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Abstract

We propose a Bayesian Negative Binomial-Bernoulli model to jointly analyze the patterns be-
hind field goal attempts and the factors influencing shot success. We apply nonnegative CAN-
DECOMP/PARAFAC tensor decomposition to study shot patterns and use logistic regression
to predict successful shots. To maintain the conditional conjugacy of the model, we employ a
double Pdlya-Gamma data augmentation scheme and devise an efficient variational inference
algorithm for estimation. The model is applied to shot chart data from the National Basketball
Association, focusing on the regular seasons from 2015-16 to 2022-23. We consistently identify
three latent features in shot patterns across all seasons and verify a popular claim from recent
years about the increasing importance of three-point shots. Additionally, we find that the home
court advantage in field goal accuracy disappears in the 202021 regular season, which was the
only full season under strict COVID-19 crowd control, aside from the short bubble period in
2019-20. This finding contributes to the literature on the influence of crowd effects on home
advantage in basketball games.

Keywords logistic regression; Pélya-Gamma; variational inference

1 Introduction

Data analytics has proven invaluable to the development of the National Basketball Association
(NBA) industry. Player evaluation, team and player match-ups, in-game strategy planning,
and other areas have significantly improved. Among these, a primary concern is finding effective
methods to understand individual players’ field goal attempt patterns and the factors behind shot
success. A better understanding can enhance the formulation of attack and defense strategies,
as well as the design of appropriate training schemes for players on an individual basis. It is
natural to postulate that shot attempt intensity is related to the probability of shot success, as
players tend to shoot from locations where they have high confidence. Therefore, we propose a
joint model for both shot attempts and shot success to better understand their dependence.

In the literature, there are studies using spatial processes, spatio-temporal processes, matrix
factorization methods, and hierarchical regression to model shot attempt patterns (Reich et al.,
2006; Miller et al., 2014; Franks et al., 2015; Hu et al., 2021, 2023; Yin et al., 2023). While tensor
decomposition methods are popular in the data science literature for analyzing high-dimensional
data, they are not commonly applied in basketball data analytics, except for Hu et al. (2022).
The authors consider tensor analysis in modeling shot attempt patterns for NBA players in the
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2017-18 regular season. They suggest a Bayesian mixture model of rank-one three-mode tensors
to model the players’ attempts. Their model requires an MCMC algorithm for estimation and
an additional clustering algorithm to be applied to the MCMC output in order to form the
players into clusters. In our study, we also postulate that shot attempt patterns are influenced
by the “who”, “when” and “where” of the shots. Thus, we organize the player identity, game
period, and court location of all shots into a 3-mode tensor. Unlike the approach in Hu et al.
(2022), we use Negative Binomial instead of Poisson distribution to model shot attempts, and a
traditional tensor analysis approach to apply Bayesian nonnegative CANDECOMP /PARAFAC
(CP) decomposition (for a concise introduction of CP method, please see Section 3 of Kolda
and Bader, 2009). There is no need to employ an additional clustering algorithm in our method,
and a computationally efficient variational inference algorithm can be applied. Under a sparsity-
promoting prior setting, we consistently obtain a tensor rank of three for all eight regular seasons
under study. The evolution of these three latent features, represented by the three rank-one
tensors, helps us understand the trends of field goal attempts throughout the study period.

Understanding factors behind achieved shots is another crucial aspect for successful team
management. It is natural to expect that shot attempt intensity affects shot success rate because
players tend to choose locations and times with confidence to shoot. In this regard, there are
several recent studies that analyze shot attempts and shot successes together in a joint model
(Jiao et al., 2021; Wong-Toi et al., 2023). In our study, we use logistic regression to predict
the outcome of each shot, with a variable reflecting shot attempt intensity estimated from the
Negative Binomial part of our model as a predictor. At the same time, we also consider other
predictors, including shot distance, remaining time in the period, and whether the shot is taken
by the home team.

We have made some interesting observations in our experiments. There is a popular con-
ception that the NBA is undergoing a three-point revolution (Zajac et al., 2023; Freitas, 2021;
Rolland et al., 2020) in recent years, and we verify this through a study of the latent features ex-
tracted from the tensor decomposition. Additionally, the 202021 regular season, which was the
only post-COVID season affected by strict crowd restrictions, provides a natural experiment for
us to study the effect of home fans. Related studies (Leota et al., 2022; Ehrlich and Potter, 2023;
Ganz and Allsop, 2024; Steinfeldt et al., 2022) mainly report results regarding rebound numbers
and score differences. In our regression analysis, we find that the home advantage disappears only
in the 202021 season, verifying the importance of the home fans’ effect on shot accuracy as well.

Besides interesting empirical findings, we also contribute to the methodological aspect.
Firstly, the joint model involves logit links in both the Negative Binomial part and the logistic
regression part. We follow Ma et al. (2024) in using double Pélya-Gamma data augmentation
to achieve conditional conjugacy. Secondly, the non-negativity of the latent features obtained
from the tensor decomposition is important for part-based interpretation. Thus, we apply trun-
cated normal distributions as priors for the latent features to maintain both non-negativity and
conditional conjugacy (Cheng et al., 2020; Hinrichy et al., 2018). Lastly, we adopt a variational
inference approach to estimate the model. However, the dispersion parameter r of the Nega-
tive Binomial distribution does not allow for conditional conjugacy. Therefore, we construct a
Variational Bayes EM algorithm similar to that of Soulat et al. (2021) to solve this problem.

In Section 2, we will first have a discussion about the NBA shot chart data that we use. After
that, we shall describe our model and the method of inference in Section 3. The experimental
results are summarized in Section 4 and a final discussion will be given in Section 5.
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2 Data Description

The shot chart data (publicly accessible at http://github.com/swar/nba_api used for our analy-
sis are the regular seasons of NBA league from 2015-16 to 2022—-23. We intentionally exclude the
so-called “bubble” period (30/7/2020 to 14/8/2020) in the 2019-20 regular season. During the
bubble period, only 22 teams (instead of the normal 30 teams) were invited to play, with games
being held behind closed doors at the ESPN Wide World of Sports Complex and the teams
staying at Disney World hotels. Since the environment and operations differ in many aspects
compared to other periods, we decided to exclude the data from these few weeks. However, this
data only comprises less than 9% of the data in the 2019-20 regular season.

Our data contain records with various information about every shot in every game. The
variables include team name, shot player id, shot made/miss, shot distance, shot region, remain-
ing time to end of the quarter, etc. This abundant information help us to build a joint Bayesian
model to analysis the shot attempt patterns and relevant factors behind successful shots.

For each regular season, we only consider shot attempts taken from the frontcourt, as the
number of attempts from the backcourt is relatively rare and has a very low success rate. We
divide the frontcourt into 18 distinct areas, as outlined in Figure 1 and Table 1. Secondly, we
focus our analysis solely on the standard four periods of 12 minutes each, excluding any overtime
periods. Lastly, we only include frequent shooters who made at least 400 shot attempts in the
entire season. Considering the 2021-22 season as an example, after these filtering steps, we arrive
at a 3-mode count tensor of size 223 x 4 x 18, representing the number of shot attempts for
each eligible player, game period, and court location. In the next section, we will introduce a
Negative Binomial model for this count data and apply a non-negative CP tensor decomposition
method to learn the low-rank structure of the tensor and thus identify the common patterns of
shot attempts.

Another part of our analysis is to identify the factors behind field goal successes through
a logistic regression model. It is natural to expect that, for a given game time, a player will
choose a location where they feel more confident and have a better success rate for shooting.
Thus, shot attempt intensity is closely related to the shot success rate. This suggests that a
variable summarizing the attempt intensities for player x period x location combinations from
the Negative Binomial model can serve as a predictor, linking the two parts of our model.
The details of this predictor will be discussed in Section 3. Additionally, we include three more
predictors in the regression. The first is shot distance, which is understandably related to the
likelihood of shot success. The second is a binary variable indicating whether the shooter is from

Figure 1: The eighteen zones defined on the front court.
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Table 1: Description of the 18 zones. The abbreviations C, LC, L, RC, and R refer to Center,
Left Center, Left, Right Center, and Right, respectively.

Zone Description Zone Description

1 C, Restricted Area, <8 feet 2 C, Paint (non-RA), <8 feet
3 C, Paint (non-RA), 8-16 feet 4 C, Mid-Range, 8-16 feet
5 C, Mid-Range, 1624 feet 6 C, Above Break 3, 24+ feet
7 LC, Mid-Range, 1624 feet 8 LC, Above Break 3, 24+ feet
9 L, Paint (non-RA), 8-16 feet 10 L, Mid-Range, 816 feet

11 L, Mid-Range, 1624 feet 12 L, Left Corner 3, 24+ feet

13 RC, Mid-Range, 16—24 feet 14 RC, Above Break 3, 24+ feet

15 R, Paint (non-RA), 8-16 feet 16 R, Mid-Range, 8-16 feet

17 R, Mid-Range, 1624 feet 18 R, Right Corner 3, 24+ feet

the home team, as the home advantage is commonly recognized in sports analysis. The last
predictor is the remaining time in the period, as we want to see if time pressure affects shooting
performance.

We fit our model for the regular seasons from 2015 to 2023 to investigate the trends regarding
shot attempts and successes over time. Additionally, the 2020-21 post-COVID regular season
was seriously affected by the strict crowd policies. This provides us with a natural experimental
setting to understand the effects of home fans on home-court advantage. We will discuss the
details of our empirical findings in Section 4.

3 Bayesian Analysis

3.1 A Negative Binomial-Bernoulli Model

Our objective is to learn the patterns of goal attempts and the factors behind shot successes. The
simplest approach is, of course, to model goal attempts and shot successes separately. However,
as explained in the previous section, it is natural to expect that they are correlated. Thus, a
joint model is necessary to capture this dependence, and a Bayesian approach can facilitate this
well. Our model is inspired by the Negative Binomial-Binomial model proposed by Ma et al.
(2024). In that paper, the authors apply a Negative Binomial model for the total number of
mtDNA chromosomes per cell and use a Binomial model to count how many of those mtDNA
copies have a mutation at a given position. The two models are linked by including the logit of
the probability parameter in the Negative Binomial model as a predictor for modeling the logit
of the probability parameter in the Binomial part.

We consider a similar joint model with two components for goal attempts and shot successes,
respectively. In the first component, we model the number of goal attempts using a Negative
Binomial model. With reference to Hu et al. (2022), we postulate that field goal choices are
mainly affected by three factors: the identity of the player, the game period, and the court
location. Therefore, we use a 3-mode tensor to model these effects. Unlike Hu et al. (2022), we
apply a more traditional way of tensor decomposition and use the Negative Binomial distribution
instead of the Poisson distribution. It is well known that the Negative Binomial distribution has
advantages over the Poisson distribution for modeling over-dispersion commonly found in count
data. Thus we use a Negative Binomial distribution to model y;, the number of field goal attempts
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at the ith player x period x location combination where the subscript i being a triple (i1, i, i3)
that 1 < iy < Iy with I; being the dimension of the k-th mode. We further define I = I} x I, x I3
to be the total number of elements in the tensor. We follow Pillow and Scott (2012) and Neelon
(2019) to parametrize the Negative Binomial distribution as

F()’z‘f"”) T Yi
Tyl (I =)™,

where r is a common dispersion parameter and the parameter v; is defined as

D 3 k
o exp(Q_g—y [ Tizi az‘(k,)d)
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where D is the rank and {aj.l;)l}dzlw Dik=1,...3: j=1,...1, being the latent variables under a standard
CANDECOMP/PARAFAC (CP) decomposition model (Harshman, 1970; Bro, 1997; Sgrensen
et al., 2012; Rai et al., 2015) for the 3-mode tensor.

Notice that under our parametrization of the Negative Binomial model, the expected value
of counts is

ry;
11—y

Thus a larger value of ¥; induces a higher number of attempts on average. One of our objectives
is to study patterns of field goal attempts related to the 3 modes. To ensure interpretability,
we enforce the nonnegativity of the latent variables {a;]";}dﬁw Dik=1,...3: j=1,...I,- Lhis parts-based
representation allows only addition, not subtraction, leading to a more interpretable model where
each extracted latent component represents a distinct part of the data. Specifically, we follow
Cheng et al. (2020) to use Truncated Normal distributions as prior distributions for each of the
latent variables

E(y) =

al) ~TNpoo(0.2;"), ford=1,....D k=13 j=1..1,

where T N, 5 (14, o?) denotes a Truncated Normal distribution with the following density function

p (5

T o (i) — (et

f(x)

with support on (a, b), and p and ® denote the density function and cumulative distribution
function of standard Normal distribution respectively.

The CP rank D is another important quantity to estimate in our model. Exploiting a low-
rank tensor factorization structure (i.e., a small value of D) can facilitate model interpretation
and noise reduction. In our Bayesian analysis, we apply a sparsity-promoting prior over the A4
parameters, similar to the automatic relevance determination (ARD) method (Tipping, 2001;
Zhao et al., 2015). We set

Mg ~ Gammal(e,€), ford=1,...,D,

where Gammal(e, €) represents a Gamma distribution with mean 1 and variance €', and the
parameter € is set to a small value of 107® to promote sparsity following the suggestion of Cheng
et al. (2020).
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The second component of our model is a logistic regression that models the success of each
shot. Here I use x;; to represent the /th shot in the ith player x period x location combination.

We further denote L; to be the number of shots for the ith combination. So for i € {1, ..., I}
and [ € {1, ..., L;}, the regression model is
Xil ™~ b(15 pil)’

_exp(§di + BT zi)
 L4expd + BTzy)’

D 3
o =3 Ta®, + . )

d=1 k=1

Pil

where & and B are regression coefficients, z; is a vector of m predictors and v; is a mean zero
noise term.

Through a logit link, the probability of success, p;; is related to a linear combination of z;;
and another variable ¢;. The idea of including ¢; as a predictor parallels to the design of the
joint model in Ma et al. (2024). Notice that in equation (1), logit(y,) = Yo, szlafﬁ)d and
hence E(¢;) = logit(y;). Recall that a higher value of ¥; implies a higher value of the average
number of goal attempts. Thus including ¢; as a predictor is natural to measure the effect of
shot attempt intensity of the player x period x location combination on the success of a shot.
Here we follow the “explicit noise approach” in Klami (2014) to include a mean zero noise v; in
constructing ¢;. We find that this construction suggests a simpler algorithm and enhances its
stability. To complete the model, we specify the prior distributions of the parameters

E~N(0,7,"), B~Nu(0,Q7),
v ~N(0,7,"), 74~ Gamma(s, 9),

where the hyperparameters ¢, § and Q! are chosen to be 107, 1072 and 107°/,, respectively.

3.2 Pélya Gamma Data Augmentation

When dealing with Bayesian models that have non-conjugate priors, Gibbs sampling or Vari-
ational inference methods can become challenging. However, a data augmentation trick can
sometimes help overcome this hurdle. The idea is to introduce an additional latent variable
® and a corresponding conditional distribution p(@ | B,y). This transforms the original data
model p(y | B) into a joint probability p(y,® | B) = p(y | B)p(w | B,y). The beauty of this
approach is that the desired posterior p(f8 | y) can be obtained as the marginal of the joint
posterior p(B,w | y) x p(y | B)p(@ | B,y)p(B). If the full conditional distributions p(8 | @, y)
and p(w | B,y) are tractable, Gibbs sampler or Variation inference can still be applied efficiently.
The main difficulties of our model come from the likelihood for both parts of our model be-
cause of the logit links. There are no conjugate priors for the parameters of both distributions.
Fortunately, the Pélya Gamma data augmentation suggested in Polson et al. (2013) helps to
build conditional conjugacy that leads to a efficient variational inference algorithm to be intro-
duced in the next section. Details of our augmentation scheme is contained in Supplementary
Material (S.1). This method is widely used in many Bayesian applications involving Binomial
or Negative Binomial likelihoods. In particular, Ma et al. (2024) consider a Binomial-Negative
Binomial spatial model that requires double augmentation similar to our case. However, they
do not consider tensor decomposition and focus on Gibbs sampling that are different from us.



A Bayesian Model with Tensor Decomposition for Basketball Shots 7

3.3 Variational Inference

While MCMC algorithms like Gibbs sampling are promising in estimating the posterior distri-
bution of our model, the computational burden for simulation is daunting because of the large
number of parameters and auxiliary variables. Therefore we follow the Bayesian CP tensor de-
composition literature (Cheng et al., 2020; Hinrichy et al., 2018; Soulat et al., 2021; Takayama
et al., 2022; Yang et al., 2025; Zhao et al., 2015) to approximate the posterior distribution using
Variational Bayes (VB) inference methods. VB algorithms generally converge much faster than
MCMC algorithms and are thus extensively used in machine learning and data science problems
to handle large datasets and complicated models. In particular, we make use of mean-field ap-
proximation as the full conditional distributions are known distributions. For completeness, we
briefly describe the VB method with mean-field approximation below.

Consider a general statistical problem with data 2 and parameters ®, the target of VB
method is to find a distribution ¢(®) (so-called the variational distribution) to approximate the
true posterior distribution p(©|%) by minimizing the Kullback—Leibler (KL) divergence, that is

4(©) ) f ( 4(©) >
KL = ®)1 d®
(p(@@) 1O 612

=Inp(2) - /q(@) ln(@)d®

q(0)
=Inp(2) - L(g),

where In p(2) represents the model evidence, and its lower bound (so-called the ELBO) is defined
by L(g) = fq(@)) ln(%)d@ Since the model evidence is a constant, the maximum of the
lower bound occurs when the KL divergence vanishes, which implies that ¢(®) = p(©|2).

The idea of mean-field approximation is to make an assumption that the variational distri-

bution can be factorized with respect to each parameter ®; such that

q©) =[]a;©).
J

It is important to note that this factorized form is the only assumption made about the varia-
tional distribution. The specific functional forms of the individual factors ¢;(® ;) can be explicitly
derived one by one. The optimised form of the jth factor based on the maximization of L(gq) is
given by

Ing;(©®;) =E_; [ln p(9, G))] + const., (3)

where E_;[-] denotes an expectation w.r.t. the g distributions over all variables except ;.

As we mentioned before, we treat the dispersion parameter r as an unknown constant to
be estimated. In other words, we shall construct a Variational EM algorithm for estimation.
Given an estimate of r, we update the variational distributions of other parameters using mean-
field approximation. After that we update r by maximizing the ELBO. These two steps will
be repeated until the ELBO values stablize at a maximum. Soulat et al. (2021) also consider a
Variational EM algorithm with similar structure for a Negative Binomial count tensor model.

For the variational distribution on the parameters ® = {{“1(5)}’ {Aa), @i}, {wi}, {vir}, 7. &, B,
we adopt the factorization

I J;

D 3 I D 1 1
q(®) = (H [1 ]_[q(a,(f;))) (]‘[ q(m) (1‘[ q(c/),»)) (1_[ q(w») (H q(viz)>q(f¢)q(c§)q(ﬂ).
d=1 i=1 i=1 1

d=1k=11=1 o1 1=
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For each iteration of the algorithm, given an estimate of r, the variational E-step is to update
each component ¢;(®;) one by one based on equation (3). Because of conditional conjugacy, all
components of the variational distribution are well-known distributions. For example g;(B) is
Multivariate Normal distributions and g;(¢;) is Normal distribution. Details of the formulae for
updating the variational distributions are reported in the Supplementary Material (S.2).

After updating the variational distributions, we search r that maximize the ELBO. The
maximization step is detailed in the Supplementary Material (S.2). The above variational-E step
and maximization step will be iterated until the ELBO value stablize at its maximum value.

4 Application to NBA Data

In this section, we summarize our experimental results for the NBA data. In the first part, we
will discuss the findings from the Negative Binomial component of our model. For all the regular
seasons analyzed, our algorithm consistently chooses a rank of 3 for the CP tensor decompo-
sitions. Thus, there are three latent features behind the distributions of field goal attempts.
We will compare the similarities and differences of these three factors across the NBA seasons
studied. In the second part, we will focus on the logistic regression component of our model
and report on the significance of various predictors of shot successes. To provide a clear and
concise description, we will only report part of the graphs and numerical results to highlight our
findings. More graphical results can be found in the Supplementary Material (S.3).

4.1 Results for Shot Attempts

In each run of our algorithm, we start with an initial CP tensor rank of 15, and after estimation,
we consistently find that only 3 dominant latent features remain. Each feature is a rank-1 3-mode
tensor describing the patterns related to the player, period, and location of the feature. For easier
discussion, the analysis below is based on the mean of the variational distributions of the latent
feature elements. We first study the 3 features based on the location mode. We report the relative
importance of the 18 locations for the 3 features for alternate years from 2015-16 to 2021-22
in Figure 2. This choice allows us to observe the trend over time while keeping the number of
graphs manageable.

For each panel in Figure 2, zones with darker colors and larger areas represent those with
larger means of the variational distributions and are therefore more important. The first to
fourth rows correspond to the seasons 2015-16, 201718, 2019-20 and 2021-22, respectively. We
first notice that the left column can be interpreted as a factor mainly for 3-point attempts (with
some from the restricted area), while the right column pertains to attempts concentrated in the
restricted area and near the basket. The pattern in the middle column is more diffuse, but we
can still observe that attempts are primarily from mid-range and the paint area.

How about the change in patterns over time, i.e., along the columns? The changes in the
left and right columns are not obvious. However, if we focus on the middle column, there is a
clear trend that we can observe. For the 2015-16 season, we do not observe any significance
in 3-point attempts. However, in later seasons, the circles for 3-point attempts from the center
and the wings grow larger and darker. This observation aligns with the trend of the growing
importance of 3-point shooting observed in recent years.

Next, we would like to study the three latent features with respect to the game period mode.
As the patterns are similar for all seasons, we only report here the result of season 2015-16.
Figure 3 shows the mean values of the variational distributions for the four periods (normalized
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Figure 2: The first, second, third and fourth rows are for seasons 2015-16, 2017-18, 201920 and
2021-22 respectively. The columns correspond to the three latent factors of the location mode.
Zones with darker colors and larger areas are with larger posterior means for the latent factor.

so that they add up to 1 for easier comparison) for each latent feature. We notice that for
both the first and third latent features, the distribution among the four periods is quite even.
However, the second latent feature, which corresponds to mid-range and paint area attempts for
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Figure 3: The three bar graphs are correspond to the three latent factors of the period mode of
the regular season 2015-16. Each bar graph shows the normalized posterior means of the factor
values for the four quarters.

the location mode, is less even. Notably, more attempts are made in the first quarter compared
to the fourth quarter.

Lastly, we study the distribution of players across the three latent factors. Here, we will not
investigate individual players. Instead, we aim to examine the differences among the five player
positions: center (C), power forward (PF), small forward (SF), point guard (PG), and shooting
guard (SG) (position data downloaded from https://www.basketball-reference.com). To study
the difference across the five position groups, we pick the 2015-16 season for demonstration.
Figure 4 reports, for each latent feature and player position, a frequency histogram of the player
mode normalized posterior means (multiplied by 100 for better illustration). Again, a larger
value on the x-axis represents higher importance.

3
20- 20

Ll and i 1ald

00 05 10 00 05 10 00 05 10 00 05 10 00 05 10 00 06 1200 06 1200 06 1200 06 1200 06 12 0.00 0.551.100.00 0.55 1.100.00 0.5 1.100.00 0.5 1.100.000.55 1.10
Latent factor 1 Latent factor 2 Latent factor 3

Number of players
Number of players
Number of players

Figure 4: Each panel demonstrate histograms for the five positions for a latent factor of the
player mode in the 2015-16 regular season. Each histogram reveals the frequency distribution
of the normalized posterior means of factor values for players in a certain position. C, PF, SF,
PG and SG correspond to the positions of Center, Power Forward, Small Forward, Point Guard
and Shooting Guard respectively.
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Figure 5: The eight histograms show the trend from regular season 2015-16 to 2022-23. Each
histogram reveals the frequency distribution of the normalized posterior means of the latent
factor 1 values for players in the Center position.

We first notice that players in the center (C) position are much more dominant in the right
panel compared to the left and middle panels. This is reasonable because centers are usually
the largest players controlling the restricted area near the basket. Another observation is that
shooting guards (SG) are more prominent in the left panel compared to the middle and right
panels. This makes sense, as shooting guards are typically the best shooters on the team and
generally take more 3-point attempts.

Besides comparing across position groups, it is also interesting to observe any patterns of
change for a group over time. Among the five groups, the most notable change comes from the
center (C) group. Figure 5 shows the change in the distributions of the latent factor 1 values for
the center group over time. Recall that latent factor 1 corresponds to 3-point attempts in the
location mode. We can see that the fraction of center players with high importance in this factor
grows over time. Again, this observation provides further evidence for the growing importance
of 3-point throws in recent years.

4.2 Results for Shot Successes

We now turn to a discussion about the logistic regression estimation results for shot successes.
We have four predictors under consideration and Table 2 summarizes the means and standard
deviations of the variational distributions of the corresponding parameters. The predictor “At-
tempt Intensity” in Table 2 refers to the variable ¢; defined in equation (2) of Section 3.1.
“Minutes left”, “Distance” and “Home” refers respectively, to the minutes left to end of the
period, distance to basket and whether the shooter is from the home team.

We notice that “Attempt Intensity”, “Minutes left” and “Distance” are all significant in all
seasons with their signs reasonable. “Attempt Intensity” is positively correlated to shot success
as we postulate in Section 3.1. It is also natural that the success rate is higher when either
“Minutes left” is larger because of less pressure or “Distance” is shorter for better accuracy. The
most interesting finding comes from the “Home” variable. This predictor is significant (or at least
marginally significant) for all seasons except the 2020-21 season. Recall that the unique feature
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Table 2: Results of the Logistic regression part for the shot successes. Reported values are
posterior means with posterior standard deviation in parentheses.

Intercept Attempt intensity Minutes left Distance Home
2015-16 —0.1589(0.0129) 0.1334(0.0016) 0.0057(0.0015) —0.0302(0.0005) 0.0188(0.0100)
2016-17 —0.1319(0.0128) 0.1347(0.0016) 0.0066(0.0015) —0.0309(0.0005) 0.0421(0.0099)
2017-18 —0.1811(0.0129) 0.1618(0.0016) 0.0063(0.0015) —0.0300(0.0005) 0.0302(0.0099)
2018-19 —0.1747(0.0125) 0.1524(0.0015) 0.0074(0.0014) —0.0317(0.0005) 0.0312(0.0096)
2019-20 —0.1466(0.0151) 0.1504(0.0019) 0.0066(0.0017) —0.0309(0.0006) 0.0209(0.0116)
202021 —0.0763(0.0144) 0.1415(0.0017)  0.0079(0.0016) —0.0318(0.0005) 0.0075(0.0109)
2021-22 —0.0566(0.0131) 0.1502(0.0016)  0.0046(0.0015) —0.0360(0.0005) 0.0216(0.0100)
2022-23 0.0034(0.0129) 0.1369(0.0015) 0.0062(0.0014) —0.0368(0.0005) 0.0356(0.0098)

Remark: For the 2019-20 regular season, only the pre-bubble period data are used.

of this season is the strict post-COVID crowd restriction policies that were applied. Therefore,
the effect of home fans is almost eliminated, while other home court advantages, such as travel
and familiarity with the court, are still present. Thus, the result we observe can be interpreted as
evidence that the home fans’ effect is a decisive component of home court advantage regarding
shot accuracy.

5 Discussion

Our contribution lies in both the methodological and application sides. On the methodological
side, we promote the use of tensor analysis in sports data analytics, which is not common. In
addition, the model and algorithm we propose incorporate data augmentation, tensor decompo-
sition, and variational inference. On the application side, our results are consistent, reasonable,
and inspiring. We consistently obtain three interpretable latent features to understand the pat-
terns with respect to “who”, “when” and “where” behind shot attempt behavior. The well-known
phenomenon of the growing importance of three-point shots is also observed in our results. More
interestingly, we find that a major driver of home advantage on shot successes is the presence of
fans in arena.

There are several directions for extending this work. On the application side, the joint
model we proposed can be applied to studies where we want to understand the pattern behind
some exposures and at the same time we want to learn the effect of exposures on outcomes.
For example, we may want to understand the features behind the number of infectious cases
regarding location, time and disease type. At the same time, we may postulate that the exposure
value may affect the chance of death and hence a joint model is appropriate.

On the technical side, possible extensions include considering other tensor decomposition
methods like Tucker decomposition (Tucker, 1966) instead of CP decomposition to allow for
more flexibility, and using a Multiplicative Gamma Process (MGP) prior (Takayama et al.,
2022) instead of an ARD-type prior to exert more control over sparsity and the number of ranks
in the decomposition. Certainly, MCMC algorithms can be developed to replace the variational
EM algorithm to obtain more exact posterior inference, but the computational time will be
exceptionally high for our large datasets.
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Supplementary Material

We have included a supplementary section about the details of the Pélya-Gamma augmentation,
the variational EM algorithm outlined in Section 3, and more graphs for the empirical analysis.
The codes for downloading the shot chart data and for generating the major results are included
in https://github.com/kwhol/NBA JDS.
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