝑟(𝜃2,𝐵𝐿𝑈𝐸) = (𝝃′𝐺−1𝝃)−1𝜃2
2.                               (2) 

 

Simplifying (1) and (2) we get, 

 

𝜃2,𝐵𝐿𝑈𝐸 =
∑ (𝜉𝑟/𝛿𝑟)𝑌[𝑟]𝑛 
𝑛
𝑟=1

∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1

,  𝑉𝑎𝑟(𝜃2,𝐵𝐿𝑈𝐸) =
𝜃2
2

∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1

.   

 

The efficiency of 𝜃2,𝐵𝐿𝑈𝐸 over 𝜃2,𝑅𝑆𝑆 is, 

 

𝑒2 = 𝑅𝐸(𝜃2,𝐵𝐿𝑈𝐸|𝜃2,𝑅𝑆𝑆) =
4

𝑛2
(∑ 𝛿𝑟

𝑛
𝑟=1 ) (∑

𝜉𝑟
2

𝛿𝑟

𝑛
𝑟=1  )   

 

It is observed that ∑
𝜉𝑟
2

𝛿𝑟

𝑛
𝑟=1 ≥ 3𝑛. Hence 𝜃2,𝐵𝐿𝑈𝐸 is more efficient than 𝜃2,𝑅𝑆𝑆 as ∑ 𝛿𝑟

𝑛
𝑟=1 ≤

𝑛

12
. 

 

3.3 LRSS and URSS estimation 

 

Stokes (1980) introduces a modified RSS procedure in which only the largest or the 

smallest judgment ranked unit is chosen for quantification. In lower (upper) RSS, 

measurement on 𝑌  is made on those units for which measurement on 𝑋 is minimum 

(maximum). This is done for each of the 𝑛  samples. The sample observations 

𝑌[1]1, 𝑌[1]2, … , 𝑌[1]𝑛 (𝑌[𝑛]1, 𝑌[𝑛]2, … , 𝑌[𝑛]𝑛) is referred as LRSS (URSS). The BLUE 𝜃2,𝐿𝑅𝑆𝑆 and 

𝜃2,𝑈𝑅𝑆𝑆 of 𝜃2 based on LRSS and URSS are as follows.   

 

𝜃2,𝐿𝑅𝑆𝑆 =
1

𝑛𝜉1
∑ 𝑌[1]𝑟
𝑛
𝑟=1 ,   𝜃2,𝑈𝑅𝑆𝑆 =

1

𝑛𝜉𝑛
∑ 𝑌[𝑛]𝑟
𝑛
𝑟=1 , 

 

The variances of these estimators are, 

  

 𝑉𝑎𝑟(𝜃2,𝐿𝑅𝑆𝑆) =
𝜃2
2𝛿1

𝑛𝜉1
2 ,   𝑉𝑎𝑟(𝜃2,𝑈𝑅𝑆𝑆) =

𝜃2
2𝛿𝑛

𝑛𝜉𝑛
2 , 

 

where 𝛿1 = 𝛿𝑛 =
1

12
− (𝛼𝑚𝑝

𝐵(𝑚+𝑛−1,𝑚)

𝐵(1,𝑛)
 

𝑛−1

2𝑚+𝑛−1

𝐵(𝑝,𝑝+1)

2𝑝+1
)
2

, 

 

 𝜉1 =
1

2
− 𝛼𝑚𝑝

𝐵(𝑚+𝑛−1,𝑚)

𝐵(1,𝑛)
 

𝑛−1

2𝑚+𝑛−1

𝐵(𝑝,𝑝+1)

2𝑝+1
 and 𝜉𝑛 =

1

2
− 𝛼𝑚𝑝

𝐵(𝑚+𝑛−1,𝑚)

𝐵(1,𝑛)
 

1−𝑛

2𝑚+𝑛−1

𝐵(𝑝,𝑝+1)

2𝑝+1
.  

 

The efficiency of 𝜃2,𝐿𝑅𝑆𝑆 and 𝜃2,𝑈𝑅𝑆𝑆 over 𝜃2,𝑅𝑆𝑆 and 𝜃2,𝐵𝐿𝑈𝐸 is given by,  

 

𝑒3 = 𝑅𝐸(𝜃2,𝐿𝑅𝑆𝑆|𝜃2,𝑅𝑆𝑆) =
4𝜉1

2(∑ 𝛿𝑟
𝑛
𝑟=1 )

𝑛𝛿1
,     𝑒4 = 𝑅𝐸(𝜃2,𝐿𝑅𝑆𝑆|𝜃2,𝐵𝐿𝑈𝐸) =

𝑛𝜉1
2/𝛿1

∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1

.  
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𝑒5 = 𝑅𝐸(𝜃2,𝑈𝑅𝑆𝑆|𝜃2,𝑅𝑆𝑆) =
4𝜉𝑛

2(∑ 𝛿𝑟
𝑛
𝑟=1 )

𝑛𝛿𝑛
,  𝑒6 = 𝑅𝐸(𝜃2,𝑈𝑅𝑆𝑆|𝜃2,𝐵𝐿𝑈𝐸) =

𝑛𝜉𝑛
2/𝛿𝑛

∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1

.  

 

Observe that as  𝜉1
2|𝛼3  = 𝜉𝑛

2|−𝛼3 , therefore 𝑒3|𝛼3  = 𝑒5|−𝛼3 and 𝑒4|𝛼3  = 𝑒6|−𝛼3.  

 

 

3.4 ERSS estimation 

 

Samawi, Ahmed, and Abu-Dayyeh (1996) introduced ERSS which is easier than 

usual RSS procedure. Based on the even or odd sample size, ERSS can be chosen in two 

ways. For both procedures, the selection of first 𝑛 − 1 units are same, but the selection of 𝑛𝑡ℎ 

unit depends on whether the sample size is even or odd. The procedure is as follows. 

  The ERSS scheme involves randomly choosing 𝑛 samples each of 𝑛 units from the 

population. From the first set of 𝑛  units, select the smallest 𝑋  and measure the 𝑌  variate 

associated with the smallest 𝑋 variate. From the second set of 𝑛 units, select the largest 𝑋 and 

measure the 𝑌  variate associated with the largest 𝑋 variate. From the third set of 𝑛 units, 

select the smallest 𝑋 and measure the 𝑌 variate associated with the smallest 𝑋 variate and so 

on. This is repeated until we obtain the first 𝑛 − 1 units. 

  The choice of the 𝑛𝑡ℎ unit from the 𝑛𝑡ℎ set depends on whether 𝑛 is even or odd. If 𝑛 

is even, select the largest 𝑋 and measure the 𝑌 variate associated with the largest 𝑋 variate. 

Such a sample will be denoted by ERSS1 and is  (𝑌[1]1, 𝑌[𝑛]2, … , 𝑌[1]𝑛−1, 𝑌[𝑛]𝑛). 

  If 𝑛 is odd, the 𝑛𝑡ℎ unit can be chosen in two different ways. 

a) For the measure of the 𝑛𝑡ℎ unit, the average of 𝑌 variates associated with the smallest and 

the largest 𝑋 in the 𝑛𝑡ℎ set is chosen. In this case the selected sample is denoted by ERSS2 

and is (𝑌[1]1, 𝑌[𝑛]2, 𝑌[1]3  … , 𝑌[𝑛]𝑛−1,
( 𝑌[1]𝑛+ 𝑌[𝑛]𝑛)

2
). 

b) For the measure of the 𝑛𝑡ℎ unit, choose 𝑌 associated with median 𝑋
(
𝑛+1

2
)
 of 𝑛𝑡ℎ sample. 

The selected sample will be denoted by ERSS3  and is given by 

(𝑌[1]1, 𝑌[𝑛]2, 𝑌[1]3  … , 𝑌[𝑛]𝑛−1, 𝑌[𝑛+1
2
]𝑛
) 

 

Thus, the samples under ERSS scheme in different situations can be represented as, 

 

  𝐸𝑅𝑆𝑆𝑖 =

{
 
 

 
 𝑌[1]1, 𝑌[𝑛]2, 𝑌[1]3  … , 𝑌[1]𝑛−1, 𝑌[𝑛]𝑛                   𝑖𝑓 𝑖 = 1  (𝑛 𝑒𝑣𝑒𝑛)

𝑌[1]1, 𝑌[𝑛]2, 𝑌[1]3  … , 𝑌[𝑛]𝑛−1,
( 𝑌[1]𝑛+ 𝑌[𝑛]𝑛)

2
       𝑖𝑓 𝑖 = 2  (𝑛 𝑜𝑑𝑑)

𝑌[1]1, 𝑌[𝑛]2, 𝑌[1]3  … , 𝑌[𝑛]𝑛−1, 𝑌[𝑛+1
2
]𝑛
                 𝑖𝑓 𝑖 = 3  (𝑛 𝑜𝑑𝑑)

  

 

The estimator of 𝜃2 using ERSS is defined as, 

 

 𝜃2,𝐸𝑅𝑆𝑆𝑖 =

{
 
 

 
 
2

𝑛
∑ (𝑌[1]2𝑟−1 + 𝑌[𝑛]2𝑟)
𝑛/2
𝑟=1                                                   𝑖𝑓 𝑖 = 1

2

𝑛
(𝑌[1]1 + 𝑌[𝑛]2 + 𝑌[1]3 +⋯+ 𝑌[𝑛]𝑛−1 +

𝑌[1]𝑛+𝑌[𝑛]𝑛

2
)    𝑖𝑓 𝑖 = 2

2

𝑛
(𝑌[1]1 + 𝑌[𝑛]2 + 𝑌[1]3 +⋯+ 𝑌[𝑛]𝑛−1 + 𝑌[(𝑛+1)/2]𝑛)   𝑖𝑓 𝑖 = 3

  

 

The variance of ERSS estimator of 𝜃2 is, 
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 𝑉𝑎𝑟(𝜃2,𝐸𝑅𝑆𝑆𝑖) =

{
 
 

 
 
4𝜃2

2𝛿1

𝑛
                                                             𝑖𝑓 𝑖 = 1

2

𝑛2
((2𝑛 − 1)𝜃2

2𝛿1 + 𝑐𝑜𝑣(𝑌[1]𝑛, 𝑌[𝑛]𝑛))   𝑖𝑓 𝑖 = 2

𝜃2
2

3𝑛2
(12(𝑛 − 1)𝛿1 + 1)                              𝑖𝑓 𝑖 = 3

  

 

where  𝛿1 =
1

12
− (𝛼𝑚𝑝

𝐵(𝑚,𝑚+𝑛−1)

𝐵(1,𝑛)
 

𝑛−1

2𝑚+𝑛−1

𝐵(𝑝,𝑝+1)

2𝑝+1
)
2

. 

 

Note that, in ERSS1  and ERSS3,  the selected elements are all independent. Hence their 

variance is free of any of the covariance terms while 𝑉𝑎𝑟(𝜃2,𝐸𝑅𝑆𝑆2) involves 𝑐𝑜𝑣(𝑌[1]𝑛, 𝑌[𝑛]𝑛) 
which is given by Scaria and Thomas (2008). 

Now we summarize the efficiency of ERSS estimators of 𝜃2 with other estimators in 

the following. 

 

𝑒7 = 𝑅𝐸(𝜃2,𝐸𝑅𝑆𝑆1|𝜃2,𝑅𝑆𝑆) =
∑ 𝛿𝑟
𝑛
𝑟=1

𝑛𝛿1
 ,  

 

𝑒8 = 𝑅𝐸(𝜃2,𝐸𝑅𝑆𝑆1|𝜃2,𝐵𝐿𝑈𝐸) =
𝑛

4𝛿1∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1

 ,  

 

𝑒9 = 𝑅𝐸(𝜃2,𝐸𝑅𝑆𝑆1|𝜃2,𝐿𝑅𝑆𝑆) =
1

4𝜉1
2 ,  

 

𝑒10 = 𝑅𝐸(𝜃2,𝐸𝑅𝑆𝑆1|𝜃2,𝑈𝑅𝑆𝑆) =
1

4𝜉𝑛
2 ,  

 

𝑒11 = 𝑅𝐸(𝜃2,𝐸𝑅𝑆𝑆3|𝜃2,𝑅𝑆𝑆) =
12∑ 𝛿𝑟

𝑛
𝑟=1

12(𝑛−1)𝛿1+1
 ,  

 

𝑒12 = 𝑅𝐸(𝜃2,𝐸𝑅𝑆𝑆3|𝜃2,𝐵𝐿𝑈𝐸) =
3𝑛2

(12(𝑛−1)𝛿1+1)(∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1 ) 

 ,   

 

𝑒13 = 𝑅𝐸(𝜃2,𝐸𝑅𝑆𝑆3|𝜃2,𝐿𝑅𝑆𝑆) =
3𝑛𝛿1

𝜉1
2(12(𝑛−1)𝛿1+1) 

 ,  

 

and     𝑒14 = 𝑅𝐸(𝜃2,𝐸𝑅𝑆𝑆3|𝜃2,𝑈𝑅𝑆𝑆) =
3𝑛𝛿𝑛

𝜉𝑛
2(12(𝑛−1)𝛿𝑛+1) 

 .  

 

3.5 MERSS estimation 
 

Al-Odat and Al-Saleh (2001) introduced the modified RSS scheme based on the 

concept of varied sample set size RSS and is known as MERSS. The steps to get MERSS 

sample from bivariate distribution given by Al-Saleh and Al-Ananbeh (2007) are as follows.  

i) Select 𝑘 simple random sample sets of size 1, 2, … , 𝑘 from bivariate distribution. Then 

identify by judgement the maximum of each set with respect to 𝑋-variate and measure 

the 𝑌-variate associated with this 𝑋.  

ii) Repeat step (i), but for minimum.   

iii) Repeat the above two steps 𝑙 times, if necessary, until the desired sample size 𝑛 = 2𝑙𝑘 

is obtained.  

With 𝑙 = 1, let {(𝑋(𝑟)𝑟 , 𝑌[𝑟]𝑟), (𝑋(1)𝑟
′ , 𝑌[1]𝑟

′ ) ; 𝑟 = 1, 2, … , 𝑘} be the 𝑛 = 2𝑘 pairs that are 

obtained using above procedure where 𝑋(𝑟)𝑟 = 𝑚𝑎𝑥{𝑋𝑟1, 𝑋𝑟2, … , 𝑋𝑟𝑟}  for the samples 
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selected in step (i) and 𝑋(1)𝑟
′ = 𝑚𝑖𝑛{𝑋𝑟1

′ , 𝑋𝑟2
′ , … , 𝑋𝑟𝑟

′ } are the samples selected in step (ii), 

𝑟 = 1,2, … . , 𝑘.  Note that the pairs of these samples are independent but not identically 

distributed as sample size varies. The set  (𝑌[1]1, 𝑌[2]2, … , 𝑌[𝑘]𝑘, 𝑌[1]1
′ , 𝑌[1]2

′ , … , 𝑌[1]𝑘
′ ) constitues 

the MERSS sample of size 𝑛 = 2𝑘 from 𝑀𝑇𝐵𝐺𝑈 distribution. An unbiased estimator of 𝜃2 

based on MERSS is given by, 

  

 𝜃2,𝑀𝐸𝑅𝑆𝑆 =
1

𝑘
∑ (𝑌[𝑟]𝑟 + 𝑌[1]𝑟

′ )𝑘
𝑟=1  

 

Now the variance of 𝑌[𝑟]𝑟 and 𝑌[1]𝑟
′  are given by, 

  

𝑉𝑎𝑟(𝑌[𝑟]𝑟) = 𝜃2
2𝛿𝑟

∗,    𝑉𝑎𝑟(𝑌[1]𝑟
′ ) = 𝜃2

2𝛿1
∗, 

  

where  𝛿1
∗ = 𝛿1|𝑟=1,𝑛=𝑟 = 𝛿𝑟

∗. 

 

The variance of 𝜃2,𝑀𝐸𝑅𝑆𝑆 is, 

 

𝑉𝑎𝑟(𝜃2,𝑀𝐸𝑅𝑆𝑆) =
8𝜃2

2

𝑛2
(∑ 𝛿1

∗𝑛/2
𝑟=1 ),   

 

The efficiency of 𝜃2,𝑀𝐸𝑅𝑆𝑆 over 𝜃2,𝑅𝑆𝑆 and 𝜃2,𝑆𝑅𝑆 are given as, 

 

𝑅𝐸(𝜃2,𝑀𝐸𝑅𝑆𝑆|𝜃2,𝑅𝑆𝑆) =
∑ 𝛿𝑟
𝑛
𝑟=1

2∑ 𝛿1
∗𝑛/2 

𝑟=1

 ,  𝑅𝐸(𝜃2,𝑀𝐸𝑅𝑆𝑆|𝜃2,𝑆𝑅𝑆) =
𝑛

24∑ 𝛿1
∗𝑛/2

𝑟=1

  

 

 It is observed that 𝜃2,𝑀𝐸𝑅𝑆𝑆 is more efficient than 𝜃2,𝑆𝑅𝑆. The performance of 𝜃2,𝑀𝐸𝑅𝑆𝑆 

with respect to 𝜃2,𝑅𝑆𝑆 depends on all the parameter values and 𝑛. To study the performance of 

the estimators with respect to parameters, we evaluate the efficiencies 𝑒𝑗 , 𝑗 = 1, 2, … , 14 for 

different sample sizes in Section 5. 

 

4. Estimator of scale parameter based on censored RSS 

 

 An example discussed by Bain (1978) about the oil pollution of sea water, uses the tar 

deposit in the nearly seashore as auxiliary variable. If there is no tar deposit at the seashore, 

then the corresponding sea sample will be treated as censored as these units cannot be 

measured. For ranking on 𝑋 observations in a sample, the censored units are assumed to have 

distinct and consecutive lower ranks and the remaining units are ranked with the next higher 

ranks in a natural order. If in this censored scheme of RSS, 𝑘 units are censored, then we may 

represent the RSS observations in RSS as 𝜌1𝑌[1]1, 𝜌2𝑌[2]2, … , 𝜌𝑛𝑌[𝑛]𝑛  where 

 

  𝜌𝑖 = {
0   if the 𝑖𝑡ℎunit is censored

1    otherwise                           

 

 

such that  ∑ 𝜌𝑖 = 𝑛 − 𝑘
𝑛
𝑖=1 .  

 
In this case the censored RSS mean �̅�𝑅𝑆𝑆

𝑐  is defined as, 
 

 �̅�𝑅𝑆𝑆
𝑐 =

∑ 𝜌𝑖𝑌[𝑖]𝑖
𝑛
𝑖=1

𝑛−𝑘
. 
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 It may be noted that 𝜌𝑖 = 0 need not occur in a natural order for 𝑖 = 1,2, … , 𝑛. Let the 

integers 𝑛1, 𝑛2, … , 𝑛𝑛−𝑘 be such that 1 ≤ 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑛−𝑘 ≤ 𝑛 and 𝜌𝑛𝑖 = 1. Then, 

 

 𝐸[�̅�𝑅𝑆𝑆
𝑐 ] =

𝜃2

𝑛−𝑘
∑ 𝜉𝑛𝑖
𝑛−𝑘
𝑖=1  ,  

                  

where  𝜉𝑛𝑖 = 
1

2
− 𝛼𝑚𝑝

𝐵(𝑚+𝑛𝑖−1,𝑚+𝑛−𝑛𝑖)

𝐵(𝑛𝑖,𝑛−𝑛𝑖+1)
 
𝑛−2𝑛𝑖+1

2𝑚+𝑛−1

𝐵(𝑝,𝑝+1)

2𝑝+1 
.  

  

 Even though the RSS mean in censored case is not an unbiased estimator for 𝜃2, we 

can construct an unbiased estimator based on �̅�𝑅𝑆𝑆
𝑐 .  Let 𝑌[𝑛𝑖]𝑛𝑖 , 𝑖 = 1,2, … , 𝑛 − 𝑘 be the 

censored RSS observations. When 𝑚, 𝑝 and 𝛼 are known, an unbiased estimator 𝜃2,𝑅𝑆𝑆
𝑐 (𝑘) of 

𝜃2 based on censored RSS of size 𝑘 and its variance is given by, 

 

 𝜃2,𝑅𝑆𝑆
𝑐 (𝑘) =

(𝑛−𝑘)�̅�𝑅𝑆𝑆
𝑐

∑ 𝜉𝑛𝑖
𝑛−𝑘
𝑖=1

   and  𝑉𝑎𝑟 (𝜃2,𝑅𝑆𝑆
𝑐 (𝑘)) = 𝜃2

2
∑ 𝛿𝑛𝑖
𝑛−𝑘
𝑖=1

(∑ 𝜉𝑛𝑖
𝑛−𝑘
𝑖=1 )

2,  

 

where 𝛿𝑛𝑖 =
1

12
− (𝛼𝑚𝑝

𝐵(𝑚+𝑛𝑖−1,𝑚+𝑛−𝑛𝑖)

𝐵(𝑛𝑖,𝑛−𝑛𝑖+1)
 
𝑛−2𝑛𝑖+1

2𝑚+𝑛−1

𝐵(𝑝,𝑝+1)

2𝑝+1
)
2

, 𝑖 = 1,2, … , 𝑛 − 𝑘.      

   

We now propose the BLUE of 𝜃2 based on the censored RSS.  Let 𝒀[𝒏](𝑘) =

(𝑌[𝑛1]𝑛1 𝑌[𝑛2]𝑛2 ⋯ 𝑌[𝑛𝑛−𝑘]𝑛𝑛−𝑘)’ be the vector of observations in censored RSS. The 

mean vector and the dispersion matrix of 𝒀[𝒏](𝑘) are given by,  

 

 𝐸 (𝒀[𝒏](𝑘)) = 𝜃2𝝃(𝒌),                                           (3) 

 

 𝐷 (𝒀[𝒏](𝑘)) = 𝜃2
2𝐺(𝑘),                                                                                   (4) 

 

 where 𝝃(𝒌) = (𝜉𝑛1 𝜉𝑛2 ⋯ 𝜉𝑛𝑛−𝑘)
′
  and 𝐺(𝑘) = 𝑑𝑖𝑎𝑔 (𝛿𝑛1 , 𝛿𝑛2 , … , 𝛿𝑛𝑛−𝑘).   

 

 If 𝑚, 𝑝  and 𝛼  involved in 𝝃(𝒌) and 𝐺(𝑘)  are known, then (3) and (4) defines a 

generalized Gauss-Markov set up and hence the BLUE �̃�2,𝑅𝑆𝑆
𝑐 (𝑘) of 𝜃2 is obtained as, 

 

  �̃�2,𝑅𝑆𝑆
𝑐 (𝑘) = (𝝃(𝒌)′𝐺(𝑘)−1𝝃(𝒌) )−1𝝃(𝒌)′𝐺(𝑘)−1𝒀[𝒏](𝑘),                       (5) 

  

and  𝑉𝑎𝑟(�̃�2,𝑅𝑆𝑆
𝑐 (𝑘)) = (𝝃(𝒌)′𝐺(𝑘)−1𝝃(𝒌))

−1
𝜃2
2.                             (6) 

 

Simplifying the expression from (5) and (6), we get,  

 

 �̃�2,𝑅𝑆𝑆
𝑐 (𝑘) = ∑ 𝑎𝑛𝑖

𝑛−𝑘
𝑖=1 𝑌[𝑛𝑖]𝑛𝑖 ,     

 

 𝑉𝑎𝑟 (�̃�2,𝑅𝑆𝑆
𝑐 (𝑘)) =

𝜃2
2

∑ (𝜉𝑛𝑖
2 /𝑛−𝑘

𝑖=1 𝛿𝑛𝑖)
.     

 

where  𝑎𝑚𝑖
=

𝜉𝑛𝑖𝑖
/𝛿𝑛𝑖𝑖

∑ 𝜉𝑛𝑖
2 /𝑛−𝑘

𝑖=1 𝛿𝑛𝑖
.  

 



Kirtee K. Kamalja and Rohan D. Koshti                                                                                                                            523 

Remark 1: The efficiencies developed in Section 3 are in terms of association parameter 𝛼 

and 𝑚, 𝑝. An estimator of 𝛼 can be obtained using sample correlation coefficient. Scaria and 

Thomas (2008) obtained correlation coefficient for (𝑋, 𝑌)~𝑀𝑇𝐵𝐺𝑈(𝜃1, 𝜃2, 𝑚, 𝑝, 𝛼) 
distribution and is given by, 

 

  𝜌 = 12𝛼𝑓(𝑚, 𝑝)  
 
where 𝑓(𝑚, 𝑝) = 𝐵(𝑚 + 1,𝑚 + 1)𝐵(𝑝 + 1, 𝑝 + 1).  
 

 We propose an estimator of 𝛼  based on sample correlation coefficient �̂�  of the 

observations (𝑋(𝑟)𝑟 , 𝑌[𝑟]𝑟), 𝑟 = 1,2, … , 𝑛  assuming 𝑚  and 𝑝  known. This estimator is in 

similar lines to the estimator of 𝛼 proposed by Chacko and Thomos (2008) for Morgenstern 

type bivariate exponential distribution and is as follows.  

 

 �̂� =
�̂�

12𝑓(𝑚,𝑝)
      𝑖𝑓 − 12𝑓(𝑚, 𝑝) ≤ �̂� ≤ 12𝑓(𝑚, 𝑝). 

 

 In the following we summarize the range of association parameter 𝛼 and its estimator 

for the MTBGU distribution in different situations. 

 

Distribution Range of 𝛼 𝜌 Estimator of 𝛼 

𝑀𝑇𝐵𝐺𝑈(𝜃1, 𝜃2, 1,1, 𝛼) 
(i.e. Morgenstern type 

bivariate uniform) 

[−1,1] 
(Morgenstern 

(1956)) 

𝛼

3
 

�̂� =

{
 
 

 
 −1         𝑖𝑓  �̂� < −

1

3

3�̂�   𝑖𝑓 −
1

3
≤ �̂� ≤

1

3

1                 𝑖𝑓 �̂� >
1

3

     

(proposed by Tahmasebi and Jafari 

(2012)) 

𝑀𝑇𝐵𝐺𝑈(1,1,𝑚, 𝑝, 𝛼) 
[−𝛼𝑢, 𝛼𝑢] 

(Tomas and 

Veena (2011)) 12𝑓(𝑚, 𝑝) �̂� =
�̂�

12𝑓(𝑚, 𝑝)
   𝑖𝑓 |�̂�| ≤ 12𝑓(𝑚, 𝑝) 

𝑀𝑇𝐵𝐺𝑈(𝜃1, 𝜃2, 𝑚, 𝑝, 𝛼) [−𝛼𝑢
∗ , 𝛼𝑢

∗ ] 

 

Here 𝛼𝑢 =
1

𝑚𝑝[(
√2

√4𝑚−2
)(
1

4
−

1

2(4𝑚−2)
)
𝑚−1

][(
√2

√4𝑝−2
)(
1

4
−

1

2(4𝑝−2)
)
𝑝−1

]
 and 𝛼𝑢

∗  is function of 𝑚  and 𝑝 so 

that 𝐹(𝑥, 𝑦) forms the distribution function of MTBGU distribution. 

 

5. Numerical study 

 
 In this section, we evaluate the efficiencies 𝑒𝑗 , 𝑗 = 1,2, … ,14 based on different RSS 

schemes as RSS, LRSS, URSS and ERSS. The efficiencies are evaluated for 𝑛 =
5, 10, 15, 20, 𝛼 = ±0.25,±0.50, ±0.75 and for different values of 𝑚 and 𝑝. Table 1 presents 

the efficiencies for 𝑚 = 1, 𝑝 = 2, Table 2 considers 𝑚 = 2, 𝑝 = 1 and Table 3 shows these 

efficiencies for 𝑚 = 1, 𝑝 = 1.5.  The efficiencies 𝑒7, 𝑒8, 𝑒9, 𝑒10  (𝑒11, 𝑒12, 𝑒13, 𝑒14)  represent 

efficiency of 𝜃2,𝐸𝑅𝑆𝑆1  (𝜃2,𝐸𝑅𝑆𝑆3) over 𝜃2,𝑅𝑆𝑆 , 𝜃2,𝐵𝐿𝑈𝐸 , 𝜃2,𝐿𝑅𝑆𝑆  and 𝜃2,𝑈𝑅𝑆𝑆  respectively, when 

sample size is even (odd). 
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Table 1: The efficiencies 𝒆𝒋, 𝒋 = 𝟏, 𝟐, … , 𝟏𝟒 for 𝒎 = 𝟏 and 𝒑 = 𝟐 

 

𝒏 𝜶 𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 𝒆𝟔 𝒆𝟕 𝒆𝟖 𝒆𝟗 𝒆𝟏𝟎 𝒆𝟏𝟏 𝒆𝟏𝟐 𝒆𝟏𝟑 𝒆𝟏𝟒 

5 

-0.75 1.0017 1.0006 1.0696 1.0690 0.9360 0.9355 -- -- -- -- 1.0010 1.0004 0.9359 1.0694 

-0.50 1.0007 1.0002 1.0457 1.0455 0.9568 0.9565 -- -- -- -- 1.0004 1.0002 0.9567 1.0457 

-0.25 1.0002 1.0001 1.0225 1.0225 0.9781 0.9780 -- -- -- -- 1.0001 1.0000 0.9781 1.0225 

0.25 1.0002 1.0001 0.9781 0.9780 1.0225 1.0225 -- -- -- -- 1.0001 1.0000 1.0225 0.9781 

0.50 1.0007 1.0002 0.9568 0.9565 1.0457 1.0455 -- -- -- -- 1.0004 1.0002 1.0457 0.9567 

0.75 1.0017 1.0006 0.9360 0.9355 1.0696 1.0690 -- -- -- -- 1.0010 1.0004 1.0694 0.9359 

10 

-0.75 1.0020 1.0007 1.0867 1.0860 0.9226 0.9220 1.0030 1.0023 0.9229 1.0871 -- -- -- -- 

-0.50 1.0009 1.0003 1.0567 1.0564 0.9475 0.9472 1.0013 1.0010 0.9476 1.0569 -- -- -- -- 
-0.25 1.0002 1.0001 1.0278 1.0277 0.9732 0.9732 1.0003 1.0003 0.9733 1.0278 -- -- -- -- 
0.25 1.0002 1.0001 0.9732 0.9732 1.0278 1.0277 1.0003 1.0003 1.0278 0.9733 -- -- -- -- 
0.50 1.0009 1.0003 0.9475 0.9472 1.0567 1.0564 1.0013 1.0010 1.0569 0.9476 -- -- -- -- 
0.75 1.0020 1.0007 0.9226 0.9220 1.0867 1.0860 1.0030 1.0023 1.0871 0.9229 -- -- -- -- 

15 

-0.75 1.0022 1.0007 1.0933 1.0925 0.9177 0.9170 -- -- -- -- 1.0032 1.0025 0.9176 1.0932 

-0.50 1.0010 1.0003 1.0609 1.0605 0.9440 0.9437 -- -- -- -- 1.0014 1.0011 0.9440 1.0608 

-0.25 1.0002 1.0001 1.0298 1.0297 0.9714 0.9714 -- -- -- -- 1.0004 1.0003 0.9714 1.0298 

0.25 1.0002 1.0001 0.9714 0.9714 1.0298 1.0297 -- -- -- -- 1.0004 1.0003 1.0298 0.9714 

0.50 1.0010 1.0003 0.9440 0.9437 1.0609 1.0605 -- -- -- -- 1.0014 1.0011 1.0608 0.9440 

0.75 1.0022 1.0007 0.9177 0.9170 1.0933 1.0925 -- -- -- -- 1.0032 1.0025 1.0932 0.9176 

20 

-0.75 1.0023 1.0008 1.0968 1.0960 0.9151 0.9144 1.0039 1.0031 0.9153 1.0970 -- -- -- -- 

-0.50 1.0010 1.0003 1.0631 1.0627 0.9422 0.9419 1.0017 1.0014 0.9423 1.0632 -- -- -- -- 
-0.25 1.0003 1.0001 1.0308 1.0307 0.9705 0.9704 1.0004 1.0003 0.9705 1.0309 -- -- -- -- 
0.25 1.0003 1.0001 0.9705 0.9704 1.0308 1.0307 1.0004 1.0003 1.0309 0.9705 -- -- -- -- 
0.50 1.0010 1.0003 0.9422 0.9419 1.0631 1.0627 1.0017 1.0014 1.0632 0.9423 -- -- -- -- 
0.75 1.0023 1.0008 0.9151 0.9144 1.0968 1.0960 1.0039 1.0031 1.097 0.9153 -- -- -- -- 
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Table 2: The efficiencies 𝒆𝒋, 𝒋 = 𝟏, 𝟐, … , 𝟏𝟒 for 𝒎 = 𝟐 and 𝒑 = 𝟏 

 

𝒏 𝜶 𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 𝒆𝟔 𝒆𝟕 𝒆𝟖 𝒆𝟗 𝒆𝟏𝟎 𝒆𝟏𝟏 𝒆𝟏𝟐 𝒆𝟏𝟑 𝒆𝟏𝟒 

5 

-0.75 1.0017 1.0006 1.0614 1.0608 0.9422 0.9417 -- -- -- -- 1.0004 0.9998 0.9425 1.0617 

-0.50 1.0008 1.0003 1.0405 1.0402 0.9611 0.9609 -- -- -- -- 1.0002 0.9999 0.9612 1.0406 

-0.25 1.0002 1.0001 1.0200 1.0200 0.9804 0.9803 -- -- -- -- 1.0000 1.0000 0.9804 1.0201 

0.25 1.0002 1.0001 0.9804 0.9803 1.0200 1.0200 -- -- -- -- 1.0000 1.0000 1.0201 0.9804 

0.50 1.0008 1.0003 0.9611 0.9609 1.0405 1.0402 -- -- -- -- 1.0002 0.9999 1.0406 0.9612 

0.75 1.0017 1.0006 0.9422 0.9417 1.0614 1.0608 -- -- -- -- 1.0004 0.9998 1.0617 0.9425 

10 

-0.75 1.0024 1.0008 1.0528 1.0520 0.9480 0.9472 0.9997 0.9989 0.9495 1.0546 -- -- -- -- 

-0.50 1.0011 1.0004 1.0351 1.0348 0.9652 0.9649 0.9999 0.9995 0.9659 1.0359 -- -- -- -- 
-0.25 1.0003 1.0001 1.0175 1.0174 0.9826 0.9825 1.0000 0.9999 0.9827 1.0177 -- -- -- -- 
0.25 1.0003 1.0001 0.9826 0.9825 1.0175 1.0174 1.0000 0.9999 1.0177 0.9827 -- -- -- -- 
0.50 1.0011 1.0004 0.9652 0.9649 1.0351 1.0348 0.9999 0.9995 1.0359 0.9659 -- -- -- -- 
0.75 1.0024 1.0008 0.9480 0.9472 1.0528 1.0520 0.9997 0.9989 1.0546 0.9495 -- -- -- -- 

15 

-0.75 1.0027 1.0009 1.0420 1.0411 0.9563 0.9555 -- -- -- -- 0.9986 0.9977 0.9584 1.0442 

-0.50 1.0012 1.0004 1.0282 1.0278 0.9711 0.9707 -- -- -- -- 0.9994 0.9990 0.972 1.0292 

-0.25 1.0003 1.0001 1.0142 1.0141 0.9856 0.9855 -- -- -- -- 0.9998 0.9997 0.9858 1.0144 

0.25 1.0003 1.0001 0.9856 0.9855 1.0142 1.0141 -- -- -- -- 0.9998 0.9997 1.0144 0.9858 

0.50 1.0012 1.0004 0.9711 0.9707 1.0282 1.0278 -- -- -- -- 0.9994 0.9990 1.0292 0.9720 

0.75 1.0027 1.0009 0.9563 0.9555 1.0420 1.0411 -- -- -- -- 0.9986 0.9977 1.0442 0.9584 

20 

-0.75 1.0029 1.0010 1.0341 1.0331 0.9627 0.9618 0.9981 0.9972 0.9652 1.0367 -- -- -- -- 

-0.50 1.0013 1.0004 1.0231 1.0227 0.9755 0.9751 0.9992 0.9987 0.9766 1.0243 -- -- -- -- 
-0.25 1.0003 1.0001 1.0117 1.0116 0.9879 0.9878 0.9998 0.9997 0.9882 1.0120 -- -- -- -- 
0.25 1.0003 1.0001 0.9879 0.9878 1.0117 1.0116 0.9998 0.9997 1.0120 0.9882 -- -- -- -- 
0.50 1.0013 1.0004 0.9755 0.9751 1.0231 1.0227 0.9992 0.9987 1.0243 0.9766 -- -- -- -- 
0.75 1.0029 1.0010 0.9627 0.9618 1.0341 1.0331 0.9981 0.9972 1.0367 0.9652 -- -- -- -- 
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Table 3: The efficiencies 𝒆𝒋, 𝒋 = 𝟏, 𝟐, … , 𝟏𝟒 for 𝒎 = 𝟏 and 𝒑 = 𝟏. 𝟓 

 

𝒏 𝜶 𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 𝒆𝟔 𝒆𝟕 𝒆𝟖 𝒆𝟗 𝒆𝟏𝟎 𝒆𝟏𝟏 𝒆𝟏𝟐 𝒆𝟏𝟑 𝒆𝟏𝟒 

5 

-0.75 1.0082 1.0028 1.1622 1.1590 0.8653 0.8629 -- -- -- -- 1.0049 1.0022 0.8647 1.1614 

-0.50 1.0036 1.0012 1.1046 1.1032 0.9075 0.9064 -- -- -- -- 1.0022 1.0010 0.9073 1.1043 

-0.25 1.0009 1.0003 1.0506 1.0503 0.9524 0.9521 -- -- -- -- 1.0005 1.0002 0.9523 1.0506 

0.25 1.0009 1.0003 0.9524 0.9521 1.0506 1.0503 -- -- -- -- 1.0005 1.0002 1.0506 0.9523 

0.50 1.0036 1.0012 0.9075 0.9064 1.1046 1.1032 -- -- -- -- 1.0022 1.0010 1.1043 0.9073 

0.75 1.0082 1.0028 0.8653 0.8629 1.1622 1.1590 -- -- -- -- 1.0049 1.0022 1.1614 0.8647 

10 

-0.75 1.0101 1.0034 1.2066 1.2025 0.8397 0.8369 1.0149 1.0114 0.8411 1.2086 -- -- -- -- 

-0.50 1.0045 1.0015 1.1314 1.1298 0.8889 0.8876 1.0065 1.0050 0.8896 1.1323 -- -- -- -- 
-0.25 1.0011 1.0004 1.0629 1.0625 0.9422 0.9418 1.0016 1.0012 0.9424 1.0631 -- -- -- -- 
0.25 1.0011 1.0004 0.9422 0.9418 1.0629 1.0625 1.0016 1.0012 1.0631 0.9424 -- -- -- -- 
0.50 1.0045 1.0015 0.8889 0.8876 1.1314 1.1298 1.0065 1.0050 1.1323 0.8896 -- -- -- -- 
0.75 1.0101 1.0034 0.8397 0.8369 1.2066 1.2025 1.0149 1.0114 1.2086 0.8411 -- -- -- -- 

15 

-0.75 1.0108 1.0037 1.2241 1.2196 0.8306 0.8276 -- -- -- -- 1.0159 1.0122 0.8299 1.2231 

-0.50 1.0048 1.0016 1.1418 1.1400 0.8821 0.8807 -- -- -- -- 1.0070 1.0053 0.8819 1.1415 

-0.25 1.0012 1.0004 1.0675 1.0671 0.9384 0.9380 -- -- -- -- 1.0017 1.0013 0.9384 1.0675 

0.25 1.0012 1.0004 0.9384 0.9380 1.0675 1.0671 -- -- -- -- 1.0017 1.0013 1.0675 0.9384 

0.50 1.0048 1.0016 0.8821 0.8807 1.1418 1.1400 -- -- -- -- 1.0070 1.0053 1.1415 0.8819 

0.75 1.0108 1.0037 0.8306 0.8276 1.2241 1.2196 -- -- -- -- 1.0159 1.0122 1.2231 0.8299 

20 

-0.75 1.0112 1.0038 1.2334 1.2288 0.8259 0.8228 1.0195 1.0156 0.8266 1.2344 -- -- -- -- 

-0.50 1.0049 1.0017 1.1474 1.1455 0.8786 0.8772 1.0085 1.0069 0.879 1.1478 -- -- -- -- 
-0.25 1.0012 1.0004 1.0700 1.0695 0.9365 0.9361 1.0021 1.0017 0.9366 1.0701 -- -- -- -- 
0.25 1.0012 1.0004 0.9365 0.9361 1.0700 1.0695 1.0021 1.0017 1.0701 0.9366 -- -- -- -- 
0.50 1.0049 1.0017 0.8786 0.8772 1.1474 1.1455 1.0085 1.0069 1.1478 0.8790 -- -- -- -- 
0.75 1.0112 1.0038 0.8259 0.8228 1.2334 1.2288 1.0195 1.0156 1.2344 0.8266 -- -- -- -- 
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Different trends can be seen in these efficiencies with respect to 𝑛, 𝛼,𝑚 and 𝑝. Some 

observations for the numerical work in Table 1, Table 2 and Table 3 are as follows.  

 

i) 𝜃2,𝑅𝑆𝑆 is more efficient than 𝜃2,𝑆𝑅𝑆 and the efficiency 𝑒1 increases with increase in 𝑛 

and |𝛼|.  Observe that for larger values of 𝑚  and 𝑝,  𝜃2,𝐵𝐿𝑈𝐸  and 𝜃2,𝑅𝑆𝑆  are almost 

equally efficient.  

ii) 𝜃2,𝐿𝑅𝑆𝑆(𝜃2,𝐵𝐿𝑈𝐸)  is more efficient than  𝜃2,𝐵𝐿𝑈𝐸(𝜃2,𝐿𝑅𝑆𝑆)  for  𝛼 < 0 (𝛼 > 0)  and 

efficiency 𝑒4 increases with increase in 𝑛 for fixed 𝛼 < 0. Same behavior is observed 

for the efficiency 𝑒3 of  𝜃2,𝐿𝑅𝑆𝑆 over 𝜃2,𝑅𝑆𝑆. 

iii) 𝜃2,𝑈𝑅𝑆𝑆(𝜃2,𝐵𝐿𝑈𝐸)  is more efficient than 𝜃2,𝐵𝐿𝑈𝐸(𝜃2,𝑈𝑅𝑆𝑆)  for 𝛼 > 0 (𝛼 < 0)  and 

efficiency 𝑒6 increases with increase in 𝑛 for fixed 𝛼 > 0. Same behavior is observed 

for the efficiency 𝑒5 of  𝜃2,𝑈𝑅𝑆𝑆 over 𝜃2,𝑅𝑆𝑆. 

iv) For 𝑚 = 1  and different 𝑝,  we observe that 𝜃2,𝐸𝑅𝑆𝑆1  and 𝜃2,𝐸𝑅𝑆𝑆3  are efficient than 

𝜃2,𝐵𝐿𝑈𝐸 . For different combinations of (𝑚, 𝑝) we observe that 𝜃2,𝑈𝑅𝑆𝑆(𝜃2,𝐿𝑅𝑆𝑆) is more 

efficient than 𝜃2,𝐸𝑅𝑆𝑆1 , 𝜃2,𝐸𝑅𝑆𝑆3 for 𝛼 > 0(𝛼 < 0) and 𝜃2,𝐸𝑅𝑆𝑆1 , 𝜃2,𝐸𝑅𝑆𝑆3  are more 

efficient than 𝜃2,𝑈𝑅𝑆𝑆(𝜃2,𝐿𝑅𝑆𝑆) for 𝛼 < 0(𝛼 > 0). 

v) Overall it is observed that for 𝛼 < 0, 𝜃2,𝐿𝑅𝑆𝑆 and for 𝛼 > 0, 𝜃2,𝑈𝑅𝑆𝑆  is most efficient 

than all other obtained estimators. 

 

 Now we present behavior of efficiencies of estimators under various schemes with 

respect to various parameters. Figure 1 presents the trends in efficiencies 𝜃2,𝐿𝑅𝑆𝑆, 𝜃2,𝑈𝑅𝑆𝑆 and 

𝜃2,𝐸𝑅𝑆𝑆3  over 𝜃2,𝑅𝑆𝑆  across the various values of association parameter 𝛼 when 𝑚 = 1, 𝑝 =

1.5 and 𝑛 = 15. Figure 2 presents these trends across 𝛼 for 𝑚 = 1, 𝑝 = 1.5 and 𝑛 = 10. 

 
Figure 1: Efficiencies 𝑬𝑩𝑳𝑼𝑬, 𝑬𝑳𝑹𝑺𝑺, 𝑬𝑼𝑹𝑺𝑺 and 𝑬𝑬𝑹𝑺𝑺𝟑 across 𝜶 when 𝒎 = 𝟏, 𝒑 = 𝟏. 𝟓 and 𝒏 = 𝟏𝟓 
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Figure 2: Efficiencies 𝑬𝑩𝑳𝑼𝑬, 𝑬𝑳𝑹𝑺𝑺, 𝑬𝑼𝑹𝑺𝑺 and 𝑬𝑬𝑹𝑺𝑺𝟏 across 𝜶 when 𝒎 = 𝟏, 𝒑 = 𝟏. 𝟓 and 𝒏 = 𝟏𝟎 

 

 
 

 

From Figure 1 and Figure 2, we observe that for 𝛼 < 0,  the performance of 𝜃2,𝐿𝑅𝑆𝑆  is 

the best and 𝐸𝐿𝑅𝑆𝑆 decreases as 𝛼 increases. While 𝜃2,𝑈𝑅𝑆𝑆 is most efficient among all other 

estimators when 𝛼 > 0. Specifically the behaviour of 𝐸𝑈𝑅𝑆𝑆  is exactly opposite to that of 

𝐸𝐿𝑅𝑆𝑆 with respect to 𝛼3. We observe that efficiencies 𝐸𝐵𝐿𝑈𝐸  and 𝐸𝐸𝑅𝑆𝑆𝑖 , 𝑖 = 1, 3 vary in a 

very small interval.  

The variation in efficiencies of 𝜃2,𝐿𝑅𝑆𝑆  over 𝜃2,𝑅𝑆𝑆 with respect to 𝑛 and 𝛼 when 𝑚 =
1, 𝑝 = 1 is presented in Figure 3.  

. 

Figure 3: Efficiency 𝑬𝑳𝑹𝑺𝑺 of �̂�𝟐,𝑳𝑹𝑺𝑺 over �̂�𝟐,𝑹𝑺𝑺 with respect to 𝒏 and 𝜶 when 𝒎 = 𝟏 and 𝒑 = 𝟏 

 

 
 

From Figure 3 we observe that for 𝛼 < 0, efficiency 𝐸𝐿𝑅𝑆𝑆 increases as 𝑛 increases 

and efficiency stabilize for larger 𝑛. We also observe that 𝐸𝐿𝑅𝑆𝑆 decreases non-linearly as 𝛼 

increases from −0.8 to 0.8. Now we study the behavior of 𝐸𝑈𝑅𝑆𝑆 across 𝑛 and 𝛼 when 𝑚 = 2 

and 𝑝 = 3. The results are presented in Figure 4. 
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Figure 4: Efficiency 𝑬𝑼𝑹𝑺𝑺 of �̂�𝟐,𝑳𝑹𝑺𝑺 over �̂�𝟐,𝑹𝑺𝑺 with respect to 𝒏 and 𝜶 when 𝒎 = 𝟐 and 𝒑 = 𝟑 

 

 
 

From Figure 4 we observe that for 𝛼 > 0  efficiency 𝐸𝑈𝑅𝑆𝑆 increases up to 𝑛 = 5 then 

it decreases and gets stabilize for larger 𝑛. We observe that 𝐸𝑈𝑅𝑆𝑆  increases linearly as 𝛼 

increases from −0.8 to 0.8.  

Figure 5 presents the surface plot of efficiency 𝐸𝐿𝑅𝑆𝑆(𝐸𝑈𝑅𝑆𝑆) with respect to 𝑚 and 𝑝 

for 𝛼 = −0.5 (0.25), 𝑛 = 10.  

 
Figure 5: Efficiency of  �̂�𝟐,𝑳𝑹𝑺𝑺(𝑬𝑳𝑹𝑺𝑺) and �̂�𝟐,𝑼𝑹𝑺𝑺(𝑬𝑼𝑹𝑺𝑺) over �̂�𝟐,𝑹𝑺𝑺 for 𝜶 = −𝟎. 𝟓 (𝜶 = 𝟎. 𝟐𝟓)  

 

 
 

 

 Observe that 𝜃2,𝐿𝑅𝑆𝑆(𝜃2,𝑈𝑅𝑆𝑆)  is more efficient than 𝜃2,𝑅𝑆𝑆  when 𝛼 < 0(𝛼 > 0). 
Efficiencies decreases up to 1 as 𝑚  and 𝑝  both increases or for fixed 𝑚(𝑝)  with 𝑝(𝑚) 
increases and gets stabilize to one for larger 𝑚  and 𝑝. For larger values of 𝑚  and 𝑝, it is 

observed that 𝜃2,𝐿𝑅𝑆𝑆(𝜃2,𝑈𝑅𝑆𝑆) and 𝜃2,𝑅𝑆𝑆 are equally efficient when 𝛼 < 0(𝛼 > 0).  
 

 Now, we summarize the overall conclusions about the efficiencies of estimators of 𝜃2 

based on various RSS schemes obtained in section 3. 
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Remark about efficiency  

𝜃2,𝑅𝑆𝑆 𝜃2,𝑆𝑅𝑆 𝑒1 =
𝑛

12∑ 𝛿𝑟
𝑛
𝑟=1

  𝜃2,𝑅𝑆𝑆 is efficient than 𝜃2,𝑆𝑅𝑆 

𝜃2,𝐵𝐿𝑈𝐸 𝜃2,𝑅𝑆𝑆 𝑒2 =
4

𝑛2
(∑ 𝛿𝑟

𝑛
𝑟=1 ) (∑

𝜉𝑟
2

𝛿𝑟

𝑛
𝑟=1  )  𝜃2,𝐵𝐿𝑈𝐸 is efficient than 𝜃2,𝑅𝑆𝑆 

𝜃2,𝐿𝑅𝑆𝑆 

𝜃2,𝑅𝑆𝑆 𝑒3 =
4𝜉1

2(∑ 𝛿𝑟
𝑛
𝑟=1 )

𝑛𝛿1
  𝜃2,𝐿𝑅𝑆𝑆  is efficient than 𝜃2,𝑅𝑆𝑆  and  

𝜃2,𝐵𝐿𝑈𝐸  for   𝛼 < 0  and 𝜃2,𝑅𝑆𝑆 

and  𝜃2,𝐵𝐿𝑈𝐸  are efficient 

than 𝜃2,𝐿𝑅𝑆𝑆 for 𝛼 > 0. 
𝜃2,𝐵𝐿𝑈𝐸 𝑒4 =

𝑛𝜉1
2/𝛿1

∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1

  

𝜃2,𝑈𝑅𝑆𝑆 

𝜃2,𝑅𝑆𝑆 𝑒5 =
4𝜉𝑛

2(∑ 𝛿𝑟
𝑛
𝑟=1 )

𝑛𝛿𝑛
  

𝜃2,𝑈𝑅𝑆𝑆  is efficient than 𝜃2,𝑅𝑆𝑆  and  

𝜃2,𝐵𝐿𝑈𝐸  for   𝛼 > 0  and 𝜃2,𝑅𝑆𝑆 

and  𝜃2,𝐵𝐿𝑈𝐸  are efficient 

than 𝜃2,𝑈𝑅𝑆𝑆 for 𝛼 < 0. 
𝜃2,𝐵𝐿𝑈𝐸 𝑒6 =

𝑛𝜉𝑛
2/𝛿𝑛

∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1

  

𝜃2,𝐸𝑅𝑆𝑆1 

𝜃2,𝑅𝑆𝑆 𝑒7 =
∑ 𝛿𝑟
𝑛
𝑟=1

𝑛𝛿1
   

For 𝑚 = 1  and different 𝑝, and    

𝜃2,𝐸𝑅𝑆𝑆1 , 𝜃2,𝐸𝑅𝑆𝑆3 are more efficient 

than 𝜃2,𝐵𝐿𝑈𝐸 , 𝜃2,𝑅𝑆𝑆.  For  𝛼 < 0 ,   

𝜃2,𝐿𝑅𝑆𝑆  is more efficient than 

𝜃2,𝐸𝑅𝑆𝑆1 ,  𝜃2,𝐸𝑅𝑆𝑆3 , 𝜃2,𝑈𝑅𝑆𝑆  and   for 

𝛼  > 0, 𝜃2,𝑈𝑅𝑆𝑆  is more efficient 

than  𝜃2,𝐸𝑅𝑆𝑆1 , 𝜃2,𝐸𝑅𝑆𝑆3 , 𝜃2,𝐿𝑅𝑆𝑆. 

𝜃2,𝐵𝐿𝑈𝐸 𝑒8 =
𝑛

4𝛿1 ∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1

  

𝜃2,𝐿𝑅𝑆𝑆 𝑒9 =
1

4𝜉1
2  

𝜃2,𝑈𝑅𝑆𝑆 𝑒10 =
1

4𝜉𝑛
2  

𝜃2,𝐸𝑅𝑆𝑆3 

𝜃2,𝑅𝑆𝑆 𝑒11 =
12∑ 𝛿𝑟

𝑛
𝑟=1

12(𝑛−1)𝛿1+1
  

𝜃2,𝐵𝐿𝑈𝐸 𝑒12 =
3𝑛2

(12(𝑛−1)𝛿1+1)(∑ 𝜉𝑟
2/𝛿𝑟

𝑛
𝑟=1 ) 

  

𝜃2,𝐿𝑅𝑆𝑆 𝑒13 =
3𝑛𝛿1

𝜉1
2(12(𝑛−1)𝛿1+1) 

  

𝜃2,𝑈𝑅𝑆𝑆 𝑒13 =
3𝑛𝛿𝑛

𝜉𝑛
2(12(𝑛−1)𝛿𝑛+1) 

  

𝜃2,𝑀𝐸𝑅𝑆𝑆 

𝜃2,𝑆𝑅𝑆 
𝑛

24∑ 𝛿1
∗𝑛/2

𝑟=1

  𝜃2,𝑀𝐸𝑅𝑆𝑆  is efficient than 𝜃2,𝑆𝑅𝑆 . 

The performance of 𝜃2,𝑀𝐸𝑅𝑆𝑆  with 

𝜃2,𝑅𝑆𝑆 depends on parameter values 

and 𝑛. 
𝜃2,𝑅𝑆𝑆 

∑ 𝛿𝑟
𝑛
𝑟=1

2∑ 𝛿1
∗𝑛/2 

𝑟=1

  

 

6. Conclusions 
 

   

In this paper, we consider a Morgenstern type bivariate generalized uniform 

distribution and obtain an unbiased estimator of scale parameter associated with a study 

variable based on different RSS schemes; usual RSS, LRSS, URSS, ERSS and MERSS. 

Further, BLUE of the scale parameter in case of censored RSS is also obtained. The 

efficiency performance of proposed estimators is also studied numerically and presented 

graphically. It is observed that, for 𝛼 < 0 (𝛼 > 0 ) an estimator based on LRSS (URSS) is 

more efficient than that of estimator based on RSS, URSS (LRSS) and ERSS. 
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