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Abstract

Detecting illicit transactions in Anti-Money Laundering (AML) systems remains a significant
challenge due to class imbalances and the complexity of financial networks. This study intro-
duces the Multiple Aggregations for Graph Isomorphism Network with Custom Edges (MAGIC)
convolution, an enhancement of the Graph Isomorphism Network (GIN) designed to improve
the detection of illicit transactions in AML systems. MAGIC integrates edge convolution (GINE
Conv) and multiple learnable aggregations, allowing for varied embedding sizes and increased
generalization capabilities. Experiments were conducted using synthetic datasets, which simulate
real-world transactions, following the experimental setup of previous studies to ensure compara-
bility. MAGIC, when combined with XGBoost as a link predictor, outperformed existing models
in 16 out of 24 metrics, with notable improvements in F1 scores and precision. In the most
imbalanced dataset, MAGIC achieved an F1 score of 82.6% and a precision of 90.4% for the
illicit class. While MAGIC demonstrated high precision, its recall was lower or comparable to
the other models, indicating potential areas for future enhancement. Overall, MAGIC presents
a robust approach to AML detection, particularly in scenarios where precision and overall qual-
ity are critical. Future research should focus on optimizing the model’s recall, potentially by
incorporating additional regularization techniques or advanced sampling methods. Additionally,
exploring the integration of foundation models like GraphAny could further enhance the model’s
applicability in diverse AML environments.

Keywords deep learning; financial fraud detection; graph neural networks; graph
representation learning

1 Introduction
Money laundering represents a formidable challenge to the integrity of global financial systems,
enabling illicit activities by concealing the origins of illegally acquired funds. Consequently,
Anti-Money Laundering (AML) strategies have emerged as critical for financial institutions
and regulatory bodies. The evolution of AML solutions has increasingly embraced advanced
technologies, with graph neural networks (GNNs) recognized for their potential to model the
intricate relationships within financial transaction networks.

However, AML research and the development of GNN-based solutions are hindered by the
scarcity of accessible and realistic datasets (Eddin et al., 2021), which are essential for rigorous
model evaluation and refinement. Addressing this challenge, Silva et al. (2023) introduced and
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published a specially designed, imbalanced dataset generated with the IBM AML simulator,
alongside their model results, providing a valuable benchmark for assessing the efficiency of
graph neural networks in detecting illicit transactions.

This study advances the design and application of GNNs in AML tasks by proposing the
Multiple Aggregations for Graph Isomorphism Network with Custom Edges (MAGIC), a novel
convolutional architecture that enhances the traditional Graph Isomorphism Network (GIN).
MAGIC extends GIN by integrating edge convolution (GINE Conv), expanding its functional
scope. Unlike the original GIN, which lacks the capacity for multiple aggregations, MAGIC
introduces multiple learnable aggregation mechanisms, allowing for diverse embedding sizes.
This adaptability enhances the model’s expressiveness, as demonstrated in recent studies (Corso
et al., 2020; Tailor et al., 2022; Li et al., 2023). The ability to learn a broader range of feature
representations positions MAGIC as effective tool for modeling the complex and imbalanced
data structures prevalent in AML applications.

To further optimize performance, this study develops a hybrid link-prediction model that
combines the MAGIC convolution with XGBoost, a gradient-boosted decision tree framework.
This integration leverages the complementary strengths of graph neural networks and gradient
boosting to enhance the detection of illicit transactions, even under the challenging conditions
of highly imbalanced datasets.

A comprehensive comparative analysis is also undertaken using the dataset and protocols
established by Silva et al. (2023). This analysis enables a direct evaluation of the MAGIC model
against existing approaches, using identical experimental setups. Such rigorous comparison not
only highlights the capabilities and limitations of MAGIC but also provides valuable insights
into its performance relative to competing methodologies in AML detection tasks.

The paper is structured as follows: Section 2 provides an overview of the money laundering
problem, AML systems, reviews existing graph neural network studies, and discusses available
training datasets for AML. Section 3 outlines the foundations of the MAGIC model, including
the GIN and GINE architectures, the formalization of the novel approach, and the experimental
design. Section 4 presents the findings and their implications. The paper concludes in Section 5,
which summarizes the study and proposes future research directions.

2 Related Work

2.1 Money Laundering and AML Solutions

Money laundering involves converting proceeds from criminal activities into assets that ap-
pear legitimate, with the aim of obscuring the origins of illegally acquired funds by exploiting
financial systems. Modern legal frameworks, such as the European Union’s 2015/849 directive
(Parliament, 2015) and the American Anti-Money Laundering Act (Thornberry, 2021), similarly
target efforts to conceal or misrepresent the control or ownership of assets involved in financial
dealings.

As the global financial system grows more complex, effective AML solutions are becoming
increasingly important. The rise of machine learning tools has driven significant advances in AML
strategies, ranging from basic rule-based approaches to sophisticated methods incorporating
machine learning and graph analytics (Han et al., 2020). Techniques such as Support Vector
Machines, Decision Trees, and more recently, GNNs have been effectively employed to identify
suspicious activities within transactional data, underscoring their broad applicability in AML
tasks (Alsuwailem and Saudagar, 2020; Dumitrescu et al., 2022).
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Graph Neural Networks, in particular, have become instrumental in modeling the hetero-
geneous nature of money laundering data, enabling innovative solutions for detecting illicit ac-
tivities through traditional graph analyses as well as more advanced machine learning pipelines
(Alarab et al., 2020; Johannessen and Jullum, 2023). Recent studies illustrate the superiority
of GNN-based models over conventional machine learning approaches in identifying suspicious
transactions, especially when combining techniques such as self-supervision and hybrid modeling
(Silva et al., 2023).

The use of GNNs in money laundering detection spans various tasks, including node classi-
fication, link prediction, and anomaly detection within financial networks. For instance, a study
by Alarab et al. (2020) applied Graph Convolutional Networks (GCNs) to classify nodes repre-
senting transactions as either licit or illicit within the Elliptic dataset. In this study, the GCN
model effectively aggregated features of the neighboring nodes, utilizing both convolutional and
linear layers to achieve improved classification results. The model surpassed earlier attempts by
demonstrating the power of GCNs to incorporate local node information into the final classifi-
cation outcome.

Similarly, GNNs can also model more complex relationships in heterogeneous data. In a
study by Johannessen and Jullum (2023), a heterogeneous extension of the Message Passing
Neural Network (MPNN) was applied to a large-scale real-world dataset derived from Norway’s
largest bank. This dataset encompassed customer information, transaction data, and business
role data, forming a highly heterogeneous graph of 5 million nodes and nearly 10 million edges.
The heterogeneous MPNN (HMPNN) utilized distinct message-passing operators for each node-
edge type combination, effectively capturing the diverse relationships inherent in this dataset. By
modeling various types of nodes (e.g., customers, businesses) and edges (e.g., transactions, own-
ership), the HMPNN could discern nuanced patterns indicative of money laundering. Notably,
the model provided insights into potentially mislabeled customers who were initially identified
as regular but exhibited characteristics associated with high-risk activities.

Traditional graph analytics also play an important role in AML analysis, particularly for
anomaly detection within transactional networks. Weber et al. (2018) discussed how graph an-
alytics have become a central tool for AML, especially in analyzing cash flow relationships
between entities represented as nodes and edges within graphs. Graph representations may vary,
from modeling individual accounts as vertices and transactions as edges, to aggregating ac-
counts under a holding entity and studying their relationships collectively. These approaches,
including graph-based analysis of cryptocurrency transactions, are increasingly used for forensic
investigation, combining clustering techniques with public attribution data to uncover money
laundering activities. Classical graph algorithms like cycle detection, PageRank, egonet, and
label propagation have proven effective in identifying anomalies and suspicious relationships in
both cryptocurrency networks and traditional financial systems. Such algorithms enhance the
capacity to identify structural features of the financial network that deviate from normal be-
havior, assisting in the early detection of fraudulent activities and significantly reducing false
positives when analyzed by expert AML professionals.

The versatility of GNNs in addressing money laundering detection becomes evident through
their varied applications. These include tasks like node classification for flagging illicit transac-
tions, link prediction for identifying suspicious financial relationships, and graph analytics for
deciphering complex network structures. By capturing hidden patterns and relationships within
transactional data, GNNs offer a more nuanced understanding of financial networks, thereby
enhancing the detection of sophisticated money laundering schemes. When combined with tra-
ditional graph analytics, GNNs further increase the effectiveness of AML systems, enabling
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financial institutions to detect and respond to illicit activities with greater precision and effi-
ciency.

2.2 Graph Neural Networks

GNNs constitute a specialized category of deep learning models designed to interpret graph data
intrinsically. Unlike traditional neural network architectures, GNNs can directly incorporate re-
lationships (edges) between nodes (vertices), exhibit resilience against irregular graph structures,
and manage large-scale sparse data, while leveraging the capabilities of deep learning algorithms
(Wu et al., 2021).

The genesis of GNNs can be traced back to early models like Recurrent Graph Neural
Networks by Gori et al. (2005); Scarselli et al. (2009) and Echo State Networks by Gallicchio
and Micheli (2010). These models laid the groundwork for identifying structural patterns within
graphs and introduced mechanisms for learning that are similar to the concept of backprop-
agation through time used in recurrent neural networks. Spectral-based Convolutional Graph
Neural Networks, presented by Bruna et al. (2014); Defferrard et al. (2016), heralded a pivotal
advancement towards the contemporary message-passing paradigm (Wu et al., 2021).

A milestone in this evolution was the introduction of the GCN (Kipf and Welling, 2017).
Due to its simplicity and adaptability, it established a foundation for developing the MPNN
(Gilmer et al., 2017) and its subsequent variants. A comprehensive meta-analysis by Wu et al.
(2021) identified over forty distinct GNN variants utilizing the MPNN paradigm. Prominent
models that have significantly influenced the field include:
1. GraphSAGE (Hamilton et al., 2017) – enhances the message-passing framework’s aggregation

phase by integrating the node’s current features (skip-connection), followed by a pooling
operation.

2. Graph Attention Network (GAT) (Velickovic et al., 2017) – introduces attention mechanisms,
similar to those utilized in natural language processing models, to message-passing.

3. GIN network (Xu et al., 2018) – demonstrated to theoretically match the Weisfeiler-Lehman
graph isomorphism test’s expressiveness through the deployment of nested multi-layer per-
ceptron (MLP) networks.
These models have traditionally focused on homogeneous graphs, which consist of a sin-

gle type of node and edge. However, recent research has increasingly focused on heterogeneous
graphs, which encompass multiple types of nodes and edges, reflecting a broader range of real-
world scenarios and complex knowledge representations (Shi, 2022). For instance, heteroge-
neous graphs can effectively model academic publishing activities, denoting relationships such
as author–writes–paper, reviewer–reviews–paper, and editor–publishes–paper.

A systematic survey (Yang et al., 2020) categorizes over forty heterogeneous GNN archi-
tectures into families based on their processing methodologies and transformation techniques.
These encompass message-passing network variants, proximity-preserving methods, and rela-
tional learning strategies. The challenge of integrating heterogeneous relations without compro-
mising the network’s depth, stability, and generalization capacity remains one of the paramount
areas of research within the field (Wu et al., 2021; Shi, 2022).

2.3 AMLSim Datasets

A major challenge in money laundering research is the limited availability of publicly accessible,
real-world datasets. The confidential nature of financial data, particularly those obtained during
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money laundering investigations, coupled with legal and privacy constraints, significantly re-
stricts access to authentic datasets for research purposes. This scarcity of real-world data poses
obstacles to the reproducibility and transparency of studies on AML models, often forcing re-
searchers to rely on simulated or synthetic datasets that may not fully capture the complexity
of actual money laundering operations.

This study builds upon the datasets and methodological framework established by Silva
et al. (2023), which utilized data generated by the financial transaction simulation tool ‘AML-
Sim’, developed by IBM (Weber et al., 2018). AMLSim extends the functionality of the PaySim
architecture and is specifically designed to simulate transactional patterns indicative of money
laundering activities. This simulator is notable for its ability to fine-tune a wide range of pa-
rameters, including the duration of the simulation in time steps (e.g., days), transaction value
ranges, class imbalance ratios, and other statistical variables. In their study, Silva et al. (2023)
generated a dataset representing daily transactional activities over the year 2020, comprising
365 time steps. The dataset includes account identifiers, predefined suspicion indicators, details
of sending and receiving accounts, and transaction types. Detailed descriptions of the dataset
attributes and their interpretation are provided in the supplementary material.

To ensure comparability with the methodologies and datasets used in that study and to
guarantee consistency and reproducibility of results, this work adopts the same datasets, feature
attributes, and train-test splits as specified by Silva et al. (2023).

The contribution of Silva et al. (2023) is particularly valuable, providing a standardized
synthetic dataset and a methodological reference point for AML research. By offering simulated
transactional data that approximates real-world conditions, their work facilitates model evalu-
ation and comparison while addressing the reproducibility gap in the field. This study builds
upon their contributions, leveraging these resources to further advance the development of AML
models.

3 Proposed Method
This section provides an overview of the proposed method and its core components. It includes
a description of the MPNN framework and the variants of the GIN model, followed by an
introduction to the new MAGIC model, and concludes with an explanation of the hybrid link
predictor and the experimental design.

3.1 MPNN and GIN

Many modern graph neural networks are defined in terms of MPNN equations (Gilmer et al.,
2017; Hamilton, 2020). In this context, a graph is described formally as G = {V, E}, where V is
a set of vertices and E is a set of edges. Each vertex u ∈ V and edge eij ∈ E are represented as
vectors hu, hv ∈ R

d and eij ∈ R
e, respectively, where d and e denote the dimensions of the vertex

and edge embeddings or initial features.
The general message passing process at iteration k involves two main steps. First, the

aggregation step uses the function AGGREGATE(k) to combine information from the neighbors
of node v into an intermediate message representation

m
(k)

N (v)
= AGGREGATE(k)

({
h(k)

u | ∀u ∈ N (v)
})

, (1)

where N (v) denotes the set of neighbors of node v. Next, the update step employs the function
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UPDATE(k) to integrate the aggregated message with the node’s current representation

h(k+1)
v = UPDATE(k)

(
h(k)

v , m
(k)

N (v)

)
. (2)

This framework serves as the foundation for various GNN models.
The model proposed in this study is an extension of the GIN (Xu et al., 2018) and its

edge-processing version (Liu et al., 2020; Hu et al., 2019) for homogeneous graphs. The original
GIN is formalized as

h(k)
v = MLP

⎛
⎝(

1 + ε(k)
)
h(k−1)

v +
∑

u∈N (v)

h(k−1)
u

⎞
⎠ , (3)

where MLP : Rd → R
d ′ is a multi-layer perceptron, ε(k) is a learnable parameter that modulates

self-loops, and h(k−1)
v and h(k−1)

u are the embeddings of nodes v and u from the previous iteration.
Because of the non-linearity introduced by the MLP, GIN is theoretically proven to behave

like a graph-injection function, properly identifying nodes in the graphs and passing a Weisfeiler-
Lehman graph isomorphism test (Xu et al., 2018; You et al., 2020).

Transformations applied by GIN convolution can be depicted as in Figure 1, where each set
of colored squares represents a vector of a given dimensionality.

Subsequent research has focused on enhancing GNNs through various techniques, including
multiple aggregation functions (Corso et al., 2020; Tailor et al., 2022), or adaptive, learnable ag-
gregations (Li et al., 2023). A significant development was the introduction of GINE convolution

Figure 1: GIN embedding visualization.
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for edge-inclusive graphs (Hu et al., 2019). Unlike previously described models, GINE explicitly
integrates edge features into the aggregation process, which can be formalized as

m
(k)

N (v)
= EDG-AGGREGATE

({h(k−1)
v , h(k−1)

u , euv | u ∈ N (v)}) , (4)

where EDG-AGGREGATE is the aggregation function that combines edge features euv ∈ R
e

with neighboring node embeddings. A simplified formulation by Brossard et al. (2020) is defined
as

m
(k)

N (v)
=

∑
u∈N (v)

σ
(
h(k−1)

u + E(euv)
)
,

h(k)
v = MLP

(
(1 + ε) h(k−1)

v + m
(k)

N (v)

)
,

(5)

where E : Re → R
d is a neural network that maps edge features to the same dimensionality as

node embeddings, and σ is a non-linear activation function, such as rectified linear unit.

3.2 MAGIC Architecture
The proposed MAGIC model extends GINE by incorporating multiple aggregation functions
and handling embeddings with varying dimensionalities. For a node v, its embedding from the
previous iteration h(k−1)

v ∈ R
d , and its neighbors’ embeddings {h(k−1)

u ∈ R
d | u ∈ N (v)}, we define

I parameterized aggregation functions as

fi

({
h(k−1)

u | u ∈ N (v)
} ; θi

)
for i = 1, . . . , I, (6)

where each fi : Rd → R
di maps embeddings to a new dimensionality di .

This design allows for capturing various neighborhood features with distinct dimension-
alities, enriching the representation capacity of the model as presented in (Corso et al., 2020;
Tailor et al., 2022; Li et al., 2023). The aggregated messages are combined using concatenation
(denoted by the

⊕
), as

m
(k)

N (v)
=

I⊕
i=1

fi

({
h(k−1)

u + ANET(k)(eu,v) | u ∈ N (v)
} ; θi

)
,

m
(k)

N (v)
∈ R

(d1+d2+···+dI ),

(7)

where ANET(k) : Re → R
d is a neural network used in k-th convolution step, that aligns edge

features with neighbor embeddings.
Given the aforementioned elements, the new representation for node v, and the final output

of the MAGIC graph convolution model, can be obtained in a similar way as in GIN or GINE,
formalized as

h(k)
v = MLP(k)

(
(1 + ε(k))h(k−1)

v

⊕
m

(k)

N (v)

)
, (8)

where MLP(k) is a MLP network used for the k-th convolution step.
This approach supports the use of any learnable aggregation functions, including their

generalized or parameterized forms (Tailor et al., 2022; Li et al., 2023). The skip-connection
mechanism of GIN is maintained by concatenating neighborhood embeddings with the node v

vector. During the backpropagation phase, the MAGIC model employs a technique known as
stochastic weight averaging (Izmailov et al., 2018), which has demonstrated strong predictive
performance in existing studies. Algorithm 1 summarizes the MAGIC embedding mechanism,
and Figure 2 illustrates the flow of the convolution process.
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Algorithm 1: MAGIC graph convolution embedding.
Result: Updated node embeddings for graph G

Input: Graph: G = {V, E}
Edge features: E = {euv ∈ R

e | ∀u, v ∈ V}
Initial node embeddings: h(0)

u ∈ R
d, ∀u ∈ V

Number of convolution steps: K Set of aggregation functions:
fi : Rd → R

di , parameterized by θi, for i = 1, . . . , I
Edge-alignment network for each step: ANET(k) : Re → R

d

MLP for each step: MLP(k) : R → R
d ′

1 for k = 1 to K do
2 for each node v ∈ V do
3 Compute the neighborhood aggregation m

(k)

N (v)
by concatenating multiple

aggregations:

m
(k)

N (v)
=

I⊕
i=1

fi

({
h(k−1)

u + ANET(k)(euv) | u ∈ N (v)
} ; θi

)

Update the embedding h(k)
v by applying the k-th MLP to the concatenation of

v’s previous embedding and the aggregated neighborhood message:

h(k)
v = MLP(k)

(
(1 + ε(k))h(k−1)

v

⊕
m

(k)

N (v)

)

4 end
5 end
6 return

{
h(k)

v | ∀v ∈ V
}

3.3 Link Predictor Module
The construction of node embeddings is the first step in the prediction process. However, the
primary goal of this study is to perform binary link classification.

To achieve this, an additional model, XGBoost (XGB, Extreme Gradient Boosting) (Chen
and Guestrin, 2016), is applied on top of the node embeddings. XGB, as a member of the ensem-
ble models family, is flexible and well-suited for processing data in tabular or matrix format. Its
application in graph link prediction has been demonstrated in previous studies (Behera et al.,
2021).

In this experiment, after generating the node embeddings from the MAGIC model, embed-
dings of nodes corresponding to each edge are concatenated and paired with the corresponding
edge label for training the XGB model. Given the set of all binary-labeled edges E , defined as
{(euv, leuv

) | euv ∈ E, leuv
∈ {0, 1}}, and the node embeddings from the k-th iteration, h(k)

u and h(k)
v ,

the dataset for training the XGB model is constructed as

D =
{(

h(k)
u

⊕
h(k)

v , leuv

)
| ∀u, v ∈ V, euv ∈ E

}
, (9)

where leuv
∈ {0, 1} is the label of edge euv, and h(k)

u

⊕
h(k)

v represents the concatenated embedding
of nodes u and v.
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Figure 2: MAGIC model embedding.

The XGB model is trained on this dataset using a standard supervised-learning scheme,
where the input consists of concatenated node embeddings and the output corresponds to the
binary edge labels.

The link prediction module is summarized as pseudocode in Algorithm 2, and its processing
flow is illustrated in Figure 3 (edge features are omitted for clarity).

3.4 Experimental Design

The primary objective of this study is to classify graph edges, which represent financial trans-
actions, as either illicit or legal. In the utilized graph dataset, nodes correspond to individual
customers or accounts, characterized by features such as initial deposit values and behavioral
categories. The edges between these nodes signify transactions and capture attributes such as
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Algorithm 2: XGBoost link prediction module.
Result: Trained XGBoost model for link prediction
Input: Graph G = {V, E}

Edge labels {leuv
| ∀euv ∈ E}

Node embeddings {h(k)
v | ∀v ∈ V}

Loss function L
1 for each edge euv ∈ E do
2 Concatenate MAGIC embeddings for nodes u and v:

huv = h(k)
u

⊕
h(k)

v

Predict the label of the edge using the XGBoost model:

ŷuv = XGB(huv)

Calculate the error using the loss function:

error = L(ŷuv, leuv
)

Update the XGBoost model using the calculated error.
3 end
4 return Trained XGBoost model

Figure 3: Link predictor visualization.
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transaction amount, timestamp, and type. These features are integrated into a graph structure,
allowing the model to identify suspicious connections and flag activities indicative of money
laundering.

Each dataset was divided into predefined train-test splits as established by the authors
of the original study, ensuring reproducibility and comparability across trials. To optimize the
MAGIC architecture, the training portion of the data was further divided into 80% for training
and 20% for validation to facilitate hyperparameter tuning. Optuna was used to perform this
optimization, balancing two objectives: maximizing the illicit F1 score and minimizing model
complexity, defined as the product of the number of convolutional layers and their dimensions.

The search space included the number and size of convolutional layers, neighborhood ag-
gregation methods, and embedding reduction modes, while certain parameters—such as the
optimizer, learning rate, batch size, and number of epochs—were fixed across all datasets. This
approach ensured consistency and comparability across trials while focusing the analysis on
evaluating the key architectural innovations introduced by the MAGIC model. By fixing these
parameters to reasonable defaults, the study aimed to isolate the effects of the network compo-
nents being optimized.

Machine learning models inherently exhibit prediction variability across training trials. This
variability is further exacerbated in graph-based supervised learning, where induced subgraphs
for validation may lead to information leakage, complicating the reliability of quality assessment
methods (Leskovec and Faloutsos, 2006; Leskovec and Sosič, 2016). Following the prior research,
the MAGIC model was trained 10 times for each dataset, using predefined seeds for random
restarts, and evaluated at the end on the test subset (Raschka, 2018). Metrics were recorded
along with their standard deviations. To quantify uncertainty, 95% bootstrap confidence intervals
were constructed using the percentile approach (Bouthillier et al., 2021; Raschka, 2018) and the
t-distribution, mirroring the methodology of Silva et al. (2023). Summaries of metrics, rather
than point estimates, are presented in the results section to reflect performance variability.

Given the strong class imbalance, a range of evaluation metrics was employed, including
precision, recall, and F1-score (Sammut and Webb, 2011). Metrics were calculated for the illicit
class separately, given its critical importance in real-world AML applications, as well as for the
macro average, representing the unweighted mean of scores across all classes (Opitz and Burst,
2019).

The tuning process revealed a consistent trade-off between model complexity and illicit
F1 scores. Simpler models, characterized by fewer layers and smaller convolutional dimensions,
matched or outperformed more complex variants every time. Figure 4 illustrates the relation-
ship between model complexity and illicit F1 scores across all datasets. As a result, simpler
architectures were selected whenever performance differences were negligible.

While a traditional ablation study was not conducted, the contribution of each hyperparam-
eter to model performance was systematically evaluated using the PED-ANOVA Importance.
This method serves as a possible alternative to ablation studies, particularly in cases where
the number of tuned parameters is large and their interactions form subspaces (e.g., the inter-
play between the number of layers, layer size, and aggregation methods per layer). By lever-
aging ANOVA-based calculations, PED-ANOVA quantifies how strongly each hyperparameter
contributes to achieving performance above a baseline, which is determined by fitting Parzen
estimators to the results of completed trials (Watanabe et al., 2023).

The feature importance analysis revealed that no single hyperparameter dominated perfor-
mance across all datasets. Instead, the relative importance varied depending on dataset proper-
ties, particularly the class imbalance ratio and dataset size. For less-imbalanced cases (AMLSim
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Figure 4: Trade-off between model complexity (number of layers × convolution size) and illicit
F1 scores for each dataset.

1/3 and 1/5), the number and size of convolutional layers, as well as aggregation functions,
were relatively more influential, though their importance scores were comparable. In contrast,
in highly imbalanced scenarios (AMLSim 1/10 and 1/20), embedding reduction modes became
more critical, alongside aggregation functions.

This variability highlights the importance of adaptive hyperparameter tuning tailored to
dataset-specific properties. The flexibility of the MAGIC architecture further supports effective
performance under a wide range of configurations, including the use of multiple, learnable aggre-
gations. Additional figures, details of the tuning process and feature importances, are provided
in the supplementary materials.

Table 1 summarizes the MAGIC hyperparameters for each dataset. For XGBoost, the de-
fault setting of 250 estimators with a learning rate of 0.05 and positive class weight scaling of
1:1 was used for all datasets except AMLSim 1/3 and AMLSim 1/5, where the number of esti-
mators was increased to 670. For AMLSim 1/20, varied class weights were employed to address
the strongest class imbalance.

The performance of the MAGIC model was compared to previously established approaches
from the study by Silva et al. (2023). Specifically, evaluations were conducted against GCN (320
total parameters), NENN (560 total parameters), and SkipGCN (176 total parameters). NENN,
proposed by Yang and Li (2020), incorporates both node and edge features to enrich graph
relationships, while SkipGCN, introduced by Weber et al. (2019), employs skip connections to
capture long-range dependencies, which are especially relevant in financial transaction networks.
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Table 1: Hyperparameters for the MAGIC convolution.

Dataset MAGIC Embedding

Conv. Dim No. Conv.
Layers

Aggr. Embed.
Reduction

Total
params.

AMLSim 1/3 8 2 Add, Min, Max Averaging 480
AMLSim 1/5 16 2 Add, Mean Concatenation 1288
AMLSim 1/10 16 2 Add, Min, Max Concatenation 1640
AMLSim 1/20 32, 8 2 Add, Mean Concatenation 1728

Although MAGIC’s parameter count is higher, ranging from 480 to 1728 depending on the
dataset, this increase arises from its adaptable design. MAGIC is crafted to function as a single,
versatile architecture that performs well across datasets with diverse characteristics, such as
varying class imbalances. Its configurability, achieved through features like multiple aggregation
strategies and adjustable embedding reduction methods, allows fine-tuning for a broad range of
AML scenarios. This adaptability offers advantages over simpler, more specialized models.

The additional complexity in MAGIC is balanced to enhance performance without sacri-
ficing computational efficiency. For instance, while its parameter count exceeds those of GCN,
NENN, and SkipGCN, it remains modest compared to modern graph models like graph trans-
formers (Ying et al., 2021), which often involve tens of thousands of parameters.

4 Empirical Results
This section presents the overview of datasets, used in each experimental trial and the summary
of model training results.

4.1 Dataset Characteristics
Table 2 summarizes the statistics for each dataset, including the number of nodes in each graph,
the number of edges, the number of connected components, and the proportion of classes (illicit
vs. legal). Each node is characterized by the vector of 6 features, each edge—by the vector of 8
features.

The label distribution indicates a significant class imbalance, particularly in the AMLSim
1/10 and AMLSim 1/20 datasets, where the proportion of illicit transactions is relatively low.
The large number of connected components suggests that these graphs are composed of many

Table 2: Dataset overview.
Dataset # nodes # edges # Connected comp. Classes

Legal Illicit

AMLSim 1/3 6331 3213 3118 66% 33%
AMLSim 1/5 10507 5355 5154 80% 20%
AMLSim 1/10 20751 10710 10058 90% 10%
AMLSim 1/20 40264 21420 18914 95% 5%



14 Wójcik, F.

independent subgraphs, which may present challenges in terms of model performance and gen-
eralization.

4.2 Results

The results for each model can be found in Table 3. The scores for models GCN, GCN +
XGBoost, NENN, NENN + XGBoost, SkipGCN, and SkipGCN + XGBoost (marked with an
asterisk) were obtained from the original study by Silva et al. (2023). The best-performing model
for each dataset and metric is highlighted in bold font.

Table 3: Model scores across datasets.
Models F1 Precision Recall

AMLSim 1/3 – Illicit
MAGIC+XGB 0.956 ± 0.018 0.964 ± 0.012 0.967 ± 0.036
GCN* 0.947 0.913 ± 0.002 0.984
SkipGCN* 0.948 ± 0.002 0.913 ± 0.003 0.984
GCN+XGB* 0.949 ± 0.011 0.928 ± 0.010 0.971 ± 0.020
NENN+XGB* 0.946 ± 0.017 0.918 ± 0.024 0.976 ± 0.021
NENN* 0.933 ± 0.021 0.894 ± 0.023 0.975 ± 0.030
SkipGCN+XGB* 0.948 ± 0.010 0.927 ± 0.011 0.970 ± 0.019

AMLSim 1/3 – Macro
MAGIC+XGB 0.966 ± 0.014 0.964 ± 0.012 0.968 ± 0.017
GCN* 0.962 0.953 0.973
SkipGCN* 0.962 0.953 ± 0.002 0.973
GCN+XGB* 0.964 ± 0.008 0.958 ± 0.006 0.970 ± 0.010
NENN+XGB* 0.961 ± 0.013 0.954 ± 0.014 0.970 ± 0.012
NENN* 0.951 ± 0.015 0.941 ± 0.015 0.963 ± 0.017
SkipGCN+XGB* 0.963 ± 0.007 0.957 ± 0.006 0.969 ± 0.009

AMLSim 1/5 – Illicit
MAGIC+XGB 0.910 ± 0.016 0.937 ± 0.009 0.927 ± 0.035
GCN* 0.901 ± 0.011 0.840 ± 0.021 0.973
SkipGCN* 0.902 ± 0.012 0.840 ± 0.022 0.974 ± 0.003
GCN+XGB* 0.905 ± 0.019 0.878 ± 0.024 0.933 ± 0.029
NENN+XGB* 0.895 ± 0.025 0.873 ± 0.043 0.919 ± 0.028
NENN* 0.872 ± 0.023 0.823 ± 0.031 0.927 ± 0.032
SkipGCN+XGB* 0.904 ± 0.017 0.876 ± 0.025 0.934 ± 0.029

AMLSim 1/5 – Macro
MAGIC+XGB 0.943 ± 0.010 0.937 ± 0.009 0.949 ± 0.016
GCN* 0.939 ± 0.007 0.917 ± 0.010 0.966 ± 0.003
SkipGCN* 0.939 ± 0.008 0.917 ± 0.011 0.966 ± 0.003
GCN+XGB* 0.941 ± 0.012 0.931 ± 0.013 0.952 ± 0.015
NENN+XGB* 0.936 ± 0.016 0.928 ± 0.022 0.945 ± 0.014
NENN* 0.921 ± 0.014 0.903 ± 0.016 0.941 ± 0.016
SkipGCN+XGB* 0.941 ± 0.011 0.931 ± 0.012 0.952 ± 0.014
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Table 3: (Continued).

Models F1 Precision Recall

AMLSim 1/10 – Illicit
MAGIC+XGB 0.856 ± 0.033 0.941 ± 0.02 0.814 ± 0.042
GCN* 0.810 ± 0.035 0.724 ± 0.058 0.920 ± 0.009
SkipGCN* 0.807 ± 0.033 0.719 ± 0.056 0.920 ± 0.010
GCN+XGB* 0.814 ± 0.032 0.786 ± 0.052 0.846 ± 0.040
NENN+XGB* 0.837 ± 0.027 0.828 ± 0.035 0.847 ± 0.045
NENN* 0.725 ± 0.041 0.592 ± 0.051 0.936 ± 0.032
SkipGCN+XGB* 0.812 ± 0.030 0.779 ± 0.050 0.847 ± 0.032

AMLSim 1/10 – Macro
MAGIC+XGB 0.920 ± 0.018 0.941 ± 0.02 0.902 ± 0.022
GCN* 0.894 ± 0.020 0.858 ± 0.029 0.942 ± 0.005
SkipGCN* 0.892 ± 0.019 0.855 ± 0.028 0.942 ± 0.005
GCN+XGB* 0.898 ± 0.018 0.885 ± 0.026 0.911 ± 0.020
NENN+XGB* 0.910 ± 0.015 0.906 ± 0.018 0.914 ± 0.022
NENN* 0.844 ± 0.024 0.793 ± 0.026 0.936 ± 0.017
SkipGCN+XGB* 0.896 ± 0.017 0.882 ± 0.025 0.912 ± 0.015

AMLSim 1/20 – Illicit
MAGIC+XGB 0.826 ± 0.041 0.904 ± 0.027 0.834 ± 0.047
GCN* 0.723 ± 0.036 0.673 ± 0.062 0.782 ± 0.020
SkipGCN* 0.723 ± 0.034 0.672 ± 0.057 0.782 ± 0.016
GCN+XGB* 0.743 ± 0.064 0.813 ± 0.083 0.685 ± 0.061
NENN+XGB* 0.745 ± 0.042 0.777 ± 0.063 0.717 ± 0.059
NENN* 0.465 ± 0.063 0.311 ± 0.056 0.926 ± 0.067
SkipGCN+XGB* 0.741 ± 0.042 0.814 ± 0.069 0.681 ± 0.041

AMLSim 1/20 – Macro
MAGIC+XGB 0.908 ± 0.022 0.904 ± 0.027 0.912 ± 0.024
GCN* 0.854 ± 0.019 0.831 ± 0.031 0.882 ± 0.010
SkipGCN* 0.854 ± 0.018 0.831 ± 0.029 0.882 ± 0.008
GCN+XGB* 0.866 ± 0.033 0.899 ± 0.043 0.839 ± 0.032
NENN+XGB* 0.867 ± 0.022 0.882 ± 0.032 0.853 ± 0.029
NENN* 0.706 ± 0.039 0.654 ± 0.028 0.914 ± 0.031
SkipGCN+XGB* 0.865 ± 0.022 0.900 ± 0.035 0.837 ± 0.021

The results across datasets highlight the sophisticated performance profile of MAGIC com-
bined with XGBoost. The model achieved the highest scores in 16 out of 24 metrics, though it
did not excel across all evaluation criteria. Its strengths were most pronounced in metrics such as
F1 score and precision for both illicit and macro calculations, where it consistently outperformed
other approaches. However, the recall scores were either lower or comparable to those of simpler
models.

For instance, NENN, with only 560 parameters, achieved higher recall in the most imbal-
anced datasets, scoring 0.936 in AMLSim 1/10 and 0.926 in AMLSim 1/20, compared to 0.902
and 0.834, respectively, for MAGIC+XGBoost. This suggests that NENN is better suited for
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scenarios where sensitivity is paramount, as it captures more illicit transactions. However, this
comes at the expense of precision, where the proposed method consistently outperformed all
other models, ensuring fewer false positives — an important requirement in real-world AML
applications to reduce unnecessary alerts and investigations.

The trade-off between precision and recall underscores the necessity of tailoring models to
the specific characteristics of each dataset. Simpler models, such as GCN (320 parameters) and
especially SkipGCN (176 parameters), exhibited strong recall performance, particularly in less
imbalanced datasets like AMLSim 1/3. In these cases, the additional complexity of MAGIC+XG-
Boost offered limited advantages. These findings highlight that simpler architectures can be
sufficient for achieving high sensitivity, emphasizing that increased model complexity does not
inherently ensure better performance across all evaluation metrics.

Nevertheless, the design of MAGIC+XGBoost offers advantages in practical AML scenarios.
Its ability to flag transactions with high precision ensures that most flagged records are indeed
illicit, minimizing the impact of false positives on investigative teams. While this conservative
approach may overlook some true positives, particularly in datasets with less pronounced class
imbalances, the overall balance achieved by the proposed method makes it a robust solution in
contexts where precision and F1 score are prioritized.

5 Discussion
This study introduced MAGIC, a novel graph convolution model tailored for AML tasks. By
combining the GIN architecture with multiple learnable aggregation methods and integrating
edge features into the convolution layer, MAGIC, coupled with XGBoost, delivered strong per-
formance across key metrics. It excelled particularly in F1 score and precision, achieving the
best scores in 16 out of 24 metrics on publicly available AMLSim datasets. These results high-
light its robustness in identifying illicit transactions while minimizing false positives, a critical
requirement for practical AML applications.

However, the study was limited to datasets with a maximum class imbalance ratio of 1:20
(5% illicit transactions), following the methodology of Silva et al. (2023) to ensure consistency
and comparability. The lack of more imbalanced publicly available datasets remains a significant
challenge for AML research, as real-world scenarios often involve much lower proportions of illicit
transactions. Future studies should evaluate the performance of MAGIC and similar methods
under extreme imbalance conditions, such as 1:1000 or 1:10,000 ratios, to better reflect practical
challenges. Simulators such as AMLSim can be employed to generate datasets with such extreme
ratios, enabling reproducible benchmarking with both current and previous studies.

Unsupervised anomaly detection methods, including clustering techniques and graph-based
autoencoders, offer promising alternatives for handling highly imbalanced data. These methods
do not require labeled datasets and instead identify anomalies by detecting deviations from nor-
mal patterns. Future research should investigate their applicability to datasets with rich node
and edge features, such as those used in this study. A systematic comparison of supervised meth-
ods, such as MAGIC and models from Silva et al. (2023), with unsupervised techniques could
provide valuable insights into their relative strengths and limitations across varying imbalance
scenarios.

Finally, foundation models, such as the recently proposed GraphAny (Zhao et al., 2024),
present an exciting direction for future AML research. These models leverage manifold trans-
formations of features, offering innovative ways to capture patterns in complex datasets. By
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training on publicly available synthetic data and transferring knowledge to private, domain-
specific datasets, foundation models could address challenges related to generalization while
maintaining privacy. Incorporating such approaches into future studies could provide power-
ful tools for tackling diverse and highly imbalanced AML scenarios, bridging the gap between
research and practical applications.

Supplementary Material
The source code for this study is available on GitHub: https://github.com/maddataanalyst/
Graph_MAGIC_Conv. The repository includes all the necessary components to reproduce the
training results.

A supplementary PDF file attached to this publication provides detailed analyses of the
train/validation/test splits, hyperparameter tuning results, and a comprehensive breakdown of
the model architecture for each dataset.

References
Alarab I, Prakoonwit S, Nacer MI (2020). Competence of graph convolutional networks for anti-

money laundering in bitcoin blockchain. In: ICMLT 2020: 5th International Conference on
Machine Learning Technologies. Beijing, China, June, 2020, 23–27. Association for Computing
Machinery.

Alsuwailem AAS, Saudagar AKJ (2020). Anti-money laundering systems: A systematic literature
review. Journal of Money Laundering Control, 23: 833–848. https://doi.org/10.1108/JMLC-
02-2020-0018

Behera DK, Das M, Swetanisha S, Nayak J, Vimal S, Naik B (2021). Follower link predic-
tion using the xgboost classification model with multiple graph features. Wireless Personal
Communications, 127(1): 695–714. https://doi.org/10.1007/s11277-021-08399-y

Bouthillier X, Delaunay P, Bronzi M, Trofimov A, Nichyporuk B, Szeto J, et al. (2021). Ac-
counting for variance in machine learning benchmarks. In: Proceedings of Machine Learning
and Systems (A Smola, A Dimakis, I Stoica, eds.), volume 3, 747–769.

Brossard R, Frigo O, Dehaene D (2020). Graph convolutions that can finally model local struc-
ture. CoRR. arXiv preprint: https://arxiv.org/abs/2011.15069.

Bruna J, Zaremba W, Szlam A, LeCun Y (2014). Spectral networks and deep locally connected
networks on graphs. In: Conf. on Learning Representations, ICLR 2014—Conference Track
Proceedings (Y Bengio, Y LeCun, eds.), 1–14.

Chen T, Guestrin C (2016). Xgboost: A scalable tree boosting system. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—
KDD ’16, 785–794. ACM Press.

Corso G, Cavalleri L, Beaini D, Liò P, Velickovic P (2020). Principal neighbourhood aggregation
for graph nets. Advances in Neural Information Processing Systems, 33: 13260–13271.

Defferrard M, Bresson X, Vandergheynst P (2016). Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in Neural Information Processing Systems, 29:
3837–3845.

Dumitrescu B, Baltoiu A, Budulan S (2022). Anomaly detection in graphs of bank transac-
tions for anti money laundering applications. IEEE Access, 10: 47699–47714. https://doi.org/
10.1109/ACCESS.2022.3170467

https://github.com/maddataanalyst/Graph_MAGIC_Conv
https://github.com/maddataanalyst/Graph_MAGIC_Conv
https://doi.org/10.1108/JMLC-02-2020-0018
https://doi.org/10.1108/JMLC-02-2020-0018
https://doi.org/10.1007/s11277-021-08399-y
https://arxiv.org/abs/2011.15069
https://doi.org/10.1109/ACCESS.2022.3170467
https://doi.org/10.1109/ACCESS.2022.3170467


18 Wójcik, F.

Eddin AN, Bono J, Aparício D, Polido D, Ascensão JT, Bizarro P, et al. (2021). Anti-money
laundering alert optimization using machine learning with graphs. CoRR. arXiv preprint:
https://arxiv.org/abs/2112.07508.

Gallicchio C, Micheli A (2010). Graph echo state networks. In: The 2010 International Joint
Conference on Neural Networks (IJCNN), 1–10. IEEE.

Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017). Neural message passing for
quantum chemistry. In: ICML (D Precup, YW Teh, eds.), volume 70 of Proceedings of Machine
Learning Research, PMLR, 1263–1272.

Gori M, Monfardini G, Scarselli F (2005). A new model for learning in graph domains. In: Pro-
ceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, 729–734.

Hamilton WL (2020). Graph representation learning Hamilton. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 14: 1–159. https://doi.org/10.1007/978-3-031-01588-5

Hamilton WL, Ying Z, Leskovec J (2017). Inductive representation learning on large graphs.
In: NIPS (I Guyon, U von Luxburg, S Bengio, HM Wallach, R Fergus, SVN Vishwanathan,
R Garnett, eds.), 1024–1034.

Han J, Huang Y, Liu S, Towey K (2020). Artificial intelligence for anti-money laundering:
A review and extension. Digital Finance, 2: 211–239. https://doi.org/10.1007/s42521-020-
00023-1

Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande VS, et al. (2019). Pre-training graph neural
networks. CoRR. arXiv preprint: https://arxiv.org/abs/1905.12265.

Izmailov P, Podoprikhin D, Garipov T, Vetrov D, Wilson AG (2018). Averaging weights leads
to wider optima and better generalization. In: UAI (A Globerson, R Silva, eds.), volume 2,
876–885. AUAI Press.

Johannessen F, Jullum M (2023). Finding money launderers using heterogeneous graph neural
networks. CoRR. arXiv preprint: https://arxiv.org/abs/2307.13499.

Kipf TN, Welling M (2017). Semi-supervised classification with graph convolutional networks.
In: ICLR Poster, 1–14.

Leskovec J, Faloutsos C (2006). Sampling from large graphs. In: KDD (T Eliassi-Rad, LH Ungar,
M Craven, D Gunopulos, eds.), volume 2006, 631–636. Association for Computing Machinery.

Leskovec J, Sosič R (2016). Snap: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology, 8: 1–20.

Li G, Xiong C, Qian G, Thabet A, Ghanem B (2023). Deepergcn: Training deeper gcns with
generalized aggregation functions. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 45: 13024–13034.

Liu F, Xue S, Wu J, Zhou C, Hu W, Paris C, et al. (2020). Deep learning for community
detection: Progress, challenges and opportunities. In: IJCAI, 4981–4987. ijcai.org.

Opitz J, Burst S (2019). Macro F1 and macro F1. CoRR. arXiv preprint: https://arxiv.org/abs/
1911.03347.

Parliament TE (2015). Directive (eu) 2015/ 849 of the european parliamend and of the council—
of 20 May 2015. Official Journal of the European Union.

Raschka S (2018). Model evaluation, model selection, and algorithm selection in machine learning
performance estimation: Generalization performance vs. model selection. arXiv preprint.

Sammut C, Webb GI (2011). Encyclopedia of Machine Learning. Springer Science & Business
Media.

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009). Computational ca-
pabilities of graph neural networks. IEEE Transactions on Neural Networks, 20: 81–102.

https://arxiv.org/abs/2112.07508
https://doi.org/10.1007/978-3-031-01588-5
https://doi.org/10.1007/s42521-020-00023-1
https://doi.org/10.1007/s42521-020-00023-1
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/2307.13499
https://arxiv.org/abs/1911.03347
https://arxiv.org/abs/1911.03347


Money Laundering Detection with Multi-Aggregation Custom Edge GIN 19

https://doi.org/10.1109/TNN.2008.2005141
Shi C (2022). Heterogeneous Graph Neural Networks. 351–369. Springer Nature Singapore, Sin-

gapore.
Silva ÍDG, Correia LHA, Maziero EG (2023). Graph neural networks applied to money laun-

dering detection in intelligent information systems. In: Proceedings of the XIX Brazilian
Symposium on Information Systems (MXC da Cunha, MF de Souza Júnior, JC Marques,
TM de Classe, RD Araújo, eds.), 252–259.

Tailor SA, Opolka FL, Liò P, Lane ND (2022). Do we need anisotropic graph neural networks?
arXiv preprint: https://arxiv.org/abs/2104.01481.

Thornberry WMM (2021). National defense authorization act for fiscal year 2021. Public Law,
116: 283.

Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2017). Graph attention
networks. CoRR. arXiv preprint: https://arxiv.org/abs/1710.10903.

Watanabe S, Bansal A, Hutter F (2023). Ped-anova: Efficiently quantifying hyperparameter
importance in arbitrary subspaces. In: Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, IJCAI ’23 (E Elkind, ed.), 4389–4396.

Weber M, Chen J, Suzumura T, Pareja A, Ma T, Kanezashi H, et al. (2018). Scalable graph
learning for anti-money laundering: A first look. CoRR. arXiv preprint: https://arxiv.org/
abs/1812.00076.

Weber M, Domeniconi G, Chen J, Weidele DKI, Bellei C, Robinson T, et al. (2019). Anti-money
laundering in bitcoin: Experimenting with graph convolutional networks for financial forensics.
CoRR. arXiv preprint: https://arxiv.org/abs/1908.02591.

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021). A comprehensive survey on graph
neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32: 4–24.
https://doi.org/10.1109/TNNLS.2020.2978386

Xu K, Hu W, Leskovec J, Jegelka S (2018). How powerful are graph neural networks? CoRR.
arXiv preprint: https://arxiv.org/abs/1810.00826.

Yang C, Xiao Y, Zhang Y, Sun Y, Han J (2020). Heterogeneous network representation learning:
A unified framework with survey and benchmark. IEEE Transactions on Knowledge and Data
Engineering, 34: 4854–4873. https://doi.org/10.1109/TKDE.2020.3045924

Yang Y, Li D (2020). NENN: Incorporate node and edge features in graph neural networks.
In: Proceedings of the 12th Asian Conference on Machine Learning, ACML 2020, 18–20
November 2020, Bangkok, Thailand (SJ Pan, M Sugiyama, eds.), volume 129 of Proceedings
of Machine Learning Research, PMLR, 593–608.

Ying C, Cai T, Luo S, Zheng S, Ke G, He D, et al. (2021). Do transformers really perform
badly for graph representation? Advances in Neural Information Processing Systems, 34:
28877–28888.

You J, Ying R, Leskovec J (2020). Design space for graph neural networks. In: Proceedings
of the 34th International Conference on Neural Information Processing Systems, NIPS ’20
(H Larochelle, M Ranzato, R Hadsell, M-F Balcan, H-T Lin, eds.), 17009–17021. Curran
Associates Inc., Red Hook, NY, USA.

Zhao J, Mostafa H, Galkin M, Bronstein MM, Zhu Z, Tang J (2024). Graphany: A foundation
model for node classification on any graph. arXiv preprint: https://arxiv.org/abs/2405.20445.

https://doi.org/10.1109/TNN.2008.2005141
https://arxiv.org/abs/2104.01481
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1812.00076
https://arxiv.org/abs/1812.00076
https://arxiv.org/abs/1908.02591
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1810.00826
https://doi.org/10.1109/TKDE.2020.3045924
https://arxiv.org/abs/2405.20445

	Introduction
	Related Work
	Money Laundering and AML Solutions
	Graph Neural Networks
	AMLSim Datasets

	Proposed Method
	MPNN and GIN
	MAGIC Architecture
	Link Predictor Module
	Experimental Design

	Empirical Results
	Dataset Characteristics
	Results

	Discussion

