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Abstract 

Although hypothesis testing has been misused and abused, we argue 

that it remains an important method of inference. Requiring prereg- 

istration of the details of the inferences planned for a study is a major 

step to preventing abuse. But when doing hypothesis testing, in practice 

the null hypothesis is almost always taken to be a “point null”, that is, a 

hypothesis that a parameter is equal to a constant.  One reason for this is 

that it makes the required computations easier, but with modern computer 

power this is no longer a compelling justification. In this note we explore 

the interval null hypothesis that the parameter lies in a fixed interval. We 

consider a specific example in detail. 
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1. Introduction 

The main focus of this article is on the choice of the null hypothesis in 

significance testing. Because of controversy about the need for hypothesis 

testing as a method of inference, we begin with a brief defense of its use. We 

then discuss the choice of an interval null hypothesis versus a point null 

hypothesis, relying largely on a simple example. We end with some further 

discussion. 

 

2. Do We Need Significance Testing at All? 

2.1 Progress in Science Relies in Part on Testing Hypotheses 

“Progress in science relies in part on generating hypotheses with existing 

observations and testing hypotheses with new observations.” (Nosek, et al., 2018) 

Other statistical techniques, including confidence intervals and graphical 

displays of data, are important supplements but not replacements for significance 

testing. For a very readable and thorough account of how science progresses, 

Mayo (1996) is recommended. 

2.2 Preregistration of Analysis Plans 

Despite the value of significance testing, there is much cotroversy 

surrounding its use (Wasserstein and Lazar, 2016). In particular, the method has 

been abused by researchers altering their analyses or changing what they choose 

to publish in response to the new data being analyzed. Doing so violates the 

principles on which significance tests are based. A step forward in treating this 

abuse is preregistration in which the researcher specifies the analysis plan in 

advance of data collection. The recent article of Nosek et al. (2018) thoroughly 

addresses preregistration. They note that: “The World Health Organization 

maintains a list of registries by nation or region 

(www.who.int/ictrp/network/primary/en/), such as the largest existing registry, 

https://clinicaltrials.gov/.” (p. 2605) They mention other registries as well. We 

take this opportunity to mention a new registry planned to be active in late 2018 

and not covered by Nosek et al. (2018). This is the Society for Research on 

Educational Effectiveness (SREE) Registry of Efficacy and Effectiveness 

Studies (REES) https://www.sree.org/pages/registry.php dedictaed to causal 

inference studies in education and related areas of social science. 

Nosek et al. (2018) also discusses analyses not fitting the standard pattern, 

such as the case of a researcher wanting to do a fresh analysis of an existing 

dataset. 

Registries can be of benefit to a researcher doing a meta-analysis, that is, a 

study that combines all studies on a particular topic into one all-encompassing 

analysis. A correct meta-analysis needs to incorporate negative as well as 

positive results. The diligent meta-analyst can search registries for studies that 

http://www.who.int/ictrp/network/primary/en/)
http://www.who.int/ictrp/network/primary/en/)
http://www.sree.org/pages/registry.php
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were 

planned but not published and contact the proposed data analyst to find out 

what happened. 

It should be emphasized that preregistration does not preclude discussing in 

research reports unanticipated findings in the data or findings that do not quite 

reach statistical significance. Such findings can be mentioned in an exploratory 

fashion as deserving further research. 

2.3 Significance Testing When Used as Intended 

Many have criticized significance testing even when used as intended. It is 

useful to first state what significance testing is supposed to do. Mayo and Cox 

(2006, p. 81) write: 

The immediate objective is to test the conformity of the particular data under 

analysis with H0 in some respect to be specied. To do this we find a 

function 𝑡 =  𝑡(𝑦) of the data, to be called the test statistic, such that 

 the larger the value of t the more inconsistent are the data with H0; 

 the corresponding random variable T = t(Y ) has a (numerically) known 

probability distribution when H0 is true. 

The probability that 𝑇 ≥  𝑡 given that the null hypothesis is true becomes the 

criterion on which the conformity is judged. 

A common confusion is to think that significance testing is designed to test 

the probability that the null hypothesis is true, but that is not its purpose. Here it 

differs from a Bayesian hypothesis test, which does measure the probability that 

the hull hypothesis is true, assuming a specific prior distribution. It is therefore 

not correct to consider a Bayesian hypothesis test as a substitute for a 

significance test, or vice versa. 

Like all statistical procedures (even nonparametric ones), significance testing 

depends on underlying assumptions. The data may be assumed, for example, to 

be independent and identically distributed, and perhaps normally distributed. If 

these assumptions fail, significance testing can give erroneous results. 

 

3. Point Null and Interval Null Hypotheses 

If it is accepted that significance testing is worthwhile, there remains the 

choice of the null hypothesis. Most commonly, a point null hypothesis is used. 

By a point null hypothesis we mean one of the form H0 : 𝜃 =  𝑐  where c is a 

constant. In most situations that arise in practice, if the sample size is large 
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enough, the point null hypothesis will be rejected. Practitioners will often say the 

hypothesis was rejected because the sample size was “too large.” But this is an 

anathema to a statistician where the guiding principle is the more data the better 

if the data are properly used. The problem arises because of the form of the null 

hypothesis. We do not usually care if the unknown parameter θ is exactly equal 

to c provided that it is close. It therefore makes sense to consider the null 

hypothesis that the parameter lies in a small interval around c. 

We are, of course, far from the first to express concern about point null 

hypotheses. Berkson (1938, 1942) wrote on this extensively. Hodges and 

Lehmann (1954) studied in detail some specific problems involving non-point 

null hypotheses. Serlin and Lapsley (1985) supported the use of non-point null 

hypotheses  with an emphasis on applications in psychology and other “soft” 

sciences. Anderson, Burnham, and Thompson (2000) investigated an 

information theoretic alternative to point null hypothesis testing. Tryon (2001) 

wrote: “Null hypothesis statistical testing (NHST) has been debated extensively 

but always successfully defended.” He advocated using “inferential” confidence 

intervals to test hypotheses in a way that ameliorates their misuse. Very recently, 

Rao and Lovric (2016) and Zumbo and Kroc (2016) addressed point null 

hypothesis testing.  This is by  no means a complete list of studies treating point 

null statistical hypotheses. 

 

4. An Example of the Problem 

We illustrate the problem with point null statistical hypotheses with a specific 

example. Suppose an expert has asserted that the average salary θ in a particular 

occupation is $68, 000 a year. To check this, a simple random sample of size n is 

drawn. We assume the response rate is 100% and the data are exactly normally 

distributed with a known standard deviation of $4, 000. (These assumptions are 

unrealistic, but they simplify the presentation without affecting the basic point 

we are making.) We test H0 ∶  𝜃 =  68, 000 versus HA ∶  θ ≠  68, 000. Suppose 

the true value of θ is 68, 100. Table 1 shows the probability of rejecting the null 

hypothesis H0 as a function of the sample size n when the Type I error α is set 

to .05. 

We see that as the sample size increases, the probability of rejecting H0 

increases, eventually becoming almost 1. In one sense, this is as it should be, in 

that θ ≠  68, 000. But it is very possible that the expert meant that 67, 500 ≤

 θ  ≤  68, 500 since annual salaries are often rounded to the nearest thousand.  

So why not make the null hypothesis H0
∗ ∶  67, 500 ≤  θ ≤  68, 500? 
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Table 1: Probability of rejecting point-null H0 : θ = 68, 000 when θ = 68, 100 for sample size n. 

n Probability of rejecting 

10 .051 

50 .054 

100 .057 

500 .086 

1,000 .124 

5,000 .424 

10,000 .705 

50,000 1.000 

NOTE: Probabilities are rounded to three decimal places. 

 

5. The Example Continued with an Interval Null Hypothesis 

Let’s now consider the interval null hypothesis H0
∗  ∶  67, 500 ≤  𝜃 ≤

 68, 500. Letting I be the interval [67, 500,   68, 500], we can write this as H0
∗  ∶

 𝜃 ∈  𝐼. What is the type I error; that is, the probability of rejecting H0
∗  if 𝜃 ∈  𝐼 ? 

Clearly if θ is near the midpoint of the interval, the probability of rejecting H0
∗  is 

less than if it were at or near one of the endpoints. Let 𝛼(𝜃) be the probability of 

rejecting H0
∗   for 𝜃 ∈  𝐼. Let 𝛼MAX be the maximum value of α(θ), θ ∈ I.  To be 

conservative, we shall seek a rejection region such that 𝛼𝑀𝐴𝑋  =  .05. The choice 

of .05 is conventional in many fields but, of course, other values could be used. 

 

Table  2: Probability  of  rejecting  interval-null  H0
∗ ∶ 𝜃  ∈  𝐼 when  θ  =  68, 100  for sample size n. 

 

n Probability of rejecting 

10 .036 

50 .013 

100 .005 

500 .000 

1,000 .000 

5,000 .000 

10,000 .000 

50,000 .000 

NOTE: Probabilities are rounded to three decimal places. 

 

In Table 2, we display the probability of rejecting H0
∗   when θ  = 68, 000 and 

𝛼𝑀𝐴𝑋  =  .05. In problems where 68,000 and 68,100 are “practically equal,” the 

behavior of H0
∗  in Table 2 is preferable to the behavior of H0 in Table 1 in terms 

of the probability of rejection. 
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6. Power 

If the true value of θ is such that the null hypothesis does not hold then the 

power 𝑃(𝜃) is the probability of rejecting the null hypothesis. In Table 3 we 

compare the power of 𝐻0  and 𝐻0
∗  for various values of θ and sample size n. 

Because of symmetry about 68, 000 in the example, 𝑃 (66, 500)  =
 𝑃 (69, 500), 𝑃 (66, 000)  =  𝑃 (70, 000), etc., so we only display power for θ 

greater than 68, 000. 

The interval null hypothesis does have somewhat less power than the point 

null hypothesis. 

 

7. Discussion 

The purpose here is to encourage the use of null hypotheses that accurately 

reflect what one seeks to reject or not, statistically, depending on the data. We 

are not addressing the issue of subject-matter significance that is typically 

handled by effect sizes. Judging effect sizes is a vitally important part of 

significance testing requiring sophisticated subject-matter knowledge, and we 

prefer to keep it as a separate step. It is worth noting, however, that there is some 

interesting recent work (Blume, 2017) seeking to combine the determination of 

statistical and subject-matter significance. 

 

Table 3: Power 𝑃𝑃 (𝜃) for point-null 𝐻0 ∶  𝜃 =  68, 000 and power PI (θ) for interval- null 

𝐻0
∗: 𝜃 ∈  𝐼 for three values of θ and sample size n. 

n 𝑃𝑃  (69, 500) 𝑃𝐼  (69, 500) 𝑃𝑃  (70, 000) 𝑃𝐼  (70, 000) 𝑃𝑃  (70, 500) 𝑃𝐼  (70, 500) 

10 .220 .180 .353 .301 .507 .449 

50 .755 .548 .942 .842 .993 .970 

100 .963 .804 .999 .982 1.000 1.000 

500 1.000 1.000 1.000 1.000 1.000 1.000 

1,000 1.000 1.000 1.000 1.000 1.000 1.000 

5,000 1.000 1.000 1.000 1.000 1.000 1.000 

10,000 1.000 1.000 1.000 1.000 1.000 1.000 

50,000 1.000 1.000 1.000 1.000 1.000 1.000 

NOTE: Power is rounded to three decimal places. 

 

Another approach to dealing with a point null hypothesis and a large sample 

size is to let the Type I error level α decline as the sample size increases. This is 

a very artificial way of treating the problem of having to reject the point null 

hypothesis when the true θ is very close to the point null hypothesis value and 

evades acknowledging that the point null hypothesis is, in fact, false. 

The computations involved with an interval null hypothesis are typically 

more difficult than those for a point null hypothesis. We were able to do the 
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calculations directly in the example presented here, but this may not be possible 

in other problems. As Rao and Lovric (2016) noted, with modern computing 

power these problems are tractable, by simulation if necessary. 

This article has been written as if a single hypotheis were being tested, but it 

is more typical that multiple hypotheses are tested from the same experiment or 

obsevational study. Adjustments to control the familywise error rate (e.g., Tukey, 

1949, or Dunnett, 1955) or the false discovery rate (Benjamini and 

Hochberg,1995) are needed. These adjustments are independent of the choice of 

the null hypotheses. 

The parameter θ has been one dimensional in our treatment but it could be a 

vector as well. In that case, the “interval” would be a multidimensional box or 

ellipsoid whose size and shape were prespecified. 
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