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ABSTRACT 

In this work, we introduce a new distribution for modeling the extreme 

values. Some important mathematical properties of the new model are derived. 

We assess the performance of the maximum likelihood method in terms of 

biases and mean squared errors by means of a simulation study. The new 

model is better than some other important competitive models in modeling the 

repair times data and the breaking stress data. 
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1. Introduction 

The extreme value theory (EVT) is very popular in the statistical literature, it is devoted 

to study of stochastic series of independent and identically distributed random variables (iid 

RVs). In EVT, we study the behavior of EVs even though these values have a very low 

chance to be occur, but can turn out to have a very high impact to the observed 

system.  Fields such as finance and insurance are the best fields of research to observe the 

importance of the EVT. The study of EVT started in the last century as an equivalent theory 

to the central limit theory (CLT), which is dedicated to the study of the asymptotic 

distribution of the average of a sequence of RVs. The CLT states that the sum and the mean 

of the RVs from an arbitrary distribution are normally distributed under the condition that 

the sample size (𝑛) is sufficiently large. However, in some other studies we are looking for 

the limiting distribution of maximum (max) or minimum (min) values rather than the 

average. Assume that 𝑍1, 𝑍2, . . ., 𝑍𝑛 is a sequence of iid RVs distributed with CDF denote 

𝐹(𝑧) . One of the most interesting statistics in a research is the sample maximum 

𝑆𝑛 = max{𝑍1, 𝑍2, . . . , 𝑍𝑛}, 

this theory of extreme values studied the behavior of 𝑆𝑛 as the sample size 𝑛 increases to ∞ 

where 

𝑝𝑟{𝑆𝑛 ≤ 𝑧} = 𝑝𝑟{𝑍1 ≤ 𝑧, 𝑍2 ≤ 𝑧,… , 𝑍𝑛 ≤ 𝑧, } 

                                                                        = 𝑝𝑟{𝑍1 ≤ 𝑧}𝑝𝑟{𝑍2 ≤ 𝑧}…𝑝𝑟{𝑍𝑛 ≤ 𝑧} 

                                                                        = 𝐹(𝑧)𝑛  
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Suppose there are sequences of constants {𝐶𝑛 > 0} and {𝐷𝑛} such that 

𝑝𝑟 {
(𝑆𝑛 − 𝐷𝑛)

𝐶𝑛
≤ 𝑥} → 𝐺(𝑧) as 𝑛 → ∞. 

Then if 𝐺(𝑧) is a non-degenerate distribution function then it will belong to one of the 

three following fundamental types of classic extreme value family, the Gumbel distribution 

(Type I); the Fréchet distribution (Type II); the Weibull distribution (Type III). A RV 𝑍 is 

said to have the Fréchet (Fr) distribution if its probability density function (PDF), 

cumulative distribution function (CDF) are given by 

                                𝑔(𝑧; 𝑎, 𝑏) = 𝑏𝑎𝑏𝑧−(𝑏+1)𝑒𝑥𝑝[−(𝑎 𝑧⁄ )𝑏]                                       (1) 

and 

                                                𝐺(𝑧; 𝑎, 𝑏) = 𝑒𝑥𝑝[−(𝑎 𝑧⁄ )𝑏]                                            (2) 

The more flexible version of the Fr model is the exponentiated Fréchet (EFr) distribution, 

with PDF and CDF are given by (for 𝑥 ≥ 0) 

                         𝜋𝜃(𝑥; 𝑎, 𝑏) = 𝜃𝑏𝑎𝑏𝑥−(𝑏+1)𝑒𝑥𝑝[−𝜃(𝑎 𝑥⁄ )𝑏]                                   (3) 

and 

    𝛱𝜃(𝑥; 𝑎, 𝑏) = exp[−𝜃(𝑎 𝑥⁄ )𝑏]                                         (4) 

respectively, where 𝑎 > 0 is a scale parameter and 𝜃, 𝑏 > 0 is a shape parameters, respectively. 

The rest of this article is outlined as follows: In Section two, we introduce the genesis of 

the new model, Section 3 introduces a motivation and justification. A useful representation 

is given in Section 4. Some Mathematical properties are derived in Section 5. Section 6 

shows the estimation method. Section 7 display the simulations results. Four applications are 

provided in Section 8. Finally, Section 9 deals with some concluding remarks. 

2. The genesis of the new model 

In this paper we will use the Transmuted Topp Leone G (TTL-G) family introduced by 

Yousof et al. (2017) to generate a new flexible distribution for modeling extreme values data. 

The TTL-G extends the transmuted class (Shaw and Buckley (2007)) and the TL-G (Rezaei 

et al. (2017)), these two families are well-known in statistical literature, Yousof et al. (2017) 

compiled the two families to obtain a more flexible one. We used the TTL-G to establish a 

new extension of the Fr model. To this end, we can write the PDF of the TTLEFr model (for 

𝑥 ≥ 0) as 

𝐹(𝑥) = (1 + 𝜆)(1 − {1 − 𝑒𝑥𝑝[−𝜃(𝑎 𝑥⁄ )𝑏]}2)𝛼 

−𝜆(1 − {1 − 𝑒𝑥𝑝[−𝜃(𝑎 𝑥⁄ )𝑏]}2)2𝛼, 𝑥 ≥ 0，                         (5) 

the PDF corresponding to (5) is 
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𝑓(𝑥) = 2𝛼𝜃𝑏𝑎𝑏𝑥−(𝑏+1)𝑒𝑥𝑝[−𝜃(𝑎 𝑥⁄ )𝑏]{1 − 𝑒𝑥𝑝[−𝜃(𝑎 𝑥⁄ )𝑏]} 

× [1 + 𝜆 − 2𝜆(1 − {1 − 𝑒𝑥𝑝[−𝜃(𝑎 𝑥⁄ )𝑏]}2)𝛼] 

                                           × (1 − {1 − 𝑒𝑥𝑝[−𝜃(𝑎 𝑥⁄ )𝑏]}2)𝛼−1, 𝑥 > 0                                            (6) 

where , 𝛼 > 0 and |𝜆| ≤ 1. The HRF for the new model can be expressed as 

                                     𝜏(𝑥) = 2𝛼𝜃𝑏𝑎𝑏𝑥−(𝑏+1)  

× exp[−𝜃(𝑎 𝑥⁄ )𝑏]{1 − exp[−𝜃(𝑎 𝑥⁄ )𝑏]}  

                                                     ×
1 + 𝜆 − 2𝜆(1 − {1 − exp[−𝜃(𝑎 𝑥⁄ )𝑏]}2)𝛼

(1 − {1 − exp[−𝜃(𝑎 𝑥⁄ )𝑏]}2)1−𝛼
 

 × [
1 − (1 + 𝜆)(1 − {1 − exp[−𝜃(𝑎 𝑥⁄ )𝑏]}2)𝛼

+𝜆(1 − {1 − exp[−𝜃(𝑎 𝑥⁄ )𝑏]}2)2𝛼 ]

−1

                         (7) 

For simulation of this new model, if 𝑈 ∼ 𝑢(0,1) then for 𝜆 ≠ 0 we have 

𝑥𝑈 = 𝑎

[
 
 
 

−
1

𝜃
ln

(

 1 − {1 − [
1 + 𝜆 − √(1 + 𝜆)2 − 4𝜆𝑈

2𝜆
]

1
𝛼

}

0.5

)

 

]
 
 
 
−

1
5

 

has CDF (5). We used this Equation for simulating the TTLFr model (see Section 7). Some 

important extensions of the Fr model can be cited as: the exponentiated Fr by Nadarajah and 

Kotz (2003), beta Fr by Barreto-Souza et al. (2011), transmuted Fr by Mahmoud and 

Mandouh (2013), Marshall-Olkin Fr by Krishna et.al. (2013), transmuted exponentiated 

generalized Fr (2015) by Yousof et el. (2015), beta exponential Fr by Mead et al. (2016), 

Kumaraswamy Marshall-Olkin Fr by Afify et al. (2016a), Weibull Fr Afify et al. 

(2016b), Kumaraswamy transmuted Marshall-Olkin Fr by Yousof et al. (2016), Odd Lindley 

Fr by Korkmaz et al. (2017), odd log-logistic Fr by Yousof et al. (2018a), Transmuted Topp 

Leone Fr by Yousof et al. (2018b), among others. Many other extensions can be found in 

Brito et al. (2017), Hamedani et al. (2017), Cordeiro et al. (2018), Chakraborty et al. (2018), 

Hamedani et al. (2018), Korkmaz et al. (2018), Korkmaz et al. (2019) and Hamedani et al. 

(2019). 

 

3. Motivation and justification 

Suppose "𝑇1and 𝑇2" are two independent RVs with CDF (3). Define 

𝑋 = {
𝑇1:2 with probability 0.5(1 + 𝜆);

𝑇2:2 with probability 0.5(1 − 𝜆),
 

where 
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𝑇1:2 = 𝑚𝑖𝑛{𝑇1, 𝑇2} and 𝑇2:2 = 𝑚𝑎𝑥{𝑇1, 𝑇2}. 

Then, the CDF of 𝑋 is given by (5). 

Figure 1: Plots of the TTLEFr PDF.
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Figure 2: Plots of the TTLEFr HRF.

 

The justification for the practicality of the TTLEFr model is based on the wider use of the Fr 

model in modeling extreme values as well as we are motivated to introduce the TTLEFr 

model because it exhibits the unimodal, decreasing, increasing and constant hazard rate as 

illustrated in Figure 2. Also, the PDF of the new model are flexible and have many important 

shapes. The new model is better than the Fr, Kumaraswamy Fr, exponentiated Fr, beta Fr, 

transmuted Fr, and Marshal-Olkin Fr in modeling four data sets. 

4. Useful representations 

Equation (5) can be expanded as 

𝐹(𝑥) = (1 + 𝜆)∑(−1)𝑗

∞

𝑗=0

(
𝛼
𝑗) {1 − exp[−𝜃(𝑎 𝑥⁄ )𝑏]}2𝑗 

−𝜆 ∑ (−1)𝑗∞

𝑗=0
(
𝛼
𝑗) {1 − exp[−𝜃(𝑎 𝑥⁄ )𝑏]}2𝑗                                   

(8)  
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or 

𝐹(𝑥) = (1 + 𝜆)∑  

∞

𝑗=0

∑(−1)𝑗+𝑘

2𝑗

𝑘=0

(
𝛼
𝑗 ) (

2𝑗
𝑘

) {exp[−𝜃(𝑎 𝑥⁄ )𝑏]}𝑘  

−𝜆 ∑  

∞

𝑗=0

∑(−1)𝑗+𝑘

2𝑗

𝑘=0

(
2𝛼
𝑗

) (
2𝑗
𝑘

) {𝑒𝑥𝑝[−𝜃(𝑎 𝑥⁄ )𝑏]}𝑘 

and finally 

                  𝐹(𝑥) = ∑ 𝑤𝑗,𝑘

2𝑗

𝑘=0
exp[−𝜃𝑘(𝑎 𝑥⁄ )𝑏] = ∑ 𝜁𝑘

2𝑗
𝑘=0 𝛱𝜃𝑘(𝑥; 𝑎, 𝑏)                   (9) 

where 

𝜁𝑘  = ∑(−1)𝑗+𝑘

∞

𝑗=0

[(1 + 𝜆) (
𝛼
𝑗 ) − 𝜆 (

2𝛼
𝑗

)] (
2𝑗
𝑘

)   

and 𝛱𝜃𝑘(𝑥; 𝑎, 𝑏) is the CDF of the Fr distribution with scale parameter 𝑎(𝜃𝑘)
1

𝑏 and shape 

parameter 𝑏. The corresponding TTLEFr density function is obtained by differentiating (9) 

                                         𝑓(𝑥) = ∑ 𝜁𝑘
2𝑗
𝑘=0 𝜋𝜃(𝑘+1)(𝑥; 𝑎, 𝑏)                                               (10) 

where 𝜋𝜃(𝑘+1)(𝑥; 𝑎, 𝑏) is the PDF of the Fr model with scale parameter 𝑎[𝜃(𝑘 + 1)]
1

𝑏 and 

shape parameter 𝑏. So, the new density (6) can be expressed as a double linear mixture of 

the Fr density. Then, several of its structural properties can be obtained from Equation (10) 

and those properties of the Fr model. 

5. Mathematical properties 

5.1 Moments and incomplete moments 

The r𝑡ℎ ordinary moment of 𝑋 is given by 

𝜇𝑟
′ = 𝐸(𝑋𝑟) =  ∫  

∞

−∞

𝑥𝑟  𝑓(𝑥)𝑑𝑥, 

then we obtain 

                   𝜇𝑟
′ = ∑ 𝜁𝑘

2𝑗
𝑘=0 𝑎𝑟[𝜃(𝑘 + 1)]𝑟 𝑏⁄ 𝛤(1 − 𝑟 𝑏⁄ ), ∀𝑏 > 𝑟                                              (11) 
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Where 

𝛤(1 + 𝜔)|(𝜔∈ℝ+) = 𝜔! = 𝜔 × (𝜔 − 1) × (𝜔 − 2) × …× 1 = ∏(𝜔 − ℎ)

𝜔−1

ℎ=0

 

Setting 𝑟 = 1,2,3 and 4 in (11), we have 

𝐸(𝑋) = 𝜇1
′ = ∑ 𝜁𝑘

2 𝑗

𝑘=0

𝑎 [𝜃(𝑘 + 1)]1/𝑏𝛤(1 − 1/𝑏), ∀ 𝑏 > 1,

𝐸(𝑋2) = 𝜇2
′ = ∑ 𝜁𝑘

2 𝑗

𝑘=0

𝑎2 [𝜃(𝑘 + 1)]2/𝑏𝛤(1 − 2/𝑏), ∀ 𝑏 > 2,

𝐸(𝑋3) = 𝜇3
′ = ∑ 𝜁𝑘

2 𝑗

𝑘=0

𝑎3 [𝜃(𝑘 + 1)]3/𝑏𝛤(1 − 3/𝑏), ∀ 𝑏 > 3,

 

and 

𝐸(𝑋4) = 𝜇4
′ = ∑ 𝜁𝑘

2 𝑗

𝑘=0

𝑎4 [𝜃(𝑘 + 1)]4/𝑏𝛤(1 − 4/𝑏), ∀ 𝑏 > 4. 

The r𝑡ℎ incomplete moment, say 𝜑𝑟(𝑡), of 𝑋 can be expressed, from (9), as 

𝜑𝑟(𝑡) = ∫ 𝑥𝑟
𝑡

−∞

𝑓(𝑥)𝑑𝑥 = ∑ 𝜁𝑘

2𝑗

𝑘=0

∫ 𝑥𝑟
𝑡

−∞

𝜋𝜃(𝑘+1)(𝑥; 𝑎, 𝑏)𝑑𝑥  

                                    = ∑ 𝜁𝑘
2𝑗
𝑘=0 𝑎𝑟[𝜃(𝑘 + 1)]

𝑟

𝛿𝛾(1 − 𝑟 𝑏⁄ , [𝜃(𝑘 + 1)](𝑎 𝑡⁄ )𝑏), ∀𝑏 > 𝑟    (12) 

where 𝛾(𝜔, 𝑞) is the incomplete gamma function where 

𝛾(𝜔, 𝑞)|(𝜔≠0,−1,−2,...) = ∫ 𝑡𝜔−1
𝑞

0

exp(−𝑡)𝑑𝑡

=
𝑞𝜔

𝜔
{1𝐅1[𝜔;𝜔 + 1;−𝑞]}

= ∑
(−1)𝑘

𝑘! (𝜔 + 𝑘)

∞

𝑘=0

𝑞𝜔+𝑘,

 

and 1𝐅1[⋅,⋅,⋅] is a confluent hypergeometric function. The first incomplete moment given by 

(12) with 𝑟 = 1 as 
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𝜑1(𝑡) = ∑  

2 𝑗

𝑘=0

𝑤𝑘𝑎 [𝜃(𝑘 + 1)]
1
𝑏𝛤 (1 −

1

𝑏
, [𝜃(𝑘 + 1)] (

𝑎

𝑡
)
𝑏

) , ∀ 𝑏 > 1. 

5.2 Moment generating function 

Here, we will introduce two methods for getting the moment generating function (MGF) 

of the new model. The 1 𝑠𝑡  one: The MGF 𝑀𝑋(𝑡) = 𝐸(𝑒𝑡 𝑋)  of 𝑋  can be derived from 

equation (9) as 

𝑀𝑋(𝑡) = ∑ 𝜁𝑘

2 𝑗

𝑘=0

 𝑀𝜃(𝑘+1)(𝑡), 

where 𝑀𝜃(𝑘+1)(𝑡) is the MGF of the Fr model with scale parameter𝑎[𝜃(𝑘 + 1)]
1

𝑏 and shape 

parameter 𝑏, then 

𝑀𝑋(𝑡) = ∑ ∑(𝑡𝑟𝜁𝑘/𝑟!)

∞

𝑟=0

2 𝑗

𝑘=0

 𝑎𝑟  [𝜃(𝑘 + 1)]𝑟/𝑏𝛤(1 − 𝑟/𝑏), ∀ 𝑏 > 𝑟. 

 The 2𝑛𝑑 method: First, we determine the generating function of (1). Setting 𝑦 = 𝑥−1, we 

can write this MGF as 

𝑀(𝑡; 𝑎, 𝑏) = 𝑏𝑎𝑏 ∫  
∞

0

exp(𝑡/𝑦) 𝑦(𝑏−1) exp{−(𝑎𝑦)𝑏}. 

By expanding the first exponential and calculating the integral, we have 

𝑀(𝑡; 𝑎, 𝑏) = 𝑏𝑎𝑏 ∫  
∞

0

∑(𝑡𝑚 𝑚⁄ !)

∞

𝑚=0

exp(𝑡 𝑦⁄ ) 𝑦𝑏−𝑚−1 exp{−(𝑎𝑦)𝑏} 

= ∑(𝑎𝑚  𝑡𝑚 𝑚⁄ !)

∞

𝑚=0

 𝛤(1 − 𝑚 𝑏⁄ ), 

where the gamma function is well-defined for any non-integer 𝑏 . Consider the Wright 

generalized hypergeometric function defined by 

𝑝𝛹𝑞 [
𝑎1, 𝐴1, … , 𝑎𝑝, 𝐴𝑝

𝑏1, 𝐵1, … , 𝑏𝑞 , 𝐵𝑞
;  𝑥] = ∑

∏ 𝛤𝑝
𝑗=1 (𝑎𝑗 + 𝐴𝑗  𝑛)

∏ 𝛤𝑞
𝑗=1 (𝑏𝑗 + 𝐵𝑗  𝑛)

∞

𝑛=0

𝑥𝑛

𝑛!
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Then, we can write 𝑀(𝑡; 𝑎, 𝛽) as 

                           𝑀(𝑡; 𝑎, 𝑏) =1 𝛹0[(1, −1 𝑏⁄ ) ; 𝑎𝑡]                                                  (13) 

Combining expressions (10) and (13), we obtain the MGF of 𝑋, say 𝑀(𝑡), as 

𝑀(𝑡) = ∑ 𝜁𝑘

2 𝑗

𝑘=0

{1𝛹0 [(1, −
1

𝑏
)

−
; 𝑎 [𝜃(𝑘 + 1)]

1
𝑏  𝑡]}. 

5.3 Moments of order statistics 

Let 𝑋1, … , 𝑋𝑛 be a random sample from the TTLEFr distribution and let 𝑋1:𝑛, … , 𝑋𝑛:𝑛 be 

their corresponding order statistics. The PDFof i𝑡ℎ order statistic, 𝑋𝑖:𝑛, can be written as 

         𝑓𝑖:𝑛(𝑥) = ∑ B−1𝑛−𝑖

𝑗=0
(𝑖, 𝑛 − 𝑖 + 1)𝑓(𝑥)(−1)𝑗 (

𝑛 − 𝑖
𝑗

) 𝐹𝑖+𝑖−1(𝑥)                          (14) 

where 𝐵(⋅,⋅) is the beta function. Substituting (5) and (6) in equation (13) and using a power 

series expansion, we have 

𝑓(𝑥) 𝐹(𝑥)𝑟 = ∑ 𝑐𝑘

2𝑚+1

𝑘=0

 𝜋𝜃(𝑘+1)(𝑥; 𝑎, 𝑏), 

where 

𝑐𝑘 = ∑ ∑2

𝑛=0

∞
𝑗+1−1

𝑘=0

𝛼𝜆ℎ(𝑘 + 1)−1(−1)ℎ+𝑚+𝑘(1 + 𝜆)𝑗+𝑖−ℎ−1 (
𝑗 + 𝑖 − 1

ℎ
) (

2𝑚 + 1
𝑘

)   

× {(1 + 𝜆) (
𝛼(𝑗 + 𝑖 + ℎ) − 1

𝑚
) − 2𝜆 (

𝛼(𝑗 + 𝑖 + ℎ + 1) − 1
𝑚

)} 

The PDF of 𝑋𝑖:𝑛 can be expressed as 

𝑓𝑖:𝑛(𝑥) = ∑ 

𝑛−𝑖

𝑗=0

∑ B−1

2𝑚+1

𝑘=0

(𝑖, 𝑛 − 𝑖 + 1)(−1)𝑗  (
𝑛 − 𝑖

𝑗
) 𝑐𝑘 𝜋𝜃(𝑘+1)(𝑥; 𝑎, 𝑏). 

Based on the last equation, we note that the properties of 𝑋𝑖:𝑛 follow from those of Fr 

density. So, the moments of 𝑋𝑖:𝑛 can be expressed as 
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𝐸(𝑋𝑖:𝑛
𝜏 ) = ∑∑

(−1)𝑗 (
𝑛 − 𝑖

𝑗
)

B(𝑖, 𝑛 − 𝑖 + 1)

2𝑚+1

𝑘=0

𝑛−𝑖

𝑗=0

𝑐𝑘𝑎
𝜏[𝜃(𝑘 + 1)]𝜏 𝑏⁄ 𝛤(1 − 𝜏 𝑏⁄ ), ∀𝑏 > 𝜏 

5.4 Probability weighted moments (PWMs) 

The (s,r)𝑡ℎ PWMs of 𝑋 following the TTLEFr distribution, say 𝑝𝑠,𝑟 , is formally defined 

by 

𝑝𝑠,𝑟 = 𝐸{𝑋𝑠  𝐹(𝑋)𝑟} = ∫ 𝑥𝑠
∞

−∞

 𝐹(𝑥)𝑟  𝑓(𝑥) 𝑑𝑥. 

Using equations (5) and (6), we can write 

𝑓(𝑥) 𝐹(𝑥)𝑟 = ∑ 𝑑𝑘

2𝑗+1

𝑘=0

𝜋𝜃(𝑘+1)(𝑥; 𝑎, 𝑏), 

where 

𝑑𝑘 = ∑∑2

∞

𝑗=0

𝑟

𝑖=0

𝛼𝜆𝑖(𝑘 + 1)−1(−1)𝑖+𝑗+𝑘(1 + 𝜆)𝑟−𝑖 (
𝑟

𝑖
) (

2𝑗 + 1

𝑘
)

× { (1 + 𝜆) (
𝛼(𝑟 + 𝑖 + 1) − 1

𝑗
) − 2𝜆 (

𝛼(𝑟 + 𝑖 + 2) − 1

𝑗
)} .

 

Then, the (s,r)𝑡ℎ PWMs of 𝑋 can be expressed as 

𝑝𝑠,𝑟 = ∑ 𝑑𝑘

2𝑗+1

𝑘=0

𝑎𝑠  [𝜃(𝑘 + 1)]
𝑠
𝑏𝛤 (1 −

𝑠

𝑏
) , ∀ 𝑏 > 𝑠. 

5.5 Residual life and reversed residual life functions 

The n𝑡ℎ moment of the residual life 

𝑚𝑛(𝑡) = 𝐸 [(𝑋 − 𝑡)𝑛 ∣
(𝑋>𝑡, 𝑛=1,2,… )

] 

the n𝑡ℎ moment of the residual life of 𝑋 is given by 

𝑚𝑛(𝑡) =
∫ (

∞

𝑡
𝑥 − 𝑡)𝑛𝑑𝐹(𝑥)

1 − 𝐹(𝑡)
 . 

Therefore, 
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           𝑚𝑛(𝑡) =
1

1 − 𝐹(𝑡)
∑ 𝜁𝑘

(𝑚)

2 𝑗

𝑘=0

∫ 𝑥𝑟
∞

𝑡

𝜋𝜃(𝑘+1)(𝑥; 𝑎, 𝑏)𝑑𝑥 

        =
𝑎𝑛

1 − 𝐹(𝑡)
∑ 𝜁𝑘

(𝑚)

2 𝑗

𝑘=0

  [𝜃(𝑘 + 1)]𝑛 𝑏⁄ 𝛤(1 − 𝑛 𝑏⁄ , [𝜃(𝑘 + 1)](𝑎 𝑡⁄ )𝑏), ∀ 𝑏 > 𝑛, 

where 

𝜁𝑘
(𝑚)

= 𝜁𝑘 ∑
𝑟=0

𝑛

(
𝑛

𝑟
) (−𝑡), 

𝛤(𝜔, 𝑞)|(𝑥>0) = ∫ 𝑡𝜔−1
∞

𝑞

exp(−𝑡)𝑑𝑡, 

and 

𝛤(𝜔, 𝑞) + 𝛾(𝜔, 𝑞) = 𝛤(𝜔). 

Another interesting function is the mean residual life (MRL) function or the life 

expectation at age 𝑡 defined by 

𝑚1(𝑡) = 𝐸[(𝑋 − 𝑡)|(𝑋>𝑡, 𝑛=1)], 

which represents the expected additional life length for a unit which is alive at age 𝑡. The 

MRL of 𝑋 can be obtained by setting 𝑛 = 1 in the last equation. The n𝑡ℎ  moment of the 

reversed residual life, say 

𝑀𝑛(𝑡) = 𝐸 [(𝑡 − 𝑋)𝑛|(𝑋≤𝑡,𝑡>0 and 𝑛=1,2,… )] 

uniquely determines 𝐹(𝑥). We obtain 

𝑀𝑛(𝑡) =
∫ (

𝑡

0
𝑡 − 𝑥)𝑛𝑑𝐹(𝑥)

𝐹(𝑡)
. 

Then, the n𝑡ℎ moment of the reversed residual life of 𝑋 becomes 

            𝑀𝑛(𝑡) =
1

𝐹(𝑡)
∑ 𝜁𝑘

(𝑀)

2 𝑗

𝑘=0

∫ 𝑥𝑟
𝑡

0

𝜋𝜃(𝑘+1)(𝑥; 𝑎, 𝑏)𝑑𝑥 

=
𝑎𝑛

𝐹(𝑡)
∑ 𝜁𝑘

(𝑀)

2 𝑗

𝑘=0

  [𝜃(𝑘 + 1)]𝑛 𝑏⁄ 𝛾(1 − 𝑛 𝑏⁄ , [𝜃(𝑘 + 1)](𝑎 𝑡⁄ )𝑏), ∀ 𝑏 > 𝑛, 

Where 
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𝜁𝑘
(𝑀)

= 𝜁𝑘 ∑   

𝑟=0

𝑛

(−1)𝑟 (
𝑛

𝑟
) 𝑡𝑛−𝑟 . 

5.6 Stress-strength model 

Let 𝑋1  and 𝑋2  be two independent RVs with TTLEFr (𝜆1, 𝛼1, 𝜃, 𝑎, 𝑏)  and 

TTLEFr(𝜆1, 𝛼1, 𝜃, 𝑎, 𝑏) distributions. Then, the reliability, 𝐑𝑋1,𝑋2
, is defined by 

𝐑𝑋1,𝑋2
= ∫ 𝑓1

∞

0

(𝑥; 𝜆1, 𝛼1, 𝜓)𝐹2(𝑥; 𝜆1, 𝛼1, 𝜓)𝑑𝑥 

We can write 

𝐑𝑋1,𝑋2
= ∑   

2𝑗

𝑘=0

∑ 𝑟𝑘,𝑚

2𝑤

𝑚=0

∫ 𝜋𝜃(𝑘+𝑚)

∞

0

(𝑥)𝑑𝑥 

where 

𝑟𝑘,𝑚 = ∑ (𝑘 + 1)

∞

𝑗,𝑤=0

(−1)𝑗+𝑘+𝑤+𝑚(𝑘 + 𝑚 + 1)−1 (
2𝑗
𝑘

) (
2𝑤
𝑚

) 

                                                  × [(1 + 𝜆1) (
𝛼1

𝑗 ) − 𝜆1 (
2𝛼1

𝑗
)] [(1 + 𝜆2) (

𝛼2

𝑤
) − 𝜆2 (

2𝛼2

𝑤
)]    

Thus, 𝐑𝑋1,𝑋2
 can be expressed as 

𝐑𝑋1,𝑋2
= ∑ ∑ 𝑟𝑘,𝑚

2 𝑤

𝑚=0

2 𝑗

𝑘=0

. 

6. Estimation 

Let 𝑥1, … , 𝑥𝑛  be a random sample from the TTLEFr distribution with parameters 

𝜆, 𝛼, 𝜃, 𝑎 and 𝑏. Let 𝛩 =(𝜆, 𝛼, 𝜃, 𝑎, 𝑏)⊺ be the 5 × 1 parameter vector. For determining the 

MLE of 𝛩, we have the log-likelihood function 

  ℓ = ℓ(𝛩) = 𝑛log(2𝛼𝜃𝑏𝑎𝑏)  

                          +∑ log𝑛
𝑖=1 {1 − exp[−𝜃(𝑎 𝑥𝑖⁄ )𝑏]} 

                                              −(𝑏 + 1)∑ log𝑛
𝑖=1 𝑥𝑖 − 𝜃 ∑ (𝑎 𝑥𝑖⁄ )𝑏𝑛

𝑖=1
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                                                 +(𝛼 − 1)∑ (1 − {1 − exp[−𝜃(𝑎 𝑥𝑖⁄ )𝑏]}2)
𝑛

𝑖=1
 

                                                 +∑ log𝑛
𝑖=1 [1 + 𝜆 − 2𝜆(1 − {1 − exp[−𝜃(𝑎 𝑥𝑖⁄ )𝑏]}2)𝛼] 

The components of the score vector, 𝐔(𝛩) =
∂ℓ

∂𝛩
= (

∂ℓ

∂𝜆
,
∂ℓ

∂𝛼
,
∂ℓ

∂𝜃
,
∂ℓ

∂𝛼
,
∂ℓ

∂𝑏
)
⊤

,are available if 

needed. Setting 𝑈𝜆 = 𝑈𝛼 = 𝑈𝜃 = 𝑈𝑎 = and 𝑈𝑏 = 𝟎 and solving them simultaneously yields 

the MLE �̂� = (�̂�, �̂�, 𝜃, �̂�, �̂�)⊺. To solve these equations, it is usually more convenient to use 

nonlinear optimization methods such as the quasi-Newton algorithm to numerically 

maximize ℓ . For interval estimation of the parameters, we obtain the 5 × 5  observed 

information matrix 

𝐽(𝛩) = {𝜕2ℓ/𝜕𝑟 𝜕𝑠}   (∀𝑟, 𝑠 = 𝜆, 𝛼, 𝜃, 𝑎, 𝑏), 

whose elements can be computed numerically. 

7. Simulation studies 

Using the inversion method, we simulate the TTLEFr model by taking 𝑛=20, 50, 200 

and 500. For each sample size, we evaluate the MLEs of the parameters using the optim 

function of the R software. Then, we repeat this process 1000 times and compute the biases 

(Bias) and mean squared errors (MSEs). Table 1 gives all simulation results. The values in 

Table 1 indicate that the MSEs and the Bias of �̂�, �̂�, 𝜃, �̂� and �̂� decay toward zero when the 

𝑛 increases for all settings of 𝑎 and 𝑏, as expected under first-under asymptotic theory. This 

fact supports that the asymptotic normal distribution provides an adequate approximation to 

the finite sample distribution of the MLEs. Table 1 gives biases and MSEs based on 1000 

simulations of the TTLEFr distribution for some values of 𝑎 and 𝑏 when 𝜆 = 0.5, 𝛼 = 1.5 

and 𝜃 = 2.5 by taking 𝑛 = 20, 50, 200 and 500. 
 

8 Real data modeling 

In this section, we provide four applications to real data sets to illustrate the importance 

of the TTLEFr distribution. To evaluate performance of considered model, the MLEs of the 

parameters for the considered models are calculated and three goodness-of-fit statistics are 

used to compare the new distribution. 

The following measures of goodness of fit are computed to compare the fitted models: 

1-Anderson-Darling (𝐴∗); 

2-Cramér-von Mises (𝑊∗); 

3-Akaike Information Criterion (AIC); 

4-Bayesian information criterion (BIC); 
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5-Kolmogrov-Smirnov (K-S) statistics (and its corresponding p-value). 

In general, the smaller are the values of these statistics (𝐴∗, 𝑊∗, AIC, BIC and K-S), the 

better the fit to the data. The required computations are carried out in the R-language for the 

all application. The numerical values of the model selection statistics 𝐴∗, 𝑊∗,  AIC, BIC, K-

S and its corresponding p-value are listed in Tables 2 and 4. Tables 3 and 5 list the MLEs 

and their corresponding standard errors (in parentheses) of the model parameters. The total 

time test (TTT ) plots for the two data sets indicates that the HRFs are upside down for the 

1𝑠𝑡 data and increasing for the 2𝑛𝑑 data. 

Table 1: The biases and MSEs based on 1000 simulations. 
  

  a = 0:5 and b = 2  a = 2 and b = 0:5  

n  

       

  
  𝜣 Bias MSE                   𝜣 Bias MSE  

        

20  a 0:53014 0:93380     a 0:42651 0:59439  

  b 0:17543 0:88234     b 0:11634 0:18498  

   𝝀 0:53447 0:54144      𝝀 0:38225 0:34516  

   𝜶   0:63432 0:41383        𝜶   0:35410 0:59115  

   𝜽  0:19230 0:42330        𝜽  0:22650 0:44762  

        

50  a 0:13148 0:62591     a 0:12849 0:48654  

  b 0:14120 0:48210     b 0:06632 0:09892  

   𝝀 0:33576 0:39034      𝝀 0:22435 0:22410  

   𝜶 0:32490 0:35515        𝜶   0:25717 0:28321  

   𝜽 0:16819 0:31923        𝜽  0:13933 0:24230  

        

200  a 0:01675 0:30729     a 0:02883 0:20473  

  b 0:11082 0:27327     b 0:00914 0:03759  

   𝝀 0:21642 0:15430      𝝀 0:13149 0:10073  

   𝜶 0:12669 0:20421        𝜶   0:15670 0:08871  

   𝜽 0:03278 0:02689        𝜽  0:10316 0:12169  

        

500  a 0:01325 0:12266     a 0:00570 0:05110  

  b 0:09016 0:04649     b 0:00281 0:00591  

   𝝀 0:03113 0:06324      𝝀 0:01192 0:01410  

   𝜶 0:07687 0:00960        𝜶   0:06100 0:01020  

   𝜽 0:00213 0:00425        𝜽  0:00201 0:00151  
        

        

8.1 Application 1: Repair times data 

The 1𝑠𝑡 data set (repair times data) represents an active repair times (hours) for an air 

borne communication transceiver originally given by Chhikara and Folks (1989). This data 

set is reproduced as follows: 0.20, 0.3, 0.50, 0.5, 0.50, 0.5, 0.60, 0.6, 0.70, 0.7, 0.70, 0.8, 0.8, 

1.00, 1.0, 1.00, 1.0, 1.10, 1.30, 1.50, 1.5, 1.50,1.50, 2.0, 2.0, 2.20, 2.50, 2.7, 3.00, 3.0, 3.30, 

3.3, 4.00, 4.0, 4.50, 4.7, 5.00, 5.4, 5.4, 7.00, 7.5, 8.80, 9.0, 10.30, 22.0 and 24.50. The 

statistics of the fitted models for the 1𝑠𝑡 data set are presented in Table 2 and the MLEs and 
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corresponding standard errors are given in Table 3. We note from the values in Table 2 that 

the TTLEFr model has the lowest values of the 𝐴∗, 𝑊∗, AIC, BIC, and K-S statistics (for the 

1𝑠𝑡 data set). The histogram and other related important plots of the first data of the TTLEFr 

model Figure 3. We compare the fits of the TTLEFr distribution with other models such as 

Fréchet (Fr), Kumaraswamy Fréchet (KFr), exponentiated Fréchet (EFr), beta Fréchet (BFr), 

transmuted Fré chet (TFr), and Marshal-Olkin Fréchet (MOFr) distributions given by: 

EFr : 

𝑓𝐸𝐹𝑟(𝑥; 𝛼, 𝑎, 𝑏) = 𝛼𝑏𝑎𝑏𝑥−(𝑏+1)exp[−(𝑎 𝑥⁄ )𝑏]{1 − exp[−(𝑎 𝑥⁄ )𝑏]}𝛼−1 

BFr : 

𝑓𝐵𝐹𝑟(𝑥; 𝛼, 𝜃, 𝑎, 𝑏) = 𝑏𝑎𝑏𝐵−1(𝛼, 𝜃)𝑥−(𝑏+1)exp[ −𝛼(𝑎/𝑥)𝑏]{1 − exp[ −(𝑎/𝑥)𝑏]}𝜃−1; 

KFr : 

𝑓𝐾𝐹𝑟(𝑥; 𝛼, 𝜃, 𝑎, 𝑏) = 𝛼𝜃𝑏𝑎𝑏𝑥−(𝑏+1)exp[ −𝛼(𝑎/𝑥)𝑏]{1 − exp[ −𝛼(𝑎/𝑥)𝑏]}𝜃−1; 

TFr : 

𝑓𝑇𝐹𝑟(𝑥; 𝜆, 𝑎, 𝑏) = 𝑏𝑎𝑏𝑥−(𝑏+1)exp[ −(𝑎/𝑥)𝑏]{1 + 𝜆 − 2𝜆exp[ −(𝑎/𝑥)𝑏]}; 

MOFr : 

𝑓𝑀𝑂𝐹𝑟(𝑥; 𝛼, 𝑎, 𝑏) = 𝛼𝑏𝑎𝑏𝑥−(𝑏+1)exp[−(𝑎 𝑥⁄ )𝑏]{𝛼 + (1 − 𝛼)exp[−(𝑎 𝑥⁄ )𝑏]}−2 

The parameters of the above densities are all positive real numbers except for the TFr 

distribution for which |𝜆| ≤ 1. 

Table 2: The statistics 𝐴∗, 𝑊∗, AIC, BIC, K-S and K-S p-value 

for the repair times data set. 

Model  Goodness of fit criteria  

 𝑊∗ 𝐴∗ AIC BIC K-S p-value 

TTLEFr 0.0445 0.2771 206.4 214.6 0.07432 0.9613 

Fr 0.0576 0.3806 207.4 215.0 0.0807 0.9252 

KFr 0.0467 0.2847 207.4 214.6 0.0826 0.9118 

EFr 0.0576 0.3805 207.4 214.9 0.0806 0.9259 

BFr 0.0463 0.2831 207.4 214.7 0.0836 0.9040 

TFr 0.0568 0.3586 207.8 215.3 0.0818 0.9174 

MOFr 0.0478 0.2972 207.9 214.7 0.0785 0.9392 
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Table 3: MLEs and their standard errors (in parentheses) for the first data set. 

 

Model   Estimates   

      
          �̂�          �̂�            𝜃 �̂� �̂� 

TTLEFr -0.1490 0.3913 2.7172 1.3586 0.8119 

 (0.677) (0.534) (2.664) (1.661) (0.170) 

Fr    1.1297 1.0128 

    (0.1740) (0.1129) 

KFr  1.1619 3.8034 4.0226 0.5401 

  (7.452) (4.604) (47.459) (0.2753) 

EFr  0.9881  1.1433 1.0125 

  (23.679)  (27.057) (0.1129) 

BFr  2.3521 5.8362 3.4905 0.4147 

  (8.581) (14.877) (13.461) (0.5619) 

TFr -0.6364   0.7747 1.0853 

 (0.1173)   (0.3633) (0.1226) 

MOFr  4.9168  0.5066 1.3384 

  (6.1834)  (0.3068) (0.2574) 
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Figure 3: Estimated PDF, estimated CDF, P-P plot, estimated HRF and TTT plot of the repair 

times data. 

8.2 Application 2: Breaking stress data 

The 2𝑛𝑑 set is an uncensored data set consisting of 100 observations on breaking stress 

of carbon fibers (in Gba) given by Nichols and Padgett (2006) and these data are used by 

Mahmoud and Mandouh (2013) to fit the transmuted Fr distribution. The data are: 0.920, 

0.9280, 0.997, 0.99710, 1.061, 1.1170, 1.162, 1.1830, 1.187, 1.1920, 1.196, 1.2130, 1.215, 

1.21990, 1.22, 1.2240, 1.225, 1.2280, 1.237, 1.240, 1.244, 1.2590, 1.261, 1.2630, 1.276, 
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1.310, 1.321, 1.3290, 1.331, 1.3370, 1.351, 1.3590, 1.388, 1.4080, 1.449, 1.44970, 1.45, 

1.4590, 1.471, 1.4750, 1.477, 1.480, 1.489, 1.5010, 1.507, 1.5150, 1.53, 1.53040, 1.533, 

1.5440, 1.5443, 1.5520, 1.556, 1.562, 1.5660, 1.585, 1.5860, 1.5990, 1.602, 1.6140, 1.6160, 

1.6170, 1.6280, 1.6840, 1.7110, 1.7180, 1.733, 1.7380, 1.7430, 1.759, 1.7770, 1.794, 1.7990, 

1.806, 1.8140, 1.8160, 1.828, 1.830, 1.884, 1.8920, 1.944, 1.9720, 1.9840, 1.9870, 2.02, 

2.03040, 2.0290, 2.03500, 2.037, 2.0430, 2.0460, 2.059, 2.1110, 2.165, 2.6860, 2.778, 

2.9720, 3.504, 3.8630 and 5.3060. The statistics of the fitted models are presented in Table 4 

and the MLEs and corresponding standard errors are given in Table 5. We note from Table 4 

that the TTLEFr gives the lowest values the 𝐴∗, 𝑊∗, AIC, BIC, and K-S statistics (for the 2𝑛𝑑 

data set) as compared to further models, and therefore the new one can be chosen as the best 

one. The histogram and other related important plots of the 2𝑛𝑑 data are displayed in Figure 

4. We compare the fits of the TTLEFr distribution with other related Fr models such as Fr, 

EFr, KFr, BFr, MOFr, TFr, and McDonald Fréchet (McFr): 

𝑓𝑀𝑐𝐹𝑟(𝑥; 𝛼, 𝜃, 𝜆, 𝑎, 𝑏) = 𝜆𝑏𝑎𝑏𝑥−(𝑏+1)𝐵−1(𝛼, 𝜃)exp[−(𝑎 𝑥⁄ )𝑏](exp[−(𝑎 𝑥⁄ )𝑏])𝛼𝜆−1  

× (1 − (exp[−(𝑎 𝑥⁄ )𝑏])𝜆)
𝜃−1

 

Table 4: The statistics 𝐴∗, 𝑊∗, AIC, BIC, K-S and K-S p-value for the carbon fibers data set. 

Model  Goodness of fit criteria  

 𝑊∗ 𝐴∗ AIC BIC K-S p-value 

TTLEFr 0.0655 0.5010 114.0 114.8 0.0662 0.7728 

Fr 0.1090 0.7657 114.4 124.6 0.0874 0.4282 

KFr 0.0812 0.6217 114.0 124.4 0.0759 0.6118 

EFr 0.1091 0.7658 114.0 124.3 0.0874 0.4287 

BFr 0.0809 0.6207 114.0 124.4 0.0757 0.6147 

TFr 0.0871 0.6209 114.4 124.3 0.0782 0.5734 

MOFr 0.0886 0.6142 114.0 124.8 0.0763 0.5168 

McFr 0.1333 1.0608 123.97 137.0 0.0807 0.5332 

       

       

 

 

 

 

 

 



 

 

 

 

 

      Mohamed G. Khalil                                                                               499 

Table 5: MLEs and their standard errors (in parentheses) for the second data set. 

Model   Estimates   

 (0.b b b b b 
          �̂�          �̂�            𝜃 �̂�      �̂� 

TTLEFr 0.7410 3.03880 0.8569 1.4858 2.2965 

 (0.236) (8.092) (0.000) (0.000) (0.708) 

Fr    1.3968 4.3724 

    (0.0336) (0.3278) 

KFr  0.8489 1.6239 1.6341 3.4208 

  (16.083) (0.6979) (9.049) (0.7635) 

EFr  0.9395  1.4169 0.9395 

  (3.543)  (2.568) (0.3278) 

BFr  0.7346 1.5830 1.6684 3.5112 

  (1.5290) (0.7132) (0.7662) (0.9683) 

TFr -0.7166   1.2656 4.7121 

 (0.2616)   (0.0579) (0.3657) 

MOFr  0.0033  6.2296 1.2419 

  (0.0009)  (1.0134) (0.1181) 

McFr 0.8503 44.423 19.859 0.0203 46.974 

 (0.1353) (25.100) (6.706) (0.0060) (21.871) 

      

      

 

 

 

 

 

 

  

  

 

 

 

 

 



 

 

 

 

 

500                                        A NEW DISTRIBUTION FOR MODELING EXTREME VALUES 

 

Figure 4: Estimated PDF, estimated CDF, P-P plot, estimated HRF and TTT plot of the carbon 

fibers data. 

9. Concluding remarks 

In this work, we introduce a new distribution for modeling the extreme values. Some 

important mathematical properties of the new model are derived. We assess the performance 

of the maximum likelihood method in terms of biases and mean squared errors by means of 

a simulation study. The new model is better than some other important competitive models 

in modeling the repair times data and the breaking stress data. We hope that the new model 
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will attract a wider application in areas such as survival and lifetime data, engineering, 

meteorology, hydrology, economics and others. 
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