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Abstract

After the onset of the COVID-19 pandemic, scientific interest in coronaviruses endemic in an-
imal populations has increased dramatically. However, investigating the prevalence of disease
in animal populations across the landscape, which requires finding and capturing animals can
be difficult. Spatial random sampling over a grid could be extremely inefficient because animals
can be hard to locate, and the total number of samples may be small. Alternatively, preferential
sampling, using existing knowledge to inform sample location, can guarantee larger numbers
of samples, but estimates derived from this sampling scheme may exhibit bias if there is a
relationship between higher probability sampling locations and the disease prevalence. Sample
specimens are commonly grouped and tested in pools which can also be an added challenge when
combined with preferential sampling. Here we present a Bayesian method for estimating disease
prevalence with preferential sampling in pooled presence-absence data motivated by estimating
factors related to coronavirus infection among Mexican free-tailed bats (Tadarida brasiliensis)
in California. We demonstrate the efficacy of our approach in a simulation study, where a naive
model, not accounting for preferential sampling, returns biased estimates of parameter values;
however, our model returns unbiased results regardless of the degree of preferential sampling.
Our model framework is then applied to data from California to estimate factors related to
coronavirus prevalence. After accounting for preferential sampling impacts, our model suggests
small prevalence differences between male and female bats.

Keywords Bayesian modeling; pooled testing; spatial sampling

1 Introduction
Due to the COVID-19 pandemic there has been a growing interest in the potential for several
bat species to be reservoirs of zoonotic pathogens (Rahman et al. 2020) and relatedly there is
particular interest in the transmission dynamics of coronaviruses within bat populations (Meyer
et al. 2024; Alison J. Peel 2025) and the potential for bat-to-human and human-to-bat transmis-
sion of these viruses (Wong et al. 2007). An initial step in addressing these questions involves
exploring rates of coronavirus prevalence in bats. Mexican free-tailed bats (Tadarida brasilien-
sis) are known to be susceptible to exposure to SARS-CoV-2 (Hall et al. 2023). Here we aim to
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understand what environmental or bat-level factors are associated with coronavirus prevalence
in Mexican free-tailed bats.

Zoonotic spillover refers to the spreading of a pathogen from vertebrate animals to humans
(Plowright et al. 2017). The species that harbors a pathogen such that it can be permanently
maintained and also infect a target population is known as a “reservoir host” (Haydon et al.
2002). Several bat species are reservoir hosts of different pathogens, most notably rabies, but are
also speculated to have played a role in the spread of the MERS-CoV coronavirus by spreading
the virus to camels who, in turn, spread the virus to humans (Mackenzie et al. 2016). Spillover
is a complex, multifaceted process, but understanding the pathogen prevalence within the host’s
population can be the first step to untangling that process.

Modeling landscape wide coronavirus prevalence in Mexican free-tailed bats presents a
statistical challenge because there is a relative scarcity of their roosts across North America,
making probabilistic sampling of locations highly inefficient. Valid inferences for ecological and
epidemiological processes that manifest across space and time, such as coronavirus prevalence
in bats, require careful consideration of spatial sampling and statistical models that properly
address temporal and spatial processes. Although sampling designs exist to collect spatially
balanced data, such as the Generalized Random Tessellation Stratified (GRTS) (Stevens Jr
and Olsen 2004; Talbert and Reichert 2018) design, in situations like this with hard to reach
populations, data can be opportunistically collected but require statistical models that explicitly
account for preferential sampling.

To estimate coronavirus prevalence, viral samples are collected from individuals at bat
roosts across California that are selected by preferential sampling. While preferential sampling
was necessary to obtain a sufficient sample size for inference, it can result in biased estimates
(Conroy et al. 2023; Moreira, Menezes, and Wise 2024) of prevalence or of factors impacting
prevalence. In particular, it is plausible bats found at these preferentially sampled locations would
have different coronavirus prevalence than probabilistically sampled locations. For example, bat
samples collected at roosts with certain land-use characteristics might have higher rates of
prevalence. Consequently, a naïve model to estimate prevalence across the landscape, using
these preferentially sampled roosts, would exhibit some bias by overestimating prevalence in the
greater population.

In addressing data that may exhibit response bias, such as bias induced by spatial pref-
erential sampling, two common approaches are employed: sample weighting to align with the
population or modeling the biasing mechanism (Vedensky, Parker, and Holan 2023). The former
is often employed in surveys where robust census information allows for effective weighting. In
many contexts, however, this census information does not exist, which can make the strategy
less effective. Such is the case in many aspects of ecology where the bias needs to be addressed
through estimation. This requires assessing the severity of preferential sampling and then mod-
eling the preferential sampling impacts on the response of interest.

A comprehensive framework for using statistical modeling to estimate and account for
response bias from spatial preferential sampling is presented by Diggle, Menezes, and Su (2010).
The core concept involves using a Log-Gaussian Cox (Møller, Syversveen, and Waagepetersen
1998) process with a spatial correlation matrix to model the intensity surface at the sampled
locations. This spatial process related to the preferential sampling intensity surface is in addition
to a general spatial process related to measurements closer in space being correlated. The spatial
intensity surface estimated from the preferential sampling process is then used as a covariate for
the response. The method proposed by Diggle, Menezes, and Su (2010) has some limitations,
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particularly regarding computational efficiency. In response, Pati, Reich, and Dunson (2011)
introduced a Bayesian implementation of the model that implements traditional Markov Chain
Monte Carlo (MCMC) techniques in place of Maximum Likelihood Estimation (MLE) Monte
Carlo.

In addition to the challenge presented by preferential sampling, our scenario focused on
modeling coronavirus prevalence in Mexican free-tailed bats also has another challenge due to
grouping individual specimens into pools for testing. In general, pooling or group testing (Du and
Hwang 1999) can be an efficient way to screen more samples than testing all samples individually.
These pooling techniques found favor in screening humans for coronaviruses during the height
of the COVID-19 pandemic (Mallapaty et al. 2020; Warasi, Hungerford, and Lahmers 2022).
However, much of this work assumes that positive pools will be retested (Bilder, Tebbs, and Chen
2010) to identify positive individuals. When samples in positive pools are not retested, estimating
the proportion of individual bats that are infected can be done but requires modeling to account
for this uncertainty. Hoegh et al. (2021) showed that pooling without retesting can result in
more efficient use of resources and more precise statistical inference in simple cases. However,
accounting for pooling without retesting in more complicated scenarios can be challenging and
requires modifying existing algorithms.

Due to the high cost of coronavirus testing – and given that individual prevalence is expected
to be low – specimens are grouped into pools and a positive or negative result is recorded for
each pool. As it is not important to identify exactly which bats were positive, positive pools
are not retested and an individual bat’s infection status remains unknown. However, while this
enabled more individual specimens to be tested it also requires addressing this extra uncertainty
related to which bat(s) in a pool are positive while estimating the proportion of individual
bats that are infected. Models do not exist to esimate the proportion of individual bats that
are infected from this scenario with pooled sampling and preferential sampling. We propose a
method of accounting for preferential sampling and simultaneously estimating coefficients related
to site-level, pool-level, and individual-level factors from pooled samples.

2 Data
Data were collected from known and probable bat roosts across 20 sites in California (Figure 1).
Throughout the summer and fall of 2022, field researchers visited these predetermined sites. This
study was approved by the Animal Care and Use Committee of Northern Arizona University
with approval number 22-004, and for field work occurring in U.S. Forest Service lands, the
study was concurrently approved by the Animal Care and Use Committee of the U.S. Forest
Service Research and Development with approval number 2022-012. A total of 394 bats were
collected and placed in bags after which the researchers took specimen samples and various
measurements on the individual bats including mass, wingspan, age, and sex. The data that
support the findings in this study are available from Wray et al. (2025).

Once collected, these samples were sent to a laboratory for testing. They were grouped into
pools to optimize cost efficiency and enable a larger number of bats to be tested. Typically, each
pool combined the samples of four bats from the same site, sample type, and species. A two-
stage process was used for determining whether a specimen was positive, where all presumptive
positive samples were sequenced to confirm positive results. For purposes of the analysis, only
the final results, post-sequencing, are used. For most of the positive pools, individual specimens
were not retested.
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Figure 1: Locations of sites where bats were captured and samples were collected in Califor-
nia. Mexican free-tailed bats are migratory (seasonally). Spatial correlation between roosts is
modeled using a spatial random effect. Map extracted from Open Street Map (OpenStreetMap
contributors 2017) using leaflet (Cheng et al. 2025).

Consequently, for each bat sampled, we know the physical characteristics of the individual
bat, the geographical coordinates of the sampling location, information on which other indi-
viduals are part of the same pool, and whether the pool to which it belongs tested positive or
negative for an alpha-coronavirus. In addition to these individual-level data, site-level covariates
related to land use and surrounding human population characteristics were extracted from the
Google Earth Engine (Gorelick et al. 2017).
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3 Methods

3.1 Gaussian and Shared Latent Processes

Modeling ecological and epidemiological processes, such as coronavirus prevalence in bats, re-
quires spatial statistical models that properly account for the correlation structure of the ob-
servations collected near each other. The framework presented here relies on Gaussian processes
to model this spatial correlation. A Gaussian process is a stochastic process which treats the
multivariate normal distribution as dimensionally infinite such that it can be mapped to some
smooth function in ℝ

n. For any pair of points s, s ′ in the function’s domain, their covariance is
given by the positive semi-definite function Cθ(s, s

′), and for any finite set of m points 𝑺, the
function’s output is distributed as 𝒩 (𝝁, Σ), where 𝝁 ∈ ℝ

m, Σ = Cθ(𝑺). To distinguish between
continuous functions and their finite realizations, bold typeface will be used for finite sets and
vectors, and standard typeface will be used for scalars, arbitrary function inputs, vector or ma-
trix elements, and matrices. For spatial problems, it is common to include spatial random effects
that are modeled as a Gaussian process in ℝ

2, where Cθ(s, s
′) decays with Euclidean distance.

To address bias from preferential sampling, Diggle, Menezes, and Su (2010) proposed using
a spatial covariate to jointly model the probability of a site being selected in addition to its
influence on the response. More precisely, given the spatial Gaussian process w(𝒔), the sampling
intensity of the preferentially sampled sites 𝒔 is modeled as inhomogeneous Poisson point process
with intensity

λ(s) = exp{α + βw(𝒔)}
and jointly the response

𝒀 ∼ 𝒩 (𝝁 + w(𝒔), σ 2In),

where 𝒀 would be a continuous response. As a result of this joint estimation, wherever w(𝒔)

induces a larger response it also increases its sampling intensity, leading to larger values of w(𝒔)

being sampled more often. In our setting, 𝒀 would be coronavirus prevalence, albeit modeled
with a binomial framework. Hence, if w(𝒔) was large it would relate to higher likelihood of
location 𝒔 being sampled and a higher expected prevalence value at location 𝒔.

Following Diggle, Menezes, and Su (2010), Pati, Reich, and Dunson (2011) extended the
model, adapted it to a Bayesian approach, and addressed some computational challenges. First,
they split the spatial component into two separate Gaussian processes and applied the same
approach with the covariate vector X𝜷. They then added a coefficient α to the preferential
components such that

𝒀 ∼ 𝒩 (αX𝜷w + X𝜷d + αw(𝒔) + d(𝒔), σ 2)

λ(𝒔) = exp{X𝜷w + w(𝒔)},
where 𝜷w is the vector of coefficients on site level covariates, 𝜷d is the vector of coefficients
on bat level covariates, and d(𝒔) is a second spatial effect that is independent of selection.
This enabled the modeling of spatial effects unrelated to sampling preference, the influence of
sampling preference on other covariates’ impact on the mean, and direct inference into the extent
of preferential sampling, as the sign and magnitude of α imply different relationships (e.g. α > 0
implies preference for larger values of w(𝒔) + X𝜷w).
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To approximate a Poisson point process, Pati, Reich, and Dunson (2011) implemented a
grid approximation. This increased the model’s computation time dramatically as w(𝒔) must
be sampled for each grid cell. Sampling from an n-dimensional multivariate normal distribution
has a time complexity of O(n3). Thus, for applications with even moderately sized grids, the
full model can be computationally prohibitive. To account for this, Pati, Reich, and Dunson
(2011) implemented a low-rank predictive process approximation in which the Gaussian process
is evaluated at a smaller selection of locations called knots and then the full-rank values are
imputed as their best linear unbiased prediction values given the lower rank estimates. That
is, w̃(𝒔) = Cθ(𝒔, 𝒔knot ) [Cθ(𝒔knot , 𝒔knot )]

−1 w(𝒔knot ) for w∗ ∼ 𝒩 (0, Cθ(𝒔knot , 𝒔knot )). Note that 𝒔knot

is a vector thus Cθ(𝒔knot , 𝒔knot ) returns a square matrix with spatial covariance. For very low-
rank approximations without additional corrections, this method can lead to reduced resolution
in the Gaussian process, which manifests as an inflated nugget variance when estimating the
parameters in Cθ(s, s

′) (Banerjee 2017). Because of this limitation, we have instead chosen to
implement a Vecchia approximation, which considers each site sequentially and induces sparsity
by only conditioning on the spatially nearest m previously sampled points (Euclidean distance)
(Vecchia 1988). By only conditioning on a small subset of points, computation is much more
efficient, as sampling from multivariate normal distributions scales as O(n3). At the same time,
as long as the number of points is sufficient and the order in which the points are sampled
leads prior points to capture surrounding influence, the approximation error diminishes rapidly
(Katzfuss and Guinness 2021).

For simulation and real data fitting, we set m = 10, as this value provides a balance between
computational efficiency and approximation accuracy. For generating the data in the simulation
study, we used m = 100 to ensure a highly reliable approximation of the full Gaussian process,
as simulating the full process was computationally infeasible. To maximize the accuracy of the
approximation, a maximin ordering of sites was used (Jimenez and Katzfuss 2023), which ensures
that each new site in the ordering is as far as possible from the previously ordered sites.

3.2 Bayesian Probit Regression and Latent Normal Random Variables

Albert and Chib (1993) observed that while the standard probit model,

𝒀 ∼ Bin(𝒑)

𝒑 = Φ(X𝜷)

𝜷 ∼ 𝒩 (μβ, Σβ),

yields a “largely intractable” posterior for 𝜷, the same model could be rewritten as Yi = 1Zi>0,
𝒁 ∼ 𝒩 (X𝜷, In), where the full conditional distribution of 𝜷 is a multivariate normal distribution
and the full conditional of 𝒁i is a truncated normal distribution. Because both of these distribu-
tions can easily be sampled from, the exact posterior can be obtained through MCMC methods
(Albert and Chib 1993). We propose a method of extending this computational convenience to
pooled probit models that is, to our knowledge, novel. In addition to the computational effi-
ciency obtained from the conjugacy in the Albert and Chib (1993) approach, our approach also
enables individual-level covariates to be estimated, even though the positive or negative results
are reported at the pool-level.

Suppose that instead of Yi = 1Zi>0, Yi = 1max(𝒁i )>0 for some pool 𝒁i of random variables Zij .
As no other alterations are made, the full conditional for 𝜷 is unchanged. Regarding 𝒁, it is useful
to consider it partitioned by pool, such that 𝒁i ∼ 𝒩 (Xi𝜷 i , 1) for a given pool i. In the unpooled
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Figure 2: Full conditional contour plots for standard normal Zij with a pool size of 2.

case, the full conditional distribution for Zi is truncated to the values that make Yi possible, that
is, P(Zi |βi) · (1Zi>0)

Yi · (1Zi⩽0)
1−Yi . Similarly, the domain of the full conditional for the pooled 𝒁i

is restricted to the values that make Yi possible, P(𝒁i |𝜷 i) · (1max(𝒁i>0))
Yi · (1max(𝒁i )⩽0)

1−Yi . Note
that max(𝒁i) ⩽ 0 is equivalent to every Zij being negative or 0, and max(𝒁i) > 0 is equivalent to
at least one Zij being positive. Thus, in the pooled case, the full conditional for 𝒁i is restricted
to the nonpositive orthant if Yi = 0 (an n-dimensional generalization of quadrant III in ℝ

2) and
to all other orthants if Yi = 1. A visual depiction can be seen in Figure 2. For this application,
our pool size is four or less. In general, the pool size is linked to the expected prevalence in the
population (Warasi, Hungerford, and Lahmers 2022).

For numerical stability, the marginal probability that Zij is less than zero in the Yi = 1 case
can be written as

FZi1(0)

1 − ∏︁npool

j=1 FZij
(0)

· K

K
= exp

(︃
log(K) + log(FZi1(0)) − log

(︃
K − e

log(K)+∑︁npool
j=1 log(FZij

(0))

)︃)︃
,

where FZij
(x) is the normal cumulative distribution function (cdf) with mean 𝑿′

ij𝜷 i and unit
variance and K is some large constant. The full process is outlined in Algorithm 1. Modeling
the pools with this framework allows for the model specified by Pati, Reich, and Dunson (2011)
to be adapted to a pooled binary response with minimal changes.

3.3 Latent Probit Sampling
A consequence of the use of a Log-Gaussian Cox Process is the difficulty of obtaining posterior
draws for the shared latent Gaussian process, w(𝒔). Pati, Reich, and Dunson (2011) implemented
a block Metropolis-Hastings sampler, requiring a large amount of additional computation to
repeatedly calculate the likelihood of the proposed draws. While the pooled probit framework
conveniently adapts to a normal response, pooled binary data introduce additional uncertainty,
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Algorithm 1 Pooled probit full conditional sampling.
Let T N(μ, σ 2, a, b) describe a truncated normal distribution with mean μ, variance σ 2, lower
bound a, and upper bound b

j ← 1
repeat

r ← FZj
(0) ÷

(︂
1 − ∏︁n

k=j FZk
(0)

)︂
U ∼ Unif (0, 1)

if r < U then
Z ∼ T N(μj , 1, −∞, 0)

else
Z ∼ T N(μj , 1, 0, ∞)

end if
Zj ← Z

j ← j + 1
until Zj−1 < 0
while j ⩽ n do

Zj ← Z ∼ N(μj , 1)

end while

as the exact outcomes of multiple normal random variables are replaced with a single Bernoulli
random variable for the pool. This additional uncertainty can lead to highly correlated posterior
draws, slowing exploration of the sample space because this model requires a large number of
draws and a large amount of computation per draw.

To address this, we replaced the inhomogeneous Poisson point process instead modeling
sampled points as coming from a fine grid of Bernoulli trials. Similar to the response, initial
selection probabilities are given by a probit link such that v(sm) ∼ N(X⊤

vm𝜷v + αvw(sm), 1) for
some set of site-level covariates Xv and coefficients βv and αv. As with the inhomogeneous Poisson
point process models, this allows the model to correct for spatial sampling bias as w(𝒔) influences
both the response and the probability of selection. However, unlike the inhomogeneous Poisson
point process models, this produces a full conditional for w(𝒔) that can be sampled via Gibbs
sampling (see Equation 3).

A weakness of this strategy is that it can be sensitive to the choice of grid resolution. A well-
known feature of the Poisson distribution is that, in the homogeneous case, if two adjacent grid
cells each have a Poisson distribution with mean λ/2, then the mean for the combined plot (the
two subplots together) is λ. In contrast, if we consider two sites, s1, s2 with some feature 𝒙 such
that P(sk = 1) = E(sk) = Φ(xk), the same property does not hold as in the Poisson distribution.
To remedy this, a second stage in selection was added. For the sites that were selected in the
first stage, a second Bernoulli trial is performed, each with the same probability, π . Then, for
π = 0.5, E(sk)/2 = Φ(xk) · π .

3.4 Complete Bat Model

The complete model, including the Vecchia approximations w̃(s) and d̃(s), is specified as

Yij |𝒁ij = 1max(Zijk)>0

𝒁|X, 𝜷, α, U, V, w̃(𝒔), d̃(𝒔) ∼ 𝒩 (X𝜷 + αUV w̃(𝒔) + UV d̃(𝒔), I ) (1)
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U is a replication matrix for the bats in each site
V is a selection matrix for the nonzero entries of 𝒓

ri = 10<vk,pk=1

pi |π ∼ Bernoulli(π)

𝒗|Xv, 𝜷v, αv, w̃(𝒔) ∼ 𝒩 (Xv𝜷v + αvw̃(𝒔), I )

d̃(sk)|𝑩dk, 𝒔gd(k), σ
2
d , Hdk ∼ N(𝑩dk𝒔gd(k), σ

2
d Hdk)

w̃(sk)|𝑩wk, 𝒔gw(k), Hdk ∼ N(𝑩wk𝒔gw(k), Hwk)

𝑩qk|sk, 𝒔gq(k) = Cθq
(sk, 𝒔gq(k))Cθq

(𝒔gq(k), 𝒔gq(k))
−1

Hqk|sk, 𝒔gq(k), 𝑩qk = Cθq
(sk, sk) − 𝑩qkCθq

(𝒔gq(k), sk),

where X is the design matrix of all bat and site level covariates for each bat, Xv is the design
matrix of only site-level covariates, and ijk indexes the kth bat in the jth pool from the ith
site. 𝑩qk and Hqk are the block matrices 𝑩 i and 𝑫i outlined in Katzfuss and Guinness (2021)
for the Vecchia approximation for q ∈ {w, s}. Each block corresponds to a location sk given
a conditioning vector 𝒔gq(k). Because, in this case, each block corresponds to a single location,
each Hqk represents a scalar value and each 𝑩qk represents a transposed vector of interpolation
weights.

Because the Gaussian processes w(𝒔) and d(𝒔), along with their approximations, are based
on site-level covariates, their entries need to be replicated for each bat at a single site. Note
that more complicated spatial structures, such as anisotropy, could be encoded in d(𝒔). This
is achieved using the replication matrix U , which uses basis vectors corresponding to sites and
repeats them once for each bat at those corresponding sites. Additionally, as most of the sites
are unobserved, a second selection matrix V removes values of w̃(s) and d̃(s) that correspond
to those unobserved sites. As an example, if there were three total sites, the first and third sites
were selected, and there were three samples collected at the first site and two at the second,
then

U =

⎡
⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 1

⎤
⎥⎥⎥⎥⎦ , V =

[︃
1 0 0
0 0 1

]︃
, d̃(𝒔) =

⎡
⎣d̃(s1)

d̃(s2)

d̃(s3)

⎤
⎦

V d̃(𝒔) =
[︃
d̃(s1)

d̃(s3)

]︃
, and UV d̃(𝒔) =

⎡
⎢⎢⎢⎢⎢⎣

d̃(s1)

d̃(s1)

d̃(s1)

d̃(s3)

d̃(s3)

⎤
⎥⎥⎥⎥⎥⎦

.

For a covariance function for both w(𝒔) and d(𝒔) we use

Cθq
(s, s ′) = exp

{︃−D(s, s ′)
ϕq

}︃
, (2)

where D(s, s ′) is the Euclidean distance between the points s, s ′. Although if an application war-
ranted a more complex spatial random effect, that could be specified with a different covariance
function. Care should be taken when specifying the priors for the covariance functions of w(𝒔)



Estimating Disease Prevalence from Preferentially Sampled, Pooled Data 551

and d(𝒔) as these parameters are generally weakly identified. In addition, the prior on αv may
need to constrain the parameter space to positive values to avoid bimodality in the posterior.
However, this is not necessary if α, αv and w̃(𝒔) are individually treated as nuisance parameters.
In general, interest would be in α × w(𝒔) and αv × w(𝒔), rather than the α terms directly, and
the products do not exhibit bimodality.

In the model, w̃(𝒔) appears in the conditional likelihoods of both the latent response vector 𝒁

and the latent selection vector 𝒗. Katzfuss and Guinness (2021) demonstrated that the individual
block matrices can be used to construct a vector 𝝁w̃ and sparse matrix H−1

w̃
such that

w̃(𝒔)|𝝁w̃, H−1
w̃

∼ 𝒩 (𝝁w̃, Hw̃).

In this case it follows that
p(w̃(𝒔)|·) ∝ p(𝒁|w̃(𝒔), ·)p(𝒗|w̃(𝒔), ·)p(w̃(𝒔))

∝ exp

{︃
−1

2
(𝒁 − (X𝜷 + αUV w̃(𝒔) + UV d̃(𝒔))′

× (𝒁 − (X𝜷 + αUV w̃(𝒔) + UV d̃(𝒔)))
}︂

× exp

{︃
−1

2
(𝒗 − (Xv𝜷v + αvw̃(𝒔)))′

× (𝒗 − (Xv𝜷v + αvw̃(𝒔)))
}︁

× exp

{︃
−1

2
(w̃(𝒔) − 𝝁w̃)′H−1

w̃
(w̃(𝒔) − 𝝁w̃)

}︃

∝ exp
{︂
((𝒁 − X𝜷 − UV d̃(𝒔))′αUV + (𝒗 − (Xv𝜷v))

′αv + 𝝁′
w̃H−1

w̃
)w̃(𝒔)

−1

2
w̃(𝒔)′ (︁α2(UV )′UV + α2

v + H−1
w̃

)︁
w̃(𝒔)

}︃
.

(3)

This implies that

⇒ w̃(𝒔)|· ∼ 𝒩 (𝝁∗
w̃, H ∗

w̃)

for: H ∗
w̃ = (︁

α2(UV )′UV + α2
v + H−1

w̃

)︁−1
,

𝝁∗
w̃ = H ∗

w̃((αUV )′(𝒁 − X𝜷 − UV d̃(𝒔)) + (𝒗 − αv(Xv𝜷v)) + H−1
w̃

𝝁w̃),

which allows for Gibb’s sampling of w̃(𝒔). Note that this holds for any multivariate normal
approximation of w(𝒔).

4 Simulation Study
As this work is motivated by understanding coronavirus prevalence in bat populations, our
simulation study mimics this setting. Nine scenarios were considered by permuting three values
each for αv (the effect of w(𝒔) on selection) and βvPop (the effect of “Developed, High Intensity”
land use on a log +1 scale). When either αv or βvPop is zero, “no impact” is expected. The
other combinations of non-zero αv and βvPop are expected to lead to “nominal impact” or “large
impact.” Across these scenarios we evaluate our pooled, preferential sampling paradigm relative
to a naive approach that does not account for preferential sampling and treats the sampling
probabilities of all sites as equal. The complete naive model is given as

Yij |𝒁ij = 10<max(Zijk) (4)
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𝒁|X, 𝜷, U, V, d̃(𝒔) ∼ 𝒩 (X𝜷 + UV d̃(𝒔), I ) (5)
d̃(si)|𝑩di, 𝒔gd(i), σ

2
d , Hdi ∼ N(𝑩di𝒔gd (i), σ

2
d Hdi) (6)

𝑩di |si, 𝒔gd(i) = Cθd
(si, 𝒔gd(i))Cθd

(𝒔gd (i), 𝒔gd(i))
−1 (7)

Hdi |si, 𝑩di, 𝒔gd(i) = Cθd
(si, si) − 𝑩diCθd

(𝒔gd(i), si), (8)

where X is the design matrix of site-level covariates, and Xb is the design matrix of bat-level
covariates. For covariance functions we chose the covariance function specified in Equation 2.

The models are compared on median bias in estimating a site-level covariate, βPop, which
is the effect for a site’s “Developed, High Intensity” value from the U.S. Geological Survey’s
National Land Cover Database (Yang et al. 2018) within 10 km, transformed using a log +1
scale. For the simulations, real data from California were used; based on the NLCD database
resolution, this results in 2,813 unique pixels. βPop was fixed at 0.1 and the intercept was chosen
to fix the proportion of positive pools to be near 0.5.

4.1 Simulation Study Results
Figure 3 contains the estimated values of the coefficient associated with human population in
the proximity of the roost for each replication in our simulation study. If either coefficient is
near zero, the bias in the naive model is negligible and the results are similar to our model

Figure 3: Comparison of bias in estimated medians for βPop from simulation study. The top
row corresponds to no impact of population density on selection. The first column corresponds
to no impact of the estimated spatial effect on selection. If either case is true, then a naive
model appears to produce unbiased results. However, if both are false, then the bias can be seen
to grow. For instance, if higher population increases both the probability of selection and the
prevalence, then we’d expect to see increasingly large bias in estimates of prevalence that are
based on samples selected from higher population sites.
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Table 1: Root Mean Square Error (RMSE) from simulation scenarios.

αv βvPop Latent RMSE Naive RMSE

0 0 0.014 0.000
0 0.1 0.010 0.010
0 0.3 0.020 0.022
1 0 0.022 0.017
1 0.1 0.000 0.057
1 0.3 0.028 0.058
2 0 0.014 0.014
2 0.1 0.000 0.035
2 0.3 0.033 0.127

accounting for preferential sampling. This makes intuitive sense, as bias is not expected to be
present in these situations and there are no discernible differences between our approach and the
simpler naive approach. However, as both coefficients grow, the naive model can clearly be seen
to produce more biased estimates. In these cases, two things occur: first, preferential sampling,
with respect to nearby human population, occurs and, second, nearby human population im-
pacts the response – simulated coronavirus prevalence. In these scenarios the spatial correlation
in w(𝒔), the spatial effect associated with preferential sampling is relatively high, it is likely that
sampled sites would not be representative of all sites and hence biased estimates occur using
a naive model that does not account for preferential sampling. When the magnitude of both
these factors increase (bottom right corner of Figure 3), the bias in the naive model increases. It
should be noted that the log population values range from about 0 to 11, so a difference of 0.1
in the coefficient represents a large difference. Julia code (Bezanson et al. 2017) for the sim-
ulation study is available at (https://anonymous.4open.science/r/pooled_preferential-B17C/
README.md).

The Root Mean Squared Error (RMSE) for the posterior median was also calculated and
is shared in the Table 1. Similar to the results for bias in Figure 3, we see similar performance
between the two methods when either αv or βvPop are zero; however, in other cases the la-
tent model that accounts for the preferential sampling results in improvements over the naive
model.

Although Figure 3 and Table 1 show improved performance for the latent model, those
improvement do come with a computing cost. For one simulation each under the latent and
naive scenarios, computation time and effective sample size for βPop were calculated. For the
naive scenario, the number of milliseconds per ESS was 32.403. For the latent scenario, the
number of milliseconds per ESS was 10, 893.734. These calculations were conducted using an
Intel i5-11600k processor at 4.9 GHz.

5 Data Analysis
We analyzed coronavirus prevalence data collected from Mexican free-tailed bats in California
in 2022 (Figure 1) and explored factors related to coronavirus prevalence while controlling for
preferential site selection. For each sampling location, site-level covariates related to land use
and surrounding population characteristics were gathered via the Google Earth Engine (Gorelick

https://anonymous.4open.science/r/pooled_preferential-B17C/README.md
https://anonymous.4open.science/r/pooled_preferential-B17C/README.md
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Figure 4: w(𝒔)×α for each pixel in California. w(𝒔) is a random effect associated with preferential
sampling intensity and α is a covariate for that random effect. Together, along with other
covariates, they inform the prevalence of coronavirus prevalence in Mexican free-tailed bats in
California.

et al. 2017). In particular, the following variables were calculated in a 10 km radius around
the site: human population and the proportion of land use classified as barren, herbaceous,
evergreen, grasslands, mixed forests, pasture, and shrubs. Additional covariates for individual
bats were collected during capture. For each bat, mass, forearm length, sex, reproductive status,
and age were collected. If the research goal was to predict prevalence across the landscape,
the information from Figure 4 and Figure 5 could be combined to create a prediction across
the study area in California. However, our research goal is more focused on estimating the
relationship between site and bat-level covariates and coronavirus prevalence while controlling
for potential bias from preferential sampling.

The results are summarized by two components in Equation 1. The first component, α×w(𝒔),
represents the contribution of the response on the latent probit scale that corresponds to the
preferential sampling intensity. Recall that w(𝒔) is a spatial process related to sampling intensity
and α can be interpreted as the coefficient on that process. Figure 4 shows the product of α×w(𝒔)

across the State of California, based on a gridded approach, using human population and land
cover characteristics within a 10 km radius. The yellower areas indicate higher preferential
sampling intensity, while the darker areas indicate lower preferential sampling intensity. The
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Figure 5: 95% credible intervals for individual and site-level covariates. The black bars represent
the credible intervals and the red points are posterior means. With the exception of sex, most
intervals are relatively wide and include zero.

higher intensity regions in Figure 4 are near major population centers in both northern and
southern California. This suggests that locations close to these population centers are more
likely to be sampled. However, the magnitude of the α×w(𝒔), which corresponds to the degree of
preferential sampling, ranging from approximately .25 to −.25 is relatively small when considered
on the probit scale implied with Equation 1. Recall the naive model specified in Equations 4–8
lacks the α × w(𝒔) term, hence without explicitly controlling for preferential sampling intensity,
that unexplained variation can induce bias in the β values.
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The second component is the Xβ term. Controlling for the traditional spatial random effect,
d(𝒔), and the preferential sampling intensity, α × w(𝒔), Xβ is the signal of disease prevalance,
on the latent scale, attributable to the covariates. The matrix X includes both the site and
bat-level covariates. Most of the 95% credible intervals for the site-level covariates are fairly
wide and include zero (Figure 5). Although these human density and land-use covariates were
potentially expected to contribute to the preferential sampling bias, it would have been somewhat
unexpected for these covariates to contribute to elevated or decreased prevalence levels. Figure 5
also contains 95% credible intervals for the individual bat-level covariates. Many of these intervals
are also wide and include zero, but the exception would be sex where male bats have lower
prevalence. Reproductive cycles are known to increase stress and have been shown to increase
viral shedding in female bats (Ruiz-Aravena et al. 2022), which is a likely cause of differences in
prevalence between male and females bats as much of the sampling during this period occurred
during the later stages of maternity. Overall, the wide credible intervals result from limited
information in our pooled dataset, which includes only 20 total sites.

6 Discussion
We have extended existing preferential sampling methodology to account for scenarios where
samples are tested in pools without retesting individuals. Inspired the Albert and Chib (1993)
latent probit approach and the Pati, Reich, and Dunson (2011) preferential sampling algorithm,
we present a data augmentation algorithm that accounts for uncertainty in the pooled responses
that can also address preferential sampling issues. Our approach also enables inferences from
individual-level covariates within pools. Even in problematic preferential sampling settings, when
variables related to site selection are also related to disease prevalence, our method produced
accurate covariates estimates.

Furthermore, in scenarios with no preferential sampling or no relationship between prefer-
entially sampled variables and the response of interest, our model performs similarly to a naive
model with both producing unbiased results. Although the model requires additional computa-
tion, the results are similar in these cases. A limitation is that the additional computation can
be substantial. Despite this limitation, our model can be used as a tool for identifying issues
stemming from preferential sampling and in certain cases simpler models could follow.

While our extended research team has developed an algorithm for predicting bat roosts
(Oram et al. 2025), we do not have a complete sampling frame of all bat roosts in California or
even probable bat roosts. Rather than making predictions across the entire state of California,
similar to Figure 4, a use-availability approach motivated by Johnson, Williams, and Riordan
(2021) could be used to make predictions at background locations that are similar to our sampled
points. With sets of preferentially and probabilistically sampled roosts, this would mimic case-
control study and methods presented in Savitsky et al. (2023) and could be used for drawing
inferences.

Pooling can be a useful tool in certain situations (Hoegh et al. 2021), namely when preva-
lence is expected to be low and individual specimens can be collected cheaply relative to the cost
of testing samples. However, pooling, without retesting, can also be detrimental due to the loss
of information as the disease status of individuals are not directly known. Ultimately sophisti-
cated models like the one we have detailed can only recover so much information. Without cost
or time constraints, collecting and testing as many individual samples as possible would give
the most precise results. In this case, our framework would simplify but still produce the same
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results, relative to a naive model. In addition, our model framework can control for potential
bias induced by preferential sampling and infer relationships between site-level, pool-level, and
individual-level covariates.

Supplementary Material
Code for the simulation studies and data analysis is available at https://anonymous.4open.
science/r/pooled_preferential-B17C/README.md. The raw data is available at https://doi.
org/10.5066/P14HVQHW.
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