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Abstract

Modern precision medicine aims to utilize real-world data to provide the best treatment for an
individual patient. An individualized treatment rule (ITR) maps each patient’s characteristics
to a recommended treatment scheme that maximizes the expected outcome of the patient. A
challenge precision medicine faces is population heterogeneity, as studies on treatment effects are
often conducted on source populations that differ from the populations of interest in terms of the
distribution of patient characteristics. Our research goal is to explore a transfer learning algo-
rithm that aims to address the population heterogeneity problem and obtain targeted, optimal,
and interpretable I'TRs. The algorithm incorporates a calibrated augmented inverse probability
weighting estimator for the average treatment effect and employs value function maximization
for the target population using Genetic Algorithm to produce our desired I'TR. To demonstrate
its practical utility, we apply this transfer learning algorithm to two large medical databases,
elCU Collaborative Research Database and Medical Information Mart for Intensive Care I1I. We
first identify the important covariates, treatment options, and outcomes of interest based on the
two databases, and then estimate the optimal linear ITRs for patients with sepsis. Our research
introduces and applies new techniques for data fusion to obtain data-driven ITRs that cater to
patients’ individual medical needs in a population of interest. By emphasizing generalizability
and personalized decision-making, this methodology extends its potential application beyond
medicine to fields such as marketing, technology, social sciences, and education.

Keywords augmented Inverse Probability Weighting; causal inference; generalizability;
genetic algorithm; optimization; population heterogeneity; precision medicine

1 Introduction

Under FDA’s 21st-Century Cures Act, the field of precision medicine is developed to utilize
real-world data to provide evidence-based and data-driven optimal treatment for each individual
patient (Kosorok and Laber, 2019). A rich literature has been developed on estimating individu-
alized treatment rules (ITRs) for precision medicine. For instance, Outcome-Weighted Learning
(OWL) (Zhao et al., 2012) formulates the estimation of optimal treatment rules as a weighted
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classification problem that directly targets the value function. It has since been extended to
incorporate regularization, kernel methods (Zhou et al., 2017), and doubly robust estimation
strategies (Zhang et al., 2012), offering both flexibility and robustness in observational settings.

An ongoing challenge facing modern precision medicine is that studies on outcomes of
potential treatments are conducted for a source population that is different from some target
population for which the treatment will be implemented in terms of the distribution of patients’
demographics, characteristics, and health factors. While treatment may be proven effective after
testing on a sample population, it may not have the same optimal effect for all patients within
other populations. This problem is often referred to as population heterogeneity, or covariate
shift and it is widely studied in social sciences and biological sciences (Nagin and Paternoster,
2000; Ryall et al., 2012). In medicine, a typical example of population heterogeneity consists
of an experimental clinical trial population and a real-world population. Despite experimental
data having strong internal validity, it has limited external validity and introduces bias when
applied to other populations due to its limited sample pool from inclusion and exclusion criteria
(Rothwell, 2005). As opposed to experimental data, using real-world data and observational data
provides a sample that is representative of the larger population. Thus, the goal of this research
is to use knowledge learned about one population to inform decisions for another, a technique
referred to as transfer learning.

To achieve our research goals, we focus on the transfer learning framework. Based on the
potential outcome framework in causal inference (Imbens and Rubin, 2015), the transfer learn-
ing framework combines two key components: the Augmented Inverse Probability Weighting
(AIPW) and calibration weighting (CW). The AIPW estimator estimates the average treat-
ment effect (ATE), which is the average expected outcome for a patient population under one
specific treatment rule. The AIPW estimator has the desirable property of double robustness: it
provides a consistent estimation even if either the outcome regression model or the propensity
score model is misspecified (Bang and Robins, 2005; Glynn and Quinn, 2010). CW addresses
covariate shift by calibrating the covariates of patients in the source population to assimilate
the target population’s patient covariates using entropy balancing (Hainmueller, 2012). Entropy
balancing is a particularly effective calibration method, offering exact covariate balance through
convex optimization. It has seen growing use in policy evaluation (Zubizarreta, 2015) and causal
generalizability studies (Chu et al., 2023), and it enables valid inference under population het-
erogeneity without explicitly modeling the assignment mechanism.

To demonstrate the utility of our framework, we apply it to the problem of learning optimal
linear treatment rules for sepsis patients using two large-scale medical databases: Medical Infor-
mation Mart for Intensive Care (MIMIC-IIT) and electronic Intensive Care Unit Collaborative
Research Database (eICU-CRD). We define the treatment, outcome, and covariates of interest,
and construct optimal and interpretable linear I'TRs tailored to the target population. In addi-
tion to the real-world application, we conduct a simulation study to validate the performance
of our method under controlled conditions, where treatment effects and population distribu-
tions are known. This allows us to demonstrate the impact of calibration weighting and value
function optimization in recovering target-optimal treatment rules. Through both the medical
application and simulation study, we illustrate the flexibility, effectiveness, and generalizability
of our proposed transfer learning framework for estimating individualized treatment rules un-
der population heterogeneity. We hope to inspire other researchers to apply our framework to
populations of patients with other diseases or adapt it to other fields of study.

The rest of the paper is organized as follows: In Section 2, we define notations and outline
the theoretical assumptions as the premise of our research. We then compare estimators for the
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ATE. In Section 3, we delve into the three main components of the methodology: CW, Value
Function, and Genetic Algorithm. In Section 4, we apply the framework to real-world data of
two populations of patients with sepsis and compile the application results. In Section 5, we
validate the utility of our framework by conducting a simple simulation study. In Section 6, we
discuss the advantages and limitations of our framework. All relevant R code for the medical
application and the simulation study is provided in the Supplementary Material.

2 Statistical Framework

To study the average effect of a treatment rule and eventually optimize it, we adopt some basic
concepts from the potential outcomes framework for causal inference in (Imbens and Rubin,
2015) as building blocks for our research. The ATE measures the difference between the average
outcome that would be achieved if all individuals in the population were to receive treatment
and if all were to receive control, given that the treatment is binary. We start with an overview
of the notation that will be used throughout this paper. Then, we will move to the assumptions
that must hold for us to proceed to develop our methodology.

2.1 Notation

Suppose we have a population of n patients and each patient is indexed by i. The baseline co-
variates of these patients are specified in n by p matrix X, where p is the number of covariates of
interest. Thus, X; is the vector of covariates for patient i. We refer to covariates as pre-treatment
attributes or features of each patient such as age, gender, medical history, etc. Covariates help
explain variation in outcomes, making estimates more precise and allowing researchers to iden-
tify subgroups in patients with different responses to treatment and control. The treatment
assignment vector A C {0, 1}" denotes what intervention each patient gets. We will consider a
binary treatment, with A; = 1 if patient i receives treatment, and A; = 0 if they receive control.
Y denotes patient outcome, i.e., the greater the Y;, the better patient i reacts to the treatment
assigned to them, A;.

Following the potential outcome framework proposed in Imbens and Rubin (2015), the
individual treatment effect is defined as the difference in the outcome if the patient is given
treatment, Y*(1), over the outcome if the same patient is given control, Y*(0). For each patient,
one of these two outcomes can be observed, referred to as the “observed outcome”; the other
outcome will be missing, referred to as the “missing outcome” or the “counterfactual outcome”.
For patient i, the potential outcome under treatment a is represented as Y*(A; = a). Hence,
we can represent the ATE by taking the expectation of differences between potential outcomes:
E[Y*(1) — Y*(0)].

When estimating the ATE, 7, we consider the propensity score. The propensity score is
the probability unit i receives active treatment given its covariates, 7(X;) = Pr(4; = 1] X;). In
randomized clinical trials, researchers control the probability of each patient receiving treatment,
which is typically fixed across patients, regardless of patient characteristics; in an observational
study, a patient’s propensity score may vary depending on their characteristics, introducing
assignment bias. In Section 2.3, we discuss a variety of estimators for the ATE, including the
naive estimator, the inverse probability weighting (IPW) estimator, the outcome regression
(OR) estimator, and the ATPW estimator. Then we explore how these estimators address the
assignment bias.
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Table 1: Structure of observed and counterfactual data across source and target populations.
The source population includes treatment assignment and observed outcomes; counterfactuals
are defined but partially unobserved. The target population includes only covariates.

Population Si X; A; Y; YD) Y7(0)
Source (Treated) 1 v 1 v v -
Source (Control) 1 v 0 v - v
Target 0 v - - - -

We denote the population to which each patient belongs using a binary indicator S, where
S; = 0 if patient i is from the source population and S; = 1 if the patient is from the target
population. For our transfer learning applications, the data structure for the source and target
populations is illustrated in Table 1. The source population consists of patients for whom baseline
covariates, treatment assignments, and outcomes have all been observed. In contrast, the target
population consists of patients for whom only baseline covariates X are available, and the goal is
to recommend treatment decisions that maximize expected outcomes. This asymmetry reflects
real-world settings in which we must apply what is learned from fully labeled data (source) to
guide treatment in a new population where outcomes are not yet realized. When population
heterogeneity exists, the covariate distribution differs across the two groups, i.e., Pr(X = x |
S =1) #Pr(X =x | § =0). This covariate shift, also known as selection or sampling bias, is
addressed in our framework using calibration weighting, described in Section 3.1.

We use d to denote an ITR. In this paper, we only consider the class of linear decision rules
of the form d,(X) =1 {nTX > 0} where n € R? specifies the covariate coefficient vector that
uniquely identifies the rule. To interpret the rule d,(X) for patient i, we substitute the patient’s
covariates vector X; into I { n'X; > 0} and evaluate the indicator function. If d,(X;) = 1, then
the treatment yields good outcome and is recommended for patient i; if d,(X;) = 0, then the
treatment does not yield a good outcome and is not recommended for patient i.

2.2 Assumptions
Assumption 1. Stable Unit Treatment Value: Y = Y*(1)(A) + Y*(0)(1 — A).

Meeting the Stable Unit Treatment Value Assumption (SUTVA) allows researchers to use
multiple units within one study. SUT VA incorporates two main components. The first component
of SUTVA is that the treatment of one unit does not affect the outcome of another unit. This
is typically ensured when researchers separate the participants of a study, therefore, reducing
the likelihood of the participants’ effects intermingling. If participants interact, resulting in
outcomes that are different if the participants had not come in contact with each other, then
SUTVA is violated. The second component of SUTVA is that the researchers must minimize
any differences in the efficacy and the method of administering the treatment. For example, in a
drug trial, researchers must ensure that patients in the treatment group all receive treatment of
the same strength. If the efficacy of the treatment varies within this singular treatment group,
then SUTVA is violated.

Assumption 2. No Unmeasured Confounding: (Y*(1),Y*(0)) 1L A | X.

The No Unmeasured Confounding (Conditional Exchangeability) assumption entails that
all the variables that influence both the treatment assignment and the outcome of interest
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are measured and accessible in our data. If there are unmeasured confounding variables, our
estimation of the causal effect will be biased. This assumption is one of the most commonly
violated assumptions in causal inference.

Assumption 3. Positivity of Treatment Assignment: 0 < Pr(A =a | X =x) < 1 for all x and
a=0,1.

The Positivity assumption requires every patient to have a positive probability of being as-
signed to treatment or control. If this assumption is violated, all patients could be assigned to one
treatment group, rendering inference impossible. This is essential as we model the counterfactual
and estimate the treatment effect.

Assumption 4. Transportability: E[Y*(A=a) | S=1,X =x] =E[Y*(A =a) | X = x] for all
x anda=0,1.

Transportability describes the ability to “transport” causal effect estimated from a random
clinical trial or observation study done on the source population to a target population. It
requires the ATE to be consistent across populations. In recent literature, transportability is
sometimes referred to as generalizability, external validity, or recoverability. These terms have
slightly different definitions concerning the overlap between populations and there have been
discussions of the differences as seen in Colnet et al. (2024).

Assumption 5. Common Support: Pr(S = 1|X) > 0.

The common support assumption entails that for the inference to be transportable, the
support for the source population covariate distribution is required to overlap the support for
the target population covariate distribution.

2.3 Estimators

Now we will consider various estimators for the ATE, 7, and how each estimator handles as-
signment bias that is introduced when the propensity score is not predetermined. We include
the naive, IPW, OR, and AIPW estimators not to suggest they are direct components of our
proposed method, but to offer a conceptual progression that leads to the development of our
calibrated AIPW estimator. In particular, the AIPW estimator is a cornerstone of our proposed
method, and the others help illustrate the value of double robustness in addressing treatment
assignment bias. This context helps situate our method as a natural extension of these classical
estimators.

The naive estimator, 7y, takes the difference between the average observed outcome of
patients in the treatment group and the average observed outcome of patients in the control
group to obtain the ATE. Let n; be the number of patients in the treatment group and ng be
the number of patients in the control group, then the naive estimator is represented as:

1 & 1 &
r():—ZY,-—n—O Y;. (1)

The naive estimator provides a relatively accurate estimation of the ATE for randomized ex-
periments because there is no assignment bias that needs to be addressed. However, with ob-
servational data, the naive estimator is biased and performs poorly because there is no way to
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consider the covariates that the treatment depends on (i.e., there is no way to minimize the
assignment bias).

The IPW estimator, Tipw, estimates ATE with the objective to address the assignment bias
and is formulated as:

. 1 AY
TIpW = ; ; f[(Xl) . (2)
The IPW estimator weights each patient’s treatment effect based on their covariates. The
weights, 1/7(X;), adjusts for the probability of patient i receiving treatment. The more likely
a patient is to receive treatment, the higher the propensity score, the smaller the weight. The
IPW estimator is unbiased if we correctly specify the propensity score model.

The OR estimator, Tor, estimates ATE by modeling the outcome based on observed values

for covariates, as shown in Equation (3):
o = L Y ) 3)
T = — m i)
OR = — 2

We denote m as the true mapping from covariates to outcome. However, in reality, it is more likely
that m is unknown and needs to be estimated. Thus, we use m(X;) to represent the estimated
outcome for patient i based on the OR model and their covariates. The fitted OR model can be
parametric (e.g., linear regression, logistic regression) or nonparametric (e.g., machine learning
methods). If the model m is correctly specified, then we can better estimate the missing outcomes
and the treatment effect. Although the OR estimator is efficient, it tends to be nonrobust due
to the misspecification of the model.

The AIPW estimator, Tarpw, estimates the ATE by augmenting the IPW estimator with
OR, as shown in Equation (4), achieving the doubly robust property:

. 1 AY: A —m(X;) 1 [AillYs — m(X))]
TAIPW = ;Z[n(xi) - (X)) m(X,-)] = ;;{T‘i‘m(xz)} (4)

i=1

The double robustness of the AIPW estimator proposed in Glynn and Quinn (2010) suggests that
if either the propensity score model or the outcome regression model is misspecified, the AIPW
estimator will remain unbiased. In Equation (4) above, two mathematical representations of the
AIPW estimator are shown to demonstrate the doubly robust property. In the expression on the
left side, if the propensity score model is correctly specified, then 7w (X;) closely approximates
A;, which will cancel out the outcome regression component, leaving only the correctly specified
IPW model. Similarly, in the expression on the right side, if the outcome regression model is
correctly specified, then m(X;) closely approximates Y;, which will cancel out the IPW estimator
component, leaving only the correctly specified OR model. In our application, we employ the
ATPW estimator to estimate the ATE for its double robustness.

3 Proposed Method

3.1 Calibration Weighting

When covariate heterogeneity exists between patients from the source population and the target
population, the optimal ITR we find for the source population will likely not be optimal for the
target population. In other words, the optimal I'TR learned from clinical trials or observation
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studies possesses internal validity and lacks external validity, which means this ITR will not lead
to the best outcome for patients awaiting treatment outside of that clinical trial or observation
study. This issue can be referred to as a selection bias or sampling bias since the sampling
distribution of the source population differs from that of the target population.

To correct this sampling bias, we use entropy balancing methods introduced in Hainmueller
(2012) to compute calibration weights based on the covariates information from patients of
both the source and target populations. Entropy balancing weighting is a trusted method for
balancing covariates and has been studied and applied recently in Chu et al. (2023) and Wu
and Yang (2023). It reweighs units in the source population so that the weighted empirical
distribution of their covariates matches that of the target population. Specifically, the weights
are chosen to satisfy moment-matching constraints on covariates between the two populations.
This is achieved through solving a constrained optimization problem that minimizes the relative
entropy (i.e., Kullback-Leibler divergence) of the weights from uniformity, subject to the balanc-
ing constraints. Since computation of calibration weights only requires covariates and does not
involve treatment or outcome data, causal identification assumptions are preserved. Once com-
puted, these weights are used in downstream estimation tasks to ensure that inferences drawn
from the source population generalize appropriately to the target population.

3.2 Value Function

The value function estimates the total treatment effect for the whole population given an ITR,
d,, thus it is used to evaluate the quality of an ITR. It is expressed as follows:

A B . Aidy (X)) (1= A)[1 —dy(Xi)] . .
V(dn,an)—Zwi ”: 30X + —7(X) :| [Yi —mX)]+m(X)t, (5)

iel,

where I, is the index set of all patients in the source population.

Equation (5) defines our proposed calibrated augmented inverse probability weighting
(CAIPW) value function, which extends the classical AIPW estimator in Equation (4) by in-
corporating calibration weights w; and by evaluating a specific proposed treatment rule d,.
While the ATPW estimator is doubly robust and addresses treatment assignment bias under
the assumption of no unmeasured confounding, it does not account for distributional differences
between a source population and a target population. In other words, it assumes equal weights
for all individuals in the source population.

Additionally, a key component of the value function in Equation (5) evaluates as follows:

0, if A; # d,(X;)
it A =dy (X)) =1 .
it A; = dy(X;) = 0

Aidy(XD) | (1= AN —dy(X)] _ |7
7 (Xi) SO R
1-7(X;)’

This highlights another key difference between the AIPW estimator and the CAIPW value func-
tion: the ATPW estimator estimates the ATE simply under the observed treatment assignment
A, while the CAIPW value function estimates the expected outcome under a proposed treatment
rule d,, which may differ from A for many individuals.

Therefore, our proposed CAIPW value function simplifies to the AIPW estimator when
the following two conditions are met: (i) all subjects have equal calibration weights, and (ii)
the observed treatment assignment matches the proposed treatment rule. The AIPW estimator
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can be considered as a special case of the CAIPW value function. This generalization of the
AIPW estimator that makes up our proposed CAIPW value function is essential for learning
individualized treatment rules (ITRs) that are tailored to the target population when only the
source population has observed treatment and outcome data. Without such a generalization, an
ITR optimized for the source may yield suboptimal or biased results when applied to the target
population.

Note that, similar to the AIPW estimator, the CAIPW estimator consists of an estimate of
the propensity score 7 (X;) and an outcome estimate from outcome regression m(X;), which can
be obtained through logistic regression and linear regression respectively. Additionally, CATPW
weights are normalized, so the summation of the weighted treatment effect in the value function
yields the ATE.

The variance of the estimated value function V(d) is formulated based on the influence
function associated with the augmented inverse probability weighted (AIPW) estimator. For a
given treatment rule d(X), we estimate the variance of the value function as follows:

. 1 (L [[AdX) (1= AD( —d(X; . ) Nk

Var(Wd))zﬁZ{wi[( e e )))<n—m<x,->>+m<x,->}—V(d)} ,
i=1

(6)

where w; is the calibration weight, 7 (X;) is the estimated propensity score, and m(X;) is the
estimated outcome regression. This variance estimator accounts for the sampling variability of
the value estimate and is used to construct Wald-style confidence intervals for policy evaluation.

3.3 Genetic Algorithm

The value function has a greater value for an I'TR that performs better in optimizing patient
outcomes. Our goal is to find the I'TR that maximizes the value function. First, we find the
optimal covariate coefficient vector:

Nopt = argmax V(dn; wis I,), (7)
n

then we can substitute 7°P* in our linear ITR formulation to get the optimal linear ITR:
dopt = 1{nJ ;X > 0}. (8)

In order to obtain the optimal covariate coefficient vector, nop in Equation (7), we use Ge-
netic Algorithm (GA) to solve the value function maximization problem, specifically, using the
rgenoud R package developed by Mebane Jr. and Sekhon (2011).

GA is a search-based optimization tool inspired by the mechanism of biological evolution
and natural selection with a wide range of applications across disciplines, as discussed in Katoch
et al. (2021). It is a population-based algorithm, which means it maintains a population of
candidate solutions, allowing for both the search for a new solution space and the refinement
of outstanding solutions in the current solution space. This makes the search process more
robust and makes overcoming the local maxima easier. GA is flexible with respect to the type of
objective function it can optimize. It is a suitable option for our non-differentiable, non-convex
value function and can generate high-quality solutions.



Transfer Learning for ITRs with Application to Sepsis Patients Data 9

4 Medical Application

Sepsis is a life-threatening complication of an infection, leading to 270,000 deaths each year in
America. In every three hospital deaths, approximately one patient was suffering from sepsis at
the time of death. Providing precise treatment for sepsis patients is crucial to preventing further
medical complications such as organ failure and possible death, making sepsis a critical condition
for studying individualized treatment strategies. In this section, we apply our proposed method
to two large-scale public databases that contain sepsis patients’ data to demonstrate its practical
relevance in solving real-world problems.

4.1 Databases

MIMIC-III is a freely accessible single-center database consisting of desensitized health record
data of over 40,000 patients who stayed in the intensive care units of the Beth Israel Deaconess
Medical Center from 2001 to 2012. elCU-CRD is a freely accessible multi-center database for
critical care research. It consists of desensitized health record data of over 200,000 patients who
were treated in intensive care units all over the U.S. under the Phillips eICU program from 2014
to 2015.

A randomized clinical trial conducted in a single center tends to follow a simpler design
compared to a multi-center trial, but it often has limited external validity. Since our methodology
aims to expand external validity, in our application, we use the single-center data from MIMIC-
III as our data for the source population and the multi-center data from eICU-CRD as our data
for the target population.

4.2 Data Pre-Processing

After an Exploratory Data Analysis of the raw data, we removed duplicate observations of
patients in both datasets to keep only the baseline entries of each patient before any treatment
is applied. This leaves us with 20,955 unique patients’ data in MIMIC-III and 21,995 unique
patients’ data in eICU-CRD.

We then reformatted and rescaled certain variables for consistency across the two datasets
and removed all non-binary categorical variables due to their incompatibility with our methods.
We also removed variables with over 60% missing entries and imputed the rest of the missing
data with the MICE (Multivariate Imputation by Chained Equations) algorithm, introduced
in Azur et al. (2011). The MICE algorithm fills in the incomplete variable based on observed
variables multiple times in an iterative manner. Upon visually inspecting the covariate lists of
both datasets, we kept the covariates that are shared by both datasets due to the requirement of
calibration weighting. This leaves us with usable data from thirteen common variables in both
datasets: re-admission (binary), age, weight at admission, temperature in Celsius, mean blood
pressure, respiratory rate, sodium, glucose, blood urea nitrogen, creatinine, bilirubin, albumin,
and white blood cell count. Two other variables, mechanical ventilation (binary) and death
(binary) are only available in the MIMIC-III dataset but are kept as treatment and outcome
variables in the source data. For more detailed reasoning for these decisions, see Section 4.3.

4.3 Treatment and Outcome

Out of the 15 variables available after data pre-processing, we chose mechanical ventilation as
treatment and death as outcome.
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The interplay between mechanical ventilation and sepsis has been discussed in recent medi-
cal research. Sepsis is responsible for approximately 70% of acute respiratory distress syndromes
(ARDS). Zampieri and Mazza (2017) suggests that while a mechanical ventilator is necessary
to support breathing for patients with sepsis-induced ARDS, suboptimal use of mechanical ven-
tilators can cause lung injuries, which further contribute to a downward spiral of sepsis-related
organ failures. The use of mechanical ventilation should be tailored to the patient’s individual
characteristics and conditions to improve. The emphasis on personalization makes mechanical
ventilation a treatment of interest for our application.

The choice of patient death as the outcome variable in our application was an intuitive one.
However, there are three caveats with this outcome variable:

1. Information on patient deaths is only available in MIMIC-III, our source population,
which means we can only evaluate the effect of our optimal I'TRs using estimated outcomes in
our target population.

2. Death is coded in 3 scenarios in MIMIC-III: 1) Died in hospital; 2) Died within 48 Hours
after discharge; 3) Mortality within 90 Days. We decided to integrate the 3 scenarios into a
binary outcome variable that classifies a patient as dead (death = 1) if they fit at least one of
the scenarios and not dead (death = 0) otherwise.

3. Since we are maximizing the value function to yield the best outcome for patients, we need
to ensure that the outcome variable is greater in value when representing a “better” outcome.
In our application, we use (1 - death) as the outcome variable, representing patient survival.
Therefore, the outcome variable is 1 if the patient survives, 0 otherwise.

4.4 Covariates

The remaining 13 variables (hospital re-admission, mean blood pressure, body temperature,
respiratory rate, sodium, glucose, blood urea nitrogen, creatinine, bilirubin, albumin, white blood
cell count, weight, and age) are used as patient covariates, serving as the active components of
our calibration weighting scheme.

In Figure 1, we compare the density curves for each of the 12 numeric variables of the
13 covariates between the target population based on the elCU-CRD database and the source
population based on the MIMIC-IIT database. We notice that mean blood pressure, body tem-
perature, respiratory rate, and albumin have clear distinctions between distributions for the
two populations. The one categorical variable, hospital re-admission, has also shown a discrep-
ancy between the two populations. In the source population, approximately 32.77% of patients
had been re-admitted, whereas in the target population, only approximately 4.75% of patients
had been re-admitted. The differences in distribution of these covariates indicate a population
heterogeneity problem, and calibration weighting is needed to address such problem.

After computing and applying calibration weights to the source population, we examine
their impact on the covariates that exhibited the greatest distributional discrepancies between
the source and target populations—namely, mean blood pressure, body temperature, respiratory
rate, and albumin (Figure 2). We observe that calibration weighting substantially improved
alignment for respiratory rate and albumin, while the distributions of mean blood pressure
and body temperature remained largely unchanged. This likely reflects the fact that entropy
balancing is designed to match only the first few moments (e.g., mean, variance) of the covariate
distributions. Moreover, each subject receives a single calibration weight to adjust the joint
distribution of all covariates, rather than separate weights for each covariate. As a result, it
is expected that not all covariates will achieve perfect alignment simultaneously. Nonetheless,
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Figure 1: Density plots demonstrate covariate shifts between the two populations, i.e., population

heterogeneity.
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the overall improvement in distributional similarity demonstrates that calibration weighting
is generally effective in adjusting the source population to more closely resemble the target
population.

4.5 Results

Following our proposed methods, we obtained the entropy balancing calibration weights with
covariates data from MIMIC-III and eICU-CRD. Then, we repeatedly ran GA that aims to
maximize the value function: 1000 iterations with calibration weights and 1000 iterations with
equal weights. Since we do not have data on treatment and outcome for the target population,
we evaluate the optimal ITR produced by GA by computing its treatment effect with the value
function.

With calibration weighting, the optimal ITR has a value of approximately 0.7616, while the
unweighted optimal ITR has a value of approximately 0.7223. In the context of this application,
our results imply that assigning mechanical ventilation treatments to patients using the optimal
weighted ITR has led to an approximately 3.93% increase in survival rate compared to using the
optimal ITR without calibration weighting. The resulting optimal weighted I'TR is illustrated
in Equation (9):

dopt = 1{—0.3933 - Glucose + 0.6507 - Blood Urea Nitrogen + 0.6282 - Age — 0.2484 - Weight
+ 0.4333 - Mean Blood Pressure — 0.4738 - WBC Count + 0.8800 - Respiratory Rate
+ 0.8830 - Bilirubin — 0.6220 - Sodium — 0.0565 - Creatinine — 0.7644 - ReAdmission
+ 0.5545 - Body Temperature + 0.3633 - Albumin + 0.1634 > 0}.
(9)

After substituting a patient’s baseline reading of the covariates, if d,x = 1, then such a
patient has a positive treatment effect and hence should be given the treatment of interest, and
vice versa.

With the optimal weighted ITR, we can also make rudimentary analyses on which patient
covariate is more important to the ITR by comparing the magnitudes of the coefficients. To
account for the differences in the spreads of covariates’ distributions, we adjusted the coefficients
by multiplying the standard deviation of the corresponding covariate. Observing Figure 3, we
found that Glucose is the primary covariate in our optimal ITR, and it has a negative coefficient,
which indicates that the lower the patient’s blood glucose reading, the more likely they will have
a positive treatment effect and get assigned treatment. Blood Urea Nitrogen (BUN) is the
secondary covariate in our optimal ITR, and it has a positive coefficient, which indicates that
the higher the patient’s BUN reading, the more likely they will have a positive treatment effect
and get assigned treatment.

5 Simulation Study

To further demonstrate the performance of our methods under controlled conditions, we con-
ducted a simulation study. While our medical application showcases the methods’ utility in a
real-world setting, the simulation study allows us to validate its functionality in a setting where
covariate distributions and treatment effects are known and can be manipulated. Using gener-
ated data for covariates, treatment assignment, and outcome for both populations, we examine
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Figure 3: From left to right, the covariates are ranked by the magnitude of their corresponding
coefficients in the optimal weighted ITR. Colored by the signs of the coefficients.

how well the CAIPW estimator estimates treatment effects as well as the maximization of the
value function to obtain optimal ITRs.

5.1 Simulation Data

We generate a dataset with 50,000 rows with each row representing an individual patient. Each
patient has height and age as covariates, and both covariates are uniformly distributed. This is
our general population. We randomly sample 10,000 observations from the general population
to use as Real World Data (RWD), i.e., the target population. While usually not available in
real practice, we also simulated the target population’s treatment and outcome data.

For treatment data, we first generate propensity scores for all patients in the target popula-
tion based on a linear model of their covariates. With the propensity scores, we can then model
individual Bernoulli trials to attach binary treatment assignments to the patients.

For outcome data, although in reality, we can only observe one outcome for each patient
— under either treatment or control — we simulated both outcomes for each patient. In this
simulation, we establish an individual treatment effect (ITE) condition that if a patient is taller
than 55 inches and less than 41 years old, they will have a positive response to treatment;
otherwise, the treatment will have a negative effect on them, and they should be assigned
control. We first start with the control outcome, which is a linear combination of the patient
covariates with the addition of a normal error term. Then, we formulate a contrast function
that produces a positive value if a patient satisfies the positive treatment effect condition, and
vice versa. Lastly, to generate the treatment outcome, we simply add the value of the contrast
function to the control outcome. Since we have the treatment assignment and both outcomes,
we can identify the observed outcome and the missing outcome for each patient.
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We then generate sampling scores for all observations in the general population minus the
target population based on a linear model of their covariates with a bias to observations with
greater age value and greater height value. With sampling scores, we can then model individual
Bernoulli trials, to decide whether each of these observations will be sampled in a Random
Clinical Trial (RCT), i.e., the source population. Because of the bias in the sampling scores,
patients sampled in the source population are more likely to be old and tall. Following an actual
random clinical trial design, we give each patient in the source population an equal chance to
be put into the treatment group (50%) or the control group (50%). The outcome data for the
source population is generated the same way as for the target population.

5.2 Simulation Results

In our simulation, we generate treatment and outcome information for the target population.
This would not be available in a real scenario since our end goal is to assign the best treatment
to patients in the target population to maximize their outcome. However, this information is
useful to establish the best I'TR for the target population as a standard to compare to. The
true optimal linear ITR for the target population (shown in red in Figure 4) yields a 94.5%
correct classification rate (CCR), i.e., 94.5% of the patients in the target population received
the treatments that gave them the better outcome under the true optimal ITR.

If we derive the ITR from only the source population information and there is a population
heterogeneity problem between the source and target populations, the resulting ITR is only the
optimal ITR for the source population, but not the optimal I'TR for the target population. It
can be considered as an unweighted ITR for the target population (shown in blue in Figure 4).
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Figure 4: Calibration weighting and GA optimization improve estimation of ATE (blue line:
unweighted ITR; purple line: one random weighted ITR; green line: weighted ITR optimized
with GA; red line: true optimal ITR).
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Table 2: Simulation study results comparing treatment rules in terms of classification accuracy,
estimated value for the value function, uncertainty of value function using 95% confidence in-
terval, false positive rate (FPR) and false negative rate (FNR).

Treatment Rule CCR Value ‘Wald 95% CI FPR FNR

Unweighted ITR 0.8598 146.3 [145.3, 147.3] 0.1512 0.0846
Calibration-weighted I'TR 0.9360 146.8 [145.8, 147.8] 0.0394 0.1880
GA-optimized ITR 0.9431 146.9 [145.8, 147.9] 0.0177 0.2545
True Optimal ITR 0.9450 147.3 [146.2, 148.3] - -

In our simulation with heterogeneity of the covariate distribution, this ITR-although well fit for
the source population—is not a good fit for the target population, having a CCR of 86.0%.

When we compute the calibration weights, we incorporate covariates from both the source
and the target populations to address the population heterogeneity problem, taking full advan-
tage of the information we can obtain in a real-world scenario. The resulting calibration-weighted
ITR (shown in purple in Figure 4) has an improved CCR of 93.6%. Compared to the unweighted
ITR, it is much closer to the true optimal ITR for the target population.

After demonstrating the effect of calibration weighting, we moved on to demonstrating the
effect of using GA optimization in ITR development by producing the optimal weighted linear
ITR that maximizes patient outcomes. After 100 iterations of GA with 100 different random
seeds that generate different samplings of the population pool, the algorithm yields an ITR
(shown in green in Figure 4) with the largest value for the value function, and a CCR of 94.31%,
which closely approximates the true optimal ITR for the target population.

To quantify uncertainty in the estimated value function for each treatment rule, we compute
a 95% confidence interval using an asymptotic Wald approach. These intervals reflect sampling
variability in the estimated value of each treatment rule and allow for principled comparison of
policy performance.

Observing Table 2, we notice that the 95% confidence intervals for different options of ITRs
all overlap each other. While the GA-optimized ITR outperforms other ITRs in terms of having
high CCR, high value for value function, low false positive rate, it also yielded higher false
negative rate, which indicates that it is the most conservative rule that prevents overtreatment
in a real-world healthcare application.

6 Discussion

6.1 Advantages

The transfer learning framework has many advantages and impacts for the statistical and clinical
communities. When used appropriately, it can be a resourceful tool that bridges diverse sources
and target populations, connecting data from various sources to account for patient heterogene-
ity, and informing more accurate decisions. It embraces the essence of precision medicine by
providing precise treatment recommendations tailored to each patient’s characteristics, assist-
ing clinicians across health care systems globally to make data-driven treatment decisions for
patients. In addition, transfer learning is a transferable framework and can be applied in other
fields of study such as marketing, technology, social sciences, and education.



16 Wang, A. et al.

6.2 Limitations

There are some limitations to the work we have done. A limitation in our proposed methods
resides in the Genetic Algorithm (GA) we used to optimize the value function. Like many
other optimization algorithms, GA can become computationally expensive when applied to large
datasets. It is also sensitive to the choice of initial values, i.e., the randomly selected initial
population of candidate solutions. GA can only be applied under a moderate covariate size. When
there are too many covariates, the search space can be too large to find the global maximum.
Additionally, while our current approach uses GA for flexibility in optimizing complex, non-
convex value functions, this method does not directly provide uncertainty quantification for the
covariate coefficient point estimates due to its black-box nature.

In our real-world application, we removed covariates from either dataset due to either dis-
creteness or a high level (greater than 60%) of missingness. The removed covariates include
biomarkers such as arterial pH, PaO2 (the partial pressure of oxygen in the arterial blood),
pCO2 (partial pressure of carbon dioxide), FiO2 (fraction of inspired oxygen), etc., which may
provide useful information to assess whether mechanical ventilation should be used on individ-
ual patients to improve outcome. However, the large missingness of these biomarkers makes it
difficult to perform data imputation. Therefore, we had to discard these biomarkers from our
model. Additionally, due to the lack of survival outcome information in the real-world data, we
are unable to confirm the real-world efficacy of the treatment rule generated by our method.

6.3 Comparison with a Similar Approach

An alternative approach to correcting population shift is the use of transfer weights, as in-
troduced by (Wu and Yang, 2023). While our method adopts entropy balancing (Hainmueller,
2012) to obtain calibration weights that enforce exact balance on moments of covariates be-
tween the source and target populations, Wu and Yang consider a generalized formulation that
allows approximate balance via inequality constraints. Specifically, they solve a constrained op-
timization problem that minimizes the relative entropy of weights subject to bounded deviations
between weighted covariate moments in the experimental sample and unweighted moments in
the real-world data. The bounds are defined by user-specified tolerance parameters, which offer a
bias-variance tradeoff mechanism: tighter constraints reduce bias at the cost of higher variance,
while looser constraints improve stability. In contrast, our calibration weights strictly enforce
equality of covariate moments, which means all tolerance parameters are set to zero. This sim-
plifies interpretation and guarantees exact balance, but can result in more extreme weights in
finite samples.

6.4 Future Work

In our proposed framework, we used logistic regression and linear regression for estimation of
the propensity score and outcome regression components of the CAIPW estimator. However,
we plan to explore a variety of semi-parametric and nonparametric estimation techniques such
as generalized additive models, spline regression, random forests, and Super Learners. These
techniques may be more advantageous for capturing non-linear relationships, particularly within
high-dimensional covariate-outcome spaces, further improving the robustness of the CAIPW
estimator.

To address the lack of uncertainty quantification on the covariate coefficient estimates due
to our use of GA, we plan to explore alternative optimization strategies such as gradient-based
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methods and penalized M-estimation approaches, which enable valid statistical inference for the
estimated ITR coeflicients. Since gradient-based optimization requires the objective function to
be differentiable, we may consider smooth approximations of the hard threshold function used
in our linear I'TR definition. Similarly, because penalized M-estimators rely on convexity, we
may reformulate the ITR estimation problem as a risk minimization task with surrogate loss
functions (e.g., logistic or hinge loss), facilitating both tractable optimization and inference.

In our current approach, we restrict the class of individualized treatment rules to binary
linear rules due to their interpretability and clinical applicability. However, this restriction leads
to a non-convex and non-differentiable value function, limiting our options for optimization
algorithms for the value function. For example, gradient-based optimization methods such as
Newton’s method is not suitable for our approach. In the future, we plan to explore more flexible
function classes for ITRs. For example, replacing the hard decision boundary with a smooth
surrogate such as a sigmoid function yields a continuous and differentiable value function. Under
such formulations, we can systematically compare the performance and efficiency of various
optimization strategies, including Newton’s method, quasi-Newton methods, coordinate descent,
and stochastic gradient-based approaches.

Tree-based I'TRs are a promising alternative to linear ITRs in terms of interpretability. ITRs
in a decision-tree form more closely mimic human decision-making, which enhances communi-
cation between statisticians and medical professionals. Additionally, tree-based rules naturally
perform variable selection and model simplification through pruning, making the resulting treat-
ment rules both interpretable and parsimonious.

Supplementary Material

Supplementary materials include pre-processed elCU-CRD and MIMIC-III data files used in the
medical application, an R script containing the R functions and R Markdown files for both the
simulation study and the medical application.
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