
Journal of Data Science 23 (3), 499–520 DOI: 10.6339/25-JDS1166
July 2025 Statistical Data Science

Variable Selection with FDR Control for Noisy Data –
An Application to Screening Metabolites that Are Associated

with Breast Cancer and Colorectal Cancer

Runqiu Wang
1
, Ran Dai

1,∗
, Ying Huang

2
, Marian L. Neuhouser

2
,

Johanna W. Lampe
2
, Daniel Raftery

3
, Fred K. Tabung

4
, and Cheng Zheng

1,∗
1Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.

2Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, U.S.A.
3Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington,

U.S.A.
4Department of Internal Medicine, College of Medicine and Comprehensive Cancer Center, The Ohio

State University, Columbus, Ohio, U.S.A.

Abstract

The rapidly expanding field of metabolomics presents an invaluable resource for understanding
the associations between metabolites and various diseases. However, the high dimensionality,
presence of missing values, and measurement errors associated with metabolomics data can
present challenges in developing reliable and reproducible approaches for disease association
studies. Therefore, there is a compelling need for robust statistical analyses that can navigate
these complexities to achieve reliable and reproducible disease association studies. In this pa-
per, we construct algorithms to perform variable selection for noisy data and control the False
Discovery Rate when selecting mutual metabolomic predictors for multiple disease outcomes.
We illustrate the versatility and performance of this procedure in a variety of scenarios, dealing
with missing data and measurement errors. As a specific application of this novel methodology,
we target two of the most prevalent cancers among US women: breast cancer and colorectal
cancer. By applying our method to the Women’s Health Initiative data, we successfully identify
metabolites that are associated with either or both of these cancers, demonstrating the practi-
cal utility and potential of our method in identifying consistent risk factors and understanding
shared mechanisms between diseases.
Keywords cancer; FDR control; measurement error; metabolomics data; missing data;
variable selection

1 Introduction
Breast cancer (BC) and colorectal cancer (CRC) have a high incidence rate, ranking as the
highest and third highest among women in the US, respectively (ACS, 2020). Both cancers
share several diet and lifestyle risk factors (Kampman et al., 2018). According to the World
Cancer Research Fund (WCRF)/American Institute for Cancer Research (AICR) Expert Panel,
there is “convincing” evidence that adult weight gain and excess body fat increase the risk for
post-menopausal BC and CRC, and that physical activity reduces the risk for both cancers.
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Furthermore, alcoholic drinks have been found to increase the risk of post-menopausal BC and
CRC. Higher intakes of red meat, animal fats, and refined carbohydrates have been associated
with increased risks of both BC and CRC, whereas fruits, vegetables, whole grains, and dietary
fiber tend to be linked with reduced risk (Yusof et al., 2012; Xiao et al., 2019; Putri et al., 2013).
However, the WCRF/AICR Expert Panel’s classification for the level of evidence supporting
the associations for these dietary components remains “suggestive” or “probable” rather than
“convincing”, except for increased intakes of processed meat and the risk of CRC (Kampman
et al., 2018). Given this context, there is a crucial need to identify “convincing” evidence for
risk factors associated with BC and CRC. Additionally, it is essential to study the common risk
factors for these two prevalent cancers to better understand their shared underlying mechanisms
and develop effective prevention strategies.

Metabolomics, the extensive analysis of small molecules in organisms (Nannini et al., 2020),
reflects both internal cellular processes and external exposures, making it a sensitive tool for
tracing pathways associated with chronic diseases like cancer. Despite its use in early cancer
detection (Cheung et al., 2019; Yang et al., 2020; His et al., 2019; Zhu et al., 2014), few studies
have systematically explored metabolomics in relation to BC and CRC. Identifying metabolomic
components could uncover new BC pathways. For example, studies using the European Prospec-
tive Investigation into Cancer (EPIC) and the Prospective Lung, Colorectal, and Ovarian Cancer
(PLCO) cohorts found certain plasma components and pre-diagnostic diet-related metabolites
significantly associated with BC risk (His et al., 2019; Playdon et al., 2017). Further uncovering
BC and CRC-related features could illuminate disease-related biological pathways, enhancing
prevention and treatment strategies.

Developing screening methods for metabolomics data presents several challenges due to their
inherent characteristics. Metabolomics data are high-dimensional, often containing missing val-
ues and measurement errors. The high dimensionality of metabolomics data is a double-edged
sword: while it encompasses all potential components associated with the disease, the majority
of these components are unrelated, introducing a significant amount of noise. Missingness and
measurement errors are inevitable when dealing with large-scale data collection. These factors
pose considerable challenges in screening procedures for the metabolomics data that offer re-
producibility guarantees. To address these issues, robust and innovative approaches must be de-
signed, which can account for the complexities and limitations associated with high-dimensional,
noisy data while still providing accurate and reliable results.

Measurement errors and missing data frequently arise in complex data analysis tasks, pos-
ing challenges that must be carefully addressed when designing variable selection procedures.
Naive approaches often lead to problematic results. For example, using complete case analysis
and removing all samples with any missing data leads to spurious results in variable selection.
Measurement errors lead to inflated estimation errors for coefficients and inconsistency in the
Lasso variable selection procedure (Sorensen et al., 2015). There has been a surge in the litera-
ture on variable selection in the presence of missing data and measurement errors. For missing
data mechanisms like missing at random (MAR) and missing completely at random (MCAR),
researchers have developed imputation-based methods and other techniques (Little and Rubin,
2002; Tsiatis, 2006; Rässler et al., 2013) tailored for variable selection purposes (Wolfson, 2011;
Johnson, 2008; Garcia et al., 2010). In the context of variable selection with measurement er-
rors, several methods have been proposed, including CocoLasso (Datta and Zou, 2017), corrected
Lasso (Loh and Wainwright, 2012; Sorensen et al., 2015), generalized matrix uncertainty selector
(Rosenbaum and Tsybakov, 2013), generalized matrix uncertainty Lasso (Sorensen et al., 2015),
and generalized Dantzig selector (Antoniadis et al., 2010). These advancements demonstrate



Variable selection with FDR control for noisy data 501

the ongoing efforts to tackle the challenges posed by missing data and measurement errors in
variable selection.

One critical challenge in variable selection is ensuring replicability guarantees. Over the
past few decades, a novel measure for Type I error, the False Discovery Rate (FDR), or the
expectation of the false discovery proportion (FDP), has been proposed to address this issue. The
renowned Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995) has sparked
a new era in multiple hypothesis testing, leading to the rapid development of methods that
control FDR. Among these techniques, the Knockoff-based methods (Barber and Candès, 2015,
2019; Candès et al., 2018) offer several advantages, making it particularly attractive for various
applications. Some of the key benefits of the Knockoff methods include: mild assumptions about
data structure, allowing for more flexibility in handling diverse datasets; compatibility with a
wide array of models and variable selection procedures for both low and high dimensional data,
powerful method with a finite sample FDR control guarantee, providing reliable results even
with limited sample sizes.

These advantages make the Knockoff methods especially suitable for applications in meta-
bolomic data, which typically exhibit complex correlation structures, high-dimensional features,
and unknown signal strength. Furthermore, the Knockoff methods excel at handling arbitrary
correlation structures and do not require prior knowledge of signal amplitudes or noise levels,
making them powerful and versatile tools in the realm of variable selection.

1.1 Prior Work

Knockoff-Based Methods Advancements in multiple testing problems within a single exper-
iment have resulted in the development of powerful knockoff-based methods that provide exact
FDR control for selecting features with conditional associations with the response (Barber and
Candès, 2015; Candès et al., 2018). The knockoff filter by Barber and Candès (2015) offers exact
FDR control for linear models without needing detailed model information and has been devel-
oped for high-dimensional cases (Barber and Candès, 2019). The Model-X knockoff by Candès
et al. (2018) extends this to nonlinear models with unknown response distributions but requires
knowledge of the predictor 𝑿’s distribution. Barber et al. (2020) demonstrated that the Model-X
knockoff method is robust to errors in estimating the distribution of 𝑿, while Huang and Janson
(2020) relaxed its assumptions, allowing FDR control as long as the parametric form of the dis-
tribution of 𝑿 is known. A number of publications have explored the construction of knockoffs
with approximated distributions of 𝑿. For instance, Romano et al. (2020) developed a Deep
knockoff machine using deep generative models, Liu and Zheng (2019) created a Model-X gen-
erating method employing deep latent variable models, and more recently, Bates et al. (2021)
proposed an efficient general metropolized knockoff sampler. Spector and Janson (2022) sug-
gested constructing knockoffs by minimizing the reconstructability of features. Knockoff-based
methods have also been extended to test the intersection of null hypotheses, leading to the de-
velopment of the group and multitask knockoff methods (Dai and Barber, 2016) and prototype
group knockoff methods (Chen et al., 2019).

Current Advance in FDR Control for Identifying Simultaneous Signals Simultane-
ous signal detection has been explored using BH procedure-based methods (Heller et al., 2014;
Bogomolov and Heller, 2013, 2018), local FDR (Chi, 2008; Heller and Yekutieli, 2014), and non-
parametric approaches (Zhao and Nguyen, 2020). These methods rely on the independence, or
positive regression dependency property of the features, which do not hold for most metabolomics
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studies. Recently, Li et al. (2021) and Dai and Zheng (2023) introduced the multi-environment
knockoff and the simultaneous knockoff methods for feature selection and identifying consistent
associations, potentially useful for detecting mutual BC and CRC risk factors. However, all these
methods do not allow the existence of missing data or measurement errors, which presents an
important and unavoidable issue in metabolomic data analyses.

1.2 Our Contributions

In this paper, we evaluated the performance of different knockoff extension methods to handle
missing values and/or measurement errors in the context of FDR control for variable selection.
In addition, we propose a method to select mutual metabolomics predictors for not only one,
but multiple clinical outcomes. The main contributions of this paper are summarized below:
1. We construct a knockoff-based procedure for FDR-controlled multiple testing when there are

measurement errors and/or missing data in predictors. This procedure can work on general
conditional dependence models Y |𝑿 and data structures in 𝑿. It can also identify mutual
signals for multiple outcomes (e.g. BC and CRC).

2. We demonstrate the FDR control performance and the power of our method with extensive
simulation settings. We also illustrate the application with the Women’s Health Initiative
(WHI) data examples.
The rest of the paper is organized as follows. In Section 2, we present notations and details

of our proposed variable selection framework to control FDR when there are missing data and
measurement errors in the predictors. The method can also identify mutual signals for multiple
outcomes. In Section 3, we show the empirical performance of the proposed method under
different model assumptions and data structures. Finally, in Section 4, we apply the proposed
method to a nested case-control study of BC and CRC among WHI Bone Mineral Density
(BMD) Subcohort data.

2 Methods

2.1 Notations

For any positive integer N , denote [N ] = {1, . . . , N}. For the n data samples without missingness
and measurement error, we assume they are sampled from the underlying distribution of (Y, 𝑿)

with Y ∈ ℝ being the response variable and 𝑿 ∈ ℝp being the p-dimensional predictor. The
samples (Yi, Xi1, . . . , Xip)

iid∼ 𝒟, for i ∈ [n]. We work on the multiple testing problem on the null
hypotheses H0j := Y ⊥⊥ Xj |𝑿−j , where 𝑿−j := {Xk : k ∈ [p] and k ≠ j }. We aim at developing
a selection procedure returning a selection set ˆ︁𝒮 ⊆ [p] with a controlled FDR:

FDR(ˆ︁𝒮) = 𝔼
[︁
FDP(ˆ︁𝒮)

]︁ = 𝔼

[︃ |ˆ︁𝒮 ∩ ℋ|
|ˆ︁𝒮| ∨ 1

]︃
, (1)

where ℋ = {j ∈ [p] : H0j is true} and ∨ means taking the maximum of the two elements.
Given the potential measurement error, we assume 𝑿 (the true serum/urine metabolites’

level) is not available and an error-prone version 𝑾 ∈ ℝp (measured metabolites that subject to
various sources of measurement error) is available, where 𝑾 = 𝑿 + 𝝐w with 𝝐w

iid∼ ℱw where ℱw

can be estimated from external data sources. Typically, we can assume a multivariate normal
distribution for 𝝐w, i.e., 𝝐w ∼ 𝒩 (0, 𝚺ϵ). Also, for the potential missing data, we further introduce
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indicator variables Δ ∈ {0, 1}p to indicate the missing mechanism. We let Δj = 1 to indicate
that Wj is observable and we adopt the missing at random (MAR) assumption, i.e., ℙ(Δj =
1|𝑾 , 𝑿) = ℙ(Δj = 1|𝑾−j ) where 𝑾−j := {Wk : k ∈ [p] and k ≠ j }. Notice that this assumption is
slightly stronger than the usual assumption of MAR (ℙ(Δj = 1|𝑾 , 𝑿) = ℙ(Δj = 1|𝑿−j )) based
on true variables due to the potential measurement error. In metabolomic data, this assumption
is reasonable, since the missingness is mostly related to the signal detected from the other similar
metabolite peaks, rather than the true underlying concentration of other metabolites.

For the remaining of the paper, with n observations, our final observed data will be denoted
as (Y, 𝚫, 𝚫 ⊙ W), where ⊙ represents the Hadamard product (i.e., elementwise product). Here
Y ∈ ℝn is a vector of responses for the n individuals, W ∈ ℝn×p denotes the matrix with elements
Wij for individual i and predictor j , 𝚫 ∈ {0, 1}n×p denotes the matrix with elements Δij the
indicator variable for individual i and predictor j .

2.2 Imputation of Missing Data
In general, we generate K imputed datasets, denoted as (Y, Wk), for k ∈ [K]. When K = 1,
we consider simple imputation using the mean of the observed values or half of the minimum
of the observed values depending on our assumption on whether the missing is random or is
due to a detection limit. Also, we can consider multiple imputation methods with K ⩾ 1 where
each dataset can be generated using a chained equation approach. Specifically, we first randomly
impute the missing values based on the marginal distribution estimated from those individuals
with the variable observed, i.e.,

Wk
ij = ΔijWij + (1 − Δij )

∑︁n
i ΔijWij∑︁n

i Δij

.

Then we will update the imputed value iteratively over all j ∈ [p] that
∑︁

i Δij < n. First, we
will fit a regression model of Wij on Wk

i,−j and Yi for those Δij = 1. Then we will update Wk
ij

for those Δij = 0 using the predicted value from the model and current Wk
i,−j , Yi . Here the

regression models can be in the form of generalized linear models (default), classification and
regression trees (cart), or random forest (rf ). Alternatively, when a large unlabeled subsample
exists, another option is to perform multiple imputations excluding the outcome Y from the
above steps. We explore both options numerically in Section 3.

2.3 Knockoff Construction
For each imputed dataset Wk, we construct the knockoff ˜︁Wk using second-order Model-X
knockoff by sampling ˜︁Wk from 𝒩 (˜︁𝝁, ˜︁𝚺), where ˜︁𝝁 = Wk − Wk𝚺−1 diag{s}, ˜︁𝚺 = 2 diag{s} −
diag{s}𝚺−1 diag{s} and 𝚺 is the variance-covariance matrix of W, such that

Cov
(︁[︁

Wk, ˜︃Wk
]︁)︁ =

(︃
𝚺 𝚺 − diag{s}

𝚺 − diag{s} 𝚺

)︃
.

where s satisfies ˜︁𝚺 = 2 diag{s}−diag{s}𝚺−1 diag{s} is semi-positive definite and s can be solved us-
ing the approximate semidefinite program (ASDP) algorithm as given in Candès et al. (2018). We
use the R function create.second within the R package knockoff to implement this construction
method. As a remark, the second order knockoff method works primarily for normally distributed
data, and the multivariate Gaussian approximation is reasonable after the log-transformation of
the metabolite data; the method is also robust against mild model mis-specifications (Candès
et al., 2018).
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2.4 Test Statistics
One advantage of the Knockoff procedure we adopt for FDR control is that we do not need to
know the null distribution of our test statistics, as long as they are compatible with the Knockoff
method. We consider a variety of test statistics:
• Lasso: We assume a working model in a generalized linear model (GLM) framework

fY (y; θ, ϕ) = exp

{︃
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

}︃
,

where θ = X⊤𝜷. Here 𝜷 is the parameter of interest and ϕ is the dispersion parameter while
a(·), b(·), c(·) are prespecified functions. The expected response is given by the mean function
μ(θ) = b′(θ) = g−1(θ), where g−1(·) is the inverse of a canonical link function g(·). We choose
the Lasso variable selection procedure and construct the statistics as

ˆ︁𝜷(λ) = arg min
𝜷∈ℝ2p

n∑︂
i=1

(Yi − μ([Wi
˜︁Wi]⊤𝜷))2

Vi

+ λ∥𝜷∥1,

where Vi = V (g−1([Wi
˜︁Wi]⊤𝜷)) and V (·) is the variance function specified for the GLM for Y .

Then we use the absolute value |ˆ︁βj (λ)| as defined above with a specific λ value or λ selected
from cross-validation as test statistics (i.e., Zj = |ˆ︁βj (λ)| and ˜︁Zj = |ˆ︁βp+j (λ)| for j ∈ [p]).

• Lasso Order: We assume the same GLM model and run over a range of λ values decreasing
from +∞ (a fully sparse model) to 0 (a fully dense model) and define Zj (˜︁Zj ) as the maximum
λ such that ˆ︁βj (λ) ≠ 0 (ˆ︁βp+j (λ) ≠ 0). If there is no λ such that ˆ︁βj (λ) ≠ 0 (ˆ︁βp+j (λ) ≠ 0), then
we will simply define Zj (˜︁Zj ) as 0.

• Random Forest (RF): We use the variable importance factors from the random forest
fitting of Y on [W ˜︁W] with either fixed tuning parameters or tuning parameters selected
from cross-validation as [ Z ˜︁Z ].

• Generalized Dantzig Selector (GDS): We choose the GDS variable selection procedure
and construct the statistics as ˆ︁𝜷DS(λ), where

ˆ︁𝜷DS(λ) = argmin
𝜷∈ℝ2p

[︃
∥𝜷∥1 : max

1⩽j⩽p

⃓⃓⃓
⃓1

n

n∑︂
i=1

Wij

{︁
Yi − μ

(︁[︁
Wi

˜︁Wi

]︁⊤
𝜷
)︁}︁⃓⃓⃓⃓ ⩽ λ and

max
1⩽j⩽p

⃓⃓⃓
⃓1

n

n∑︂
i=1

˜︁Wij

{︁
Yi − μ

(︁[︁
Wi

˜︁Wi

]︁⊤
𝜷
)︁}︁⃓⃓⃓⃓ ⩽ λ

]︃
.

• Generalized Matrix Uncertainty Selector (GMUS): The test statistics is a feasible
solution of

ˆ︁𝜷MU(λ) = argmin
𝜷∈ℝ2p

{︃
∥𝜷∥1 : 1

n

⃦⃦⃦
⃦

n∑︂
i=1

[︁
Wi

˜︁Wi

]︁⊤{︁
Yi − μ

(︁[︁
Wi

˜︁Wi

]︁⊤
𝜷
)︁}︁⃦⃦⃦⃦

∞
⩽ λ + δ∥𝜷∥1

}︃
.

• Corrected Lasso: The test statistics can be defined as minimizing the loss

ˆ︁𝜷RCL(d) = arg min
𝜷:∥𝜷∥1⩽d

{︃ n∑︂
i=1

(Yi − μ([Wi
˜︁Wi]⊤𝜷))2

Vi

− 𝜷⊤𝚺ϵ𝜷

}︃
,

where 𝚺ϵ is the variance-covariance matrix for the measurement error in W, and d can be a
pre-fixed tuning parameter or selected from cross-validation.
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As a remark, when measurement errors exist, the Corrected Lasso and GMUS methods
are known to handle measurement errors appropriately for coefficient estimation and thus the
knockoff approach can be applied to control the FDR. The performance of other test statistics
is expected to be affected by the measurement errors. The impact of the scales and correlations
of measurement errors will be evaluated numerically (see Section 3).

2.5 Variable Selection

We first compute the p-value for each feature based on the formula pj = 1+∑︁K
k=1 1{Zk

j⩽˜︁Zk
j }

1+K
that

combine the information from different imputed datasets. Here 1{·} is the indicator function
which takes value 1 if the event holds and 0 otherwise. Then we reorder the feature indices
j ∈ [p] with the decreasing order of maxK

k=1 max{|Zk
j |, |˜︁Zk

j |} and we denote the new index of the
original feature j as ζ(j). We apply the Selective SeqStep and Selective SeqStep+ procedures
(Barber and Candès, 2015) with p-value threshold 0.5 to find the selection threshold ˆ︁kc such
that

ˆ︁kc = max

{︃
j ∈ [p] : c + ∑︁j

k=1 1{pζ−1(k) > 1/2}∑︁j

k=1 1{pζ−1(k) ⩽ 1/2} ∨ 1
⩽ q

}︃
,

for c = 0 (SeqStep), 1 (SeqStep+), where q is the FDR level to be controlled at. Then the final
selection sets will be ˆ︁Sc = {j : pj < 1/2} ∩ {j : ζ(j) ∈ [ˆ︁kc]}.

Notice that when the imputation model is correct, and there is no measurement error, i.e.,
W = X, then we have the imputed datasets (Y, Wk) ∼ 𝒟 for each k, thus for our knockoff
construction and test statistics, it has been shown that ℙ(Zk

j < ˜︁Zk
j ) = 0.5 for j ∈ ℋ (Barber

and Candès, 2015; Candès et al., 2018). Since pj is symmetrically distributed and 𝔼[pj ] =
1+K/2
1+K

= 1
2 + 1

2(1+K)
> 1

2 for j ∈ ℋ, therefore the estimated FDP based on the threshold k̂c,

i.e., ˆ︁FDP = c+∑︁k̂c
k=1 1{p

ζ−1(k)
>1/2}∑︁k̂c

k=1 1{p
ζ−1(k)

⩽1/2}∨1
is a conservative estimate for the FDP and thus the Selective

SeqStep+ procedure controls FDR (Barber and Candès, 2015). Although the increasing number
of imputed dataset K could lead to better pj estimations, in practice, we don’t need very large
K since we only need to know whether pj is below 0.5 or not and the accurate pj is not necessary
when it is far from 0.5. In practice, due to the potential model misspecification and finite sample
performance, the imputed distribution might be slightly different from the true distribution,
nonetheless, the robustness of the knockoff approach (Barber et al., 2020) ensures that the FDR
inflation is small.

2.6 Joint Selection for Multiple Outcomes

Now we consider the mutual signal identification problem. Assume we have data from M in-
dependent experiments and denote [M] = {1, . . . , M}. Within the m-th experiment, the under-
lying complete data without measurement errors are (Ym

i , Xm
i1, . . . , X

m
ip)

iid∼ 𝒟m, i = 1, . . . , nm.
In our setting, the outcome variables Y 1, Y 2 represent the two different cancer outcomes BC
and CRC. Define Hm

0j as the null hypothesis indicating the j -th feature not being a signal in
the m-th experiment (i.e. Xm

j ⊥⊥ Ym|Xm
−j where Xm

−j := {Xm
k : k ∈ [p] and k ≠ j }), and denote

ℋm = {j ∈ [p] : Hm
0j is true}, where [p] := {1, . . . , p}. Instead of testing the Hm

0j ’s, we are
interested in testing the union null hypotheses H0j = ⋃︁M

m=1 Hm
0j , for j ∈ [p].
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We define

𝒮 = {︁
j ∈ [p] : H0j is false

}︁
and ℋ = 𝒮c =

M⋃︂
m=1

ℋm = {︁
j ∈ [p] : H0j is true

}︁
.

We aim at developing a selection procedure returning a selection set ˆ︁𝒮 ⊆ [p] with a controlled
FDR, as defined in (1). For this task, we can get test statistics Zkm

j and ˜︁Zkm
j for each m separately

first as the above sections and then compute the p-values as

pj = 1 + ∑︁K
k=1 1{

∏︁M
m=1(Z

km
j − ˜︁Zkm

j ) ⩽ 0}
1 + K

.

Then we can use this new p value to get ˆ︁kc and ˆ︁Sc reordering the feature index by the decreasing
order of maxK

k=1

∏︁M
m=1 |Zkm

j − ˜︁Zkm
j | or

∑︁K
k=1

∏︁M
m=1 |Zkm

j − ˜︁Zkm
j |. This approach is valid under a

similar argument as in Dai and Zheng (2023).

3 Simulation
In this section, we perform extensive numerical experiments to understand the finite sample
performance of the proposed methods in Section Methods 2.

3.1 Simulation for Gaussian Distributions
We first show the performance of proposed methods in Section Methods 2 when predictors are
sampled from multivariate Gaussian distributions.

3.1.1 Data Generation and Settings

We generate data with various sample sizes n and dimension p. We sample the underlying feature
matrix X ∈ ℝn×p with various variation and correlation settings; and the outcome Y ∈ ℝn from
a sparse logistic regression with varied effect sizes. Then we sample the measurement errors 𝝐w

and construct features with measurement errors W = X + 𝝐w with different measurement error
scales and correlations. Next, we sample the missing data indicators 𝚫 under the missing at
random (MAR) mechanism with varied missing proportion pmis. Under MAR assumption, we
consider both missing probabilities dependent on error-prone variables W (Type W) and the
error-free variables X (Type X).

We run 200 simulations under each of the following three different settings:
1. Data with only missing data but not measurement errors. Under this setting, we

compare the performance of the following methods: Lasso, Lasso Order, and RF with mul-
tiple imputations (K = 5 imputed datasets). We considered either including or excluding
the outcome Y (Imp Y) when performing the imputations and considered three different
imputation methods (Imp M): R package MICE with default method (default), classification
and regression tree (cart), and random forest (rf ).

2. Data with only measurement errors but not missing data. We compare the perfor-
mance of our method with the following statistics as described in Section Test statistics 2.4:
Lasso, Lasso Order, RF, GDS, GMUS, and Corrected Lasso.

3. Data with both missing data and measurement errors. We compare the performance
of our method with the following statistics as described in Section Test statistics 2.4: Lasso,
Lasso Order, RF, GDS, GMUS, and Corrected Lasso with multiple imputations.
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More details on the data generation and simulation settings are postponed in Web Ap-
pendix A.1.

3.1.2 Results

For Setting 1 with only missing data, we compare the performance of three variable selection
methods: Lasso, Lasso Order, and RF (Table 1). Across the variety of settings we experimented
with, all three variable selection methods effectively control the FDR empirically. The Lasso
variable selection method demonstrates the highest power among the tested methods, followed
by Lasso Order, and finally, RF. The RF method tends to be conservative in selecting variables,
resulting in slightly lower power, which may be attributed to the Lasso method possessing the
correctly specified model. The prediction performance of the RF method is satisfactory (Ta-
ble S1). As the sample size (n) decreases and the number of variables (p) increases, all methods
maintain satisfactory FDR control, albeit with a slight reduction in power, as anticipated. The
proportion of missing data does not significantly impact the performance of these methods in
terms of FDR and power. When examining the three imputation methods, their performances
are found to be relatively similar. For smaller sample sizes (n = 400), the default method offers
marginally better power, while the rf method slightly outperforms the others for larger sample
sizes. The decision to include the dependent variable (Y ) in the imputation model does not
substantially alter the performance of these methods.

In Table 2, we present the FDP and power for our experiments conducted on data with
measurement errors. We compare various variable selection methods, including Lasso, Lasso Or-
der, RF, GDS, Corrected Lasso, and GMUS. Notably, the Corrected Lasso and GMUS methods
are specifically designed for measurement error correction. The results are organized according
to the number of variables p, effect size, and scale. For FDP, Lasso, Lasso Order, RF, and GDS
methods exhibit similar values across all scenarios. When p is small and the effect size is large,
the FDP is marginally higher than the nominal FDR. Corrected Lasso consistently displays lower
FDP values than the nominal FDR, but it tends to be slightly over-conservative. The GMUS
method generally yields FDP values comparable to those of Lasso and Lasso Order. Regarding
power, the Lasso method persistently achieves higher values compared to other methods across
all settings. The GDS and Lasso Order methods also demonstrate satisfactory power, while the
RF method consistently exhibits lower power. The GMUS method’s power performance is com-
parable to that of Lasso Order and GDS, while Corrected Lasso consistently shows the lowest
power values among all methods. Overall, as the number of variables increases, FDP experiences
a slight decrease and power undergoes a more noticeable reduction. The effect size has a more
pronounced impact on power, with larger effect sizes resulting in higher power values. The scale
also affects power, with smaller scales generally leading to increased power values. However, the
FDP values remain relatively stable irrespective of changes in effect size or scale.

Table 3 summarizes the FDR and power of our proposed methods under simulation settings
with both measurement errors and missing data. The variable selection methods we included
are the same as in Setting 2. We set the sample size n = 1000 and consider two settings for the
dimension p: a low-dimensional setting with p = 60 and a high-dimension setting with p = 210.
For the measurement errors, we consider two levels of Scales: σ 2

ϵ = 0.1 or 0.6. For imputation
methods, we consider the default, cart, and rf. We compare the performance based on whether
to include outcome Y in the imputation model. The variable selection methods Lasso, Lasso
Order, RF, and GDS do not consider measurement errors, while Corrected Lasso and GMUS
correct measurement errors. Here, we present the result in Table 3 where the missing probabilities
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Table 1: Simulation results (FDP and Power) for Setting 1 (missing data) varying n, p and
pmis; with different imputation methods (Imp M) and choice of whether to include Y in the
imputation (Imp Y).

FDP Power
n p pmis Imp M Imp Y Lasso Lasso Order RF Lasso Lasso Order RF

400 60 0.05 cart yes 0.15 0.14 0.14 0.99 0.65 0.46
400 60 0.05 cart no 0.16 0.15 0.14 0.98 0.67 0.50
400 60 0.05 default yes 0.18 0.13 0.15 0.99 0.64 0.50
400 60 0.05 default no 0.18 0.13 0.16 0.99 0.66 0.52
400 60 0.05 rf yes 0.17 0.14 0.14 0.99 0.66 0.50
400 60 0.05 rf no 0.16 0.15 0.13 0.99 0.65 0.49
400 60 0.15 cart yes 0.17 0.14 0.17 0.98 0.64 0.54
400 60 0.15 cart no 0.15 0.14 0.13 0.98 0.67 0.47
400 60 0.15 default yes 0.17 0.15 0.13 0.99 0.68 0.50
400 60 0.15 default no 0.17 0.17 0.14 0.99 0.70 0.49
400 60 0.15 rf yes 0.17 0.15 0.15 0.98 0.67 0.50
400 60 0.15 rf no 0.18 0.17 0.16 0.98 0.70 0.52

1000 60 0.05 cart yes 0.17 0.18 0.18 1.00 0.94 0.76
1000 60 0.05 cart no 0.17 0.19 0.15 1.00 0.95 0.72
1000 60 0.05 default yes 0.20 0.17 0.16 1.00 0.93 0.70
1000 60 0.05 default no 0.18 0.19 0.16 1.00 0.94 0.73
1000 60 0.05 rf yes 0.19 0.17 0.17 1.00 0.92 0.74
1000 60 0.05 rf no 0.18 0.17 0.17 1.00 0.93 0.73
1000 60 0.15 cart yes 0.18 0.20 0.18 1.00 0.94 0.73
1000 60 0.15 cart no 0.19 0.20 0.18 1.00 0.94 0.74
1000 60 0.15 default yes 0.20 0.18 0.16 1.00 0.94 0.73
1000 60 0.15 default no 0.19 0.18 0.18 1.00 0.93 0.73
1000 60 0.15 rf yes 0.22 0.22 0.18 1.00 0.94 0.75
1000 60 0.15 rf no 0.21 0.21 0.18 1.00 0.93 0.74
1000 120 0.05 cart yes 0.18 0.17 0.17 1.00 0.85 0.58
1000 120 0.05 cart no 0.18 0.16 0.16 1.00 0.84 0.59
1000 120 0.05 default yes 0.19 0.15 0.16 1.00 0.84 0.57
1000 120 0.05 default no 0.19 0.16 0.15 1.00 0.84 0.56
1000 120 0.05 rf yes 0.18 0.16 0.16 1.00 0.85 0.58
1000 120 0.05 rf no 0.18 0.17 0.16 1.00 0.86 0.58
1000 120 0.15 cart yes 0.19 0.18 0.17 1.00 0.85 0.59
1000 120 0.15 cart no 0.17 0.18 0.17 1.00 0.85 0.58
1000 120 0.15 default yes 0.20 0.19 0.16 1.00 0.87 0.58
1000 120 0.15 default no 0.18 0.18 0.18 1.00 0.84 0.60
1000 120 0.15 rf yes 0.20 0.18 0.19 1.00 0.85 0.62
1000 120 0.15 rf no 0.19 0.19 0.18 1.00 0.85 0.59
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Table 2: Simulation results (FDP and Power) for Setting 2 (data with measurement errors) for
n = 1000, varying p, scales of the effect (A𝜷) and errors (σ 2

ϵ ).

p A𝜷 σ 2
ϵ Lasso Lasso Order RF GDS Corrected Lasso GMUS

FDP
60 0.5 0.6 0.23 0.21 0.22 0.21 0.13 0.21
60 0.5 1 0.23 0.22 0.20 0.21 0.19 0.22
60 1.5 0.6 0.25 0.25 0.24 0.22 0.15 0.22
60 1.5 1 0.25 0.25 0.28 0.23 0.25 0.25

120 0.5 0.6 0.21 0.21 0.17 0.20 0.05 0.20
120 0.5 1 0.18 0.19 0.16 0.18 0.14 0.17
120 1.5 0.6 0.20 0.20 0.17 0.18 0.07 0.17
120 1.5 1 0.20 0.20 0.20 0.20 0.10 0.19

Power
60 0.5 0.6 0.91 0.84 0.71 0.91 0.44 0.89
60 0.5 1 0.88 0.79 0.61 0.87 0.49 0.83
60 1.5 0.6 0.94 0.88 0.75 0.94 0.44 0.92
60 1.5 1 0.93 0.87 0.75 0.92 0.63 0.90

120 0.5 0.6 0.80 0.72 0.49 0.78 0.17 0.76
120 0.5 1 0.70 0.59 0.40 0.67 0.25 0.64
120 1.5 0.6 0.83 0.77 0.54 0.81 0.15 0.80
120 1.5 1 0.76 0.65 0.49 0.74 0.25 0.72

depend on W rather than X with smaller scales. The additional simulation results can be found
in Web Appendix A.2. Tables S2 and S3.

With the small scale of measurement errors (Scale = 0.1), the FDRs for most methods are
controlled close to or below the nominal value of 0.2, with Corrected Lasso consistently having
the lowest FDR values across all conditions. The results are observed for both low and high
dimensions, Type W and Type X, and for different Imp M and Imp Y conditions. With bigger
scale measurement errors (Scale = 0.6), for Type W, the FDR is under control for most of
the methods except Lasso Order and RF, while for Type X, only the RF and corrected Lasso
method controls FDR while the other methods fail. In terms of power, all methods show a
decrease as the dimension increases. When the measurement error is small, Lasso, GDS, and
GMUS maintain a high power of 0.9, whereas Lasso Order and RF experience a significant decline
in power. Corrected Lasso has relatively low power across all settings. When the measurement
error is larger, all methods show a substantial power reduction. Overall, Lasso, GDS and GMUS
achieve the best performance in terms of power, followed by Lasso Order and RF, while Corrected
Lasso consistently exhibits poor power. To demonstrate the performance gain with our proposed
methods to work with missing data and measurement errors for Setting 3, we further compared
our methods with directly applying Lasso with knockoff (targeted q = 0.2) to the dataset, and
using minimal value imputation to treat the missing data (Oracle). The Oracle method has
satisfactory power but fails in controlling the FDR. With σ 2

ϵ = 0.1, this Oracle method has
power = 0.95 and FDP = 0.33; with σ 2

ϵ = 0.6, this Oracle method has power = 0.87 and
FDP = 0.34. More details on this comparison can be found in Web Appendix A.2.
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Table 3: Simulation results (FDP and Power) for Setting 3 (data with both measurement errors
and missing data) for n = 1000, σ 2

ϵ = 0.1, pmis = 0.15, and A𝜷 = 1, varying p, Imp M and Imp
Y when the missing probability depends on the error-prone variables W.

p Imp M Imp Y Lasso Lasso Order RF GDS Corrected Lasso GMUS

FDP
60 default yes 0.18 0.19 0.15 0.20 0.02 0.15
60 default no 0.16 0.20 0.18 0.19 0.02 0.13
60 cart yes 0.16 0.20 0.18 0.19 0.02 0.13
60 cart no 0.18 0.18 0.17 0.17 0.03 0.12
60 rf yes 0.17 0.19 0.17 0.19 0.02 0.14
60 rf no 0.17 0.20 0.15 0.19 0.02 0.14

210 default yes 0.20 0.15 0.15 0.17 0.00 0.16
210 default no 0.18 0.16 0.15 0.17 0.00 0.19
210 cart yes 0.18 0.17 0.16 0.17 0.00 0.17
210 cart no 0.18 0.17 0.16 0.18 0.00 0.19
210 rf yes 0.19 0.18 0.17 0.18 0.00 0.18
210 rf no 0.19 0.18 0.17 0.17 0.00 0.18

Power
60 default yes 1.00 0.92 0.80 1.00 0.46 0.99
60 default no 1.00 0.92 0.79 1.00 0.42 0.98
60 cart yes 1.00 0.92 0.80 1.00 0.44 0.98
60 cart no 1.00 0.91 0.80 1.00 0.43 0.98
60 rf yes 1.00 0.91 0.80 1.00 0.42 0.98
60 rf no 1.00 0.92 0.78 1.00 0.42 0.98

210 default yes 0.91 0.63 0.44 0.88 0.000 0.89
210 default no 0.90 0.66 0.46 0.87 0.000 0.89
210 cart yes 0.90 0.65 0.45 0.87 0.000 0.88
210 cart no 0.90 0.65 0.45 0.87 0.001 0.88
210 rf yes 0.91 0.68 0.48 0.89 0.002 0.88
210 rf no 0.90 0.67 0.47 0.88 0.000 0.88

In Table S5 of Web Appendix A.3, we show the performance of proposed methods in Set-
tings 2 and 3 for detecting mutual signals from 2 datasets. The simultaneous knockoff method
with our procedure to handle missing data and measurement errors (GMUS) still controls the
FDR and achieves comparable power.

3.2 Simulation from Empirical Data Distributions
In this section, we perform numerical experiments based on the real metabolomics data from
the LC-MS platform (RelQuant).

3.2.1 Data generation and settings

We generate data with the same sample size n = 1331 and dimension p = 148 as the real data
in the LC-MS platform (RelQuant). The data contains both missing values and measurement
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errors. We approximate the distribution of W from the empirical distribution of real data (details
can be found in Web Appendix A.4).

The outcome Y is a binary outcome from a logistic regression. The missing data indicators R
are also sampled under the missing at random (MAR) mechanism with proportion pmis = 0.15.
The same with the Gaussian data simulation (setting for data with both missing data and
measurement errors), we compare the performance of the following methods: Lasso, Lasso Order,
RF, GDS, GMUS, and Corrected Lasso with multiple imputations.

We run 200 simulations under each of the settings. More details on the data generation and
simulation settings are postponed in Web Appendix A.4.

3.2.2 Results

Table 4 illustrates the FDR and power under the empirical real data conditions, including missing
values and measurement errors, for scenarios where missing probabilities depend on W (Type W)
rather than X (Type X). Additional simulation results, focusing on missing probabilities depen-
dent on X, are available in Web Appendix A.4. We also examine two levels of measurement error
scales (σ 2

ϵ ), and consider the three imputation methods (Imp M): default, cart, and rf, as well
as evaluate the impact of imputing Y (Imp Y) on performance.

In terms of FDR, with small measurement errors (scale = 0.1), Lasso, Lasso Order, RF,
Corrected Lasso, and GMUS effectively controlled the FDR, whereas GDS do not. At a larger
error scale (scale = 0.5), only RF and Corrected Lasso strictly maintain the FDR below 0.2.
GMUS managed to keep the FDR around 0.2, but Lasso, Lasso Order and GDS were unsuccessful
in controlling the FDR. Regarding power, Lasso, GDS, and GMUS exhibit superior performance,
followed by RF. However, Corrected Lasso demonstrates the limited power. These results were
consistent under various imputation conditions (Imp M and Imp Y).

A comparative analysis of the performance of six variable selection methods between Gaus-
sian distributed data and empirical data distribution from the LC-MS platform reveals incon-
sistencies in the Lasso method performance. Specifically, Lasso effectively controls FDR in some
conditions (Type W) for Gaussian data but fails to do so for empirical data distributions. Differ-
ent imputation methods (Imp M) and whether considering outcome variable Y (Imp Y) during
the imputation does not impact the performance significantly. Overall, when missing values but
no measurement error exist in the data, the Lasso and Lasso order methods perform the best;
when measurement errors exist in the data, the GMUS method performs the best with the high-
est power, and the controlled FDR under the assumption that the missing probability depends
on the error-prone variables W. In our real data analysis, this missing mechanism assumption is
likely to hold, so, GMUS is considered as one of the primary methods in addition to Lasso and
Lasso Order for the real data analysis.

4 Real Data Analysis
We analyzed serum and urine specimens from the WHI BMD data (181 CRC cases; 577 BC cases;
758 matched controls) using several metabolomics platforms. The details on how the matched
samples were selected can be found in Web Appendix B.1. We applied global metabolomics
platforms (gas chromatography–mass spectrometry (GC-MS) and nuclear magnetic resonance
(NMR)) for profiling urine metabolites and targeted platforms for profiling serum metabolites. In
serum, using liquid chromatography with tandem mass spectrometry (LC-MS/MS), we targeted
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Table 4: Simulation results (FDP and Power) for Empirical Data Distribution from LC-MS
platform (RelQuant) for n = 1331, p = 148, pmis = 0.15, and A𝜷 = 1, varying σ 2

ϵ , Imp M and
Imp Y when the missing probability depends on the error-prone variables W.

σ 2
ϵ Imp M Imp Y Lasso Lasso Order RF GDS Corrected Lasso GMUS

FDP
0.1 default yes 0.20 0.19 0.13 0.21 0.04 0.19
0.1 default no 0.18 0.19 0.14 0.20 0.04 0.18
0.1 cart yes 0.18 0.18 0.14 0.20 0.04 0.19
0.1 cart no 0.18 0.18 0.15 0.20 0.05 0.19
0.1 rf yes 0.19 0.19 0.14 0.21 0.04 0.20
0.1 rf no 0.19 0.20 0.13 0.22 0.03 0.20
0.5 default yes 0.24 0.23 0.14 0.23 0.07 0.19
0.5 default no 0.23 0.22 0.14 0.22 0.06 0.19
0.5 cart yes 0.21 0.20 0.14 0.23 0.07 0.20
0.5 cart no 0.22 0.22 0.14 0.22 0.07 0.20
0.5 rf yes 0.23 0.24 0.16 0.22 0.07 0.21
0.5 rf no 0.22 0.24 0.15 0.23 0.07 0.21

Power
0.1 default yes 1.00 0.94 0.71 1.00 0.16 1.00
0.1 default no 1.00 0.93 0.72 1.00 0.14 1.00
0.1 cart yes 1.00 0.93 0.71 1.00 0.14 1.00
0.1 cart no 1.00 0.93 0.71 1.00 0.15 1.00
0.1 rf yes 1.00 0.93 0.71 1.00 0.14 1.00
0.1 rf no 1.00 0.93 0.71 1.00 0.16 1.00
0.5 default yes 1.00 0.94 0.71 1.00 0.29 0.99
0.5 default no 1.00 0.93 0.69 0.99 0.29 0.99
0.5 cart yes 0.99 0.92 0.70 0.99 0.32 0.99
0.5 cart no 1.00 0.93 0.70 0.99 0.29 0.99
0.5 rf yes 0.99 0.94 0.71 0.99 0.33 0.99
0.5 rf no 0.99 0.94 0.71 0.99 0.31 0.99

water-soluble metabolites covering over 50 major metabolic pathways, and using the recently de-
veloped Lipidyzer platform, we detected about 900 lipids from 13 different classes: Cholesterol es-
ter (CE), Ceramides (CER), Diacylglycerol (DAG), Dihydroceramides (DCER), Free fatty acids
(FFA), Hexosylceramides (HCER), Lactosylceramide (LCER), Lysophosphatidylcholine (LPC),
Lysophosphatidylethanolamine (LPE), Phosphatid-ylcholine (PC), Phosphatidylethanolamine
(PE), Sphingomyelin (SM), Triacylglycerol (TAG). Over 1500 metabolites were obtained from
urine and serum samples using these four complementary analytical platforms. The proportion
of missing data as well as the signal noise ratio for measurement errors are summarized in Table
S7 in Web Appendix B where we can see that the GC-MS and LC-MS suffer most from the
measurement error with some SNR less than one and GC-MS has the most missing data. We
applied the knockoff method with missing and measurement errors to find the metabolite factors
associated with BC, CRC, and shared factors for both cancers using the proposed methods.



Variable selection with FDR control for noisy data 513

4.1 Data Preprocessing
We first preprocessed the data from the four different platforms (NMR, GC-MS, LC-MS, and
lipidomic) to remove outliers, batch effects, and variables with excessive missing values (details
see Web Appendix B.2). For LC-MS and lipidomic data, we considered both concentration and
composition data which led to a total of 6 groups of metabolites and we analyze each group
separately. The binary variable case/control of certain cancers served as our response variable.
Here the preprocessed metabolites in non-quality control (QC) samples form the predictor matrix
W ∈ ℝn×p, where n is the number of patients and p is the number of metabolites.

To achieve the goals of finding the risk metabolite factors for BC and CRC, we analyzed the
data including the BC cases vs all controls, and the CRC cases vs all controls respectively. Then
the summary statistics were combined using the method described in Section Joint selection for
multiple outcomes to identify the shared factors associated with both breast and CRC.

To build the model, first, for each platform dataset, we imputed the data by different impu-
tation methods including half-min imputation, and multiple imputations with predictive mean
matching method. For the multiple imputations, we performed MICE with (K = 5) using differ-
ent analytic data for each outcome (i.e., BC cases + all controls for BC analysis and CRC + all
controls for CRC analysis) were used to impute the missing values, and outcomes were included
in the multiple imputation procedure. The variance-covariance matrix for the measurement er-
rors was estimated using QC samples (details can be found in Web Appendix B.3). Then, we
applied three preferred methods (Lasso, Lasso Order, GMUS) and three alternative methods
(RF, GDS, Corrected Lasso) as described in Section Methods to generate test statistics. Then
we applied our knockoff and simultaneous knockoff variable selection procedures with a target
FDR level of 0.1. To make our results more robust, we performed stability selection by running
different methods 100 times and recording the percentage of the replications each variable was
selected.

For sensitivity analysis, we performed the same analysis as above but using different ana-
lytical data for each outcome (i.e., BC cases + matched BC control for BC analysis and CRC
cases + matched CRC control for CRC analysis).

4.2 Results
We presented the metabolites that were selected to be associated with BC, CRC, and both
of these two cancers with ⩾ 50% of the replications in Tables 5, 6 and 7, respectively when
using the three preferred variable selection methods (i.e., Lasso, Lasso Order, and GMUS). The
directions of the marginal associations are also indicated (+: positive, −: negative). The list
of the metabolites that were selected to be associated with BC, and CRC with ⩾ 10% of the
replications using all methods can be found in Web Appendix C.

Comparing the three variable selection methods, Lasso Order gives the most selections,
followed by Lasso and GMUS. Across different methods, there are metabolites that are mutually
selected by the different methods, for example, TAG 48:5(FA 18:3) and DAG 14:1/18:1; on the
other hand, each method also selects some unique metabolites. Comparing the two imputation
options, they produce relatively consistent results. Since we only select variables with high
replications (⩾ 50%, with FDR controlled for every replication), we include selections from all
the proposed variable selection methods as identified signals. Sensitivity analysis using single
cancer-type cases and their own matched controls is performed. More details on the analysis and
the selected metabolites are presented in Web Appendix B. The variables selected are largely
the same, although fewer variables are selected due to reduced sample sizes.
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Table 5: Metabolites that are robustly (selected among ⩾50% of replications) associated with
BC risks and the direction of their marginal association to the BC risks.

Method Platform Half Min Imputation Multiple Imputation

Lasso GC-MS Alpha-ketoglutarate (76%)(−)

Lasso Lipidyzer
(composition)

TAG 48:5(FA18:3) (80%)(−)
DAG 14:1/18:1 (78%)(+)

Lasso Lipidyzer
(concentration) DAG 14:1/18:1 (97%)(+) DAG 14:1/18:1 (97%)(+)

TAG 48:5(FA18:3) (64%)(−)
Lasso Order NMR N-methylnicotinic acid (59%)(+) N-methylnicotinic acid (63%)(+)
Lasso Order GC-MS Alpha-ketoglutarate (54%)(−)

Lasso Order LC-MS
(AbsQuant)

3HBA (67%)(+)
Cystine (66%)(−)

Lasso Order Lipidyzer
(composition) TAG 47:0(FA15:0) (68%)(−) TAG 48:5(FA18:3) (80%)(−)

DAG 14:1/18:1 (76%)(+)

GMUS Lipidyzer
(composition) TAG 52:2(FA18:2) (66%)(−) PC 16:0/18:2 (53%)(+)

GMUS Lipidyzer
(concentration) DAG 14:1/18:1 (63%)(+) DAG 14:1/18:1 (93%)(+)

Corrected Lasso GC-MS Alpha-ketoglutarate (55%)(−) Alpha-ketoglutarate (73%)(−)

5 Discussion
In conclusion, our extensive empirical studies show that appropriately handling missing data
and measurement errors using the knockoff approach can control FDR at the targeted rate
and gain power in terms of finding metabolites associated with BC and CRC risks. When the
general simultaneous knockoff methods (Dai and Zheng, 2023) are used for two outcomes (see
Web Appendix A.3 for details), we find that appropriately handling missing data with multiple
imputation and measurement error using GMUS will control FDR for multiple outcomes at the
targeted rate.

We identified a group of metabolites that are associated with either BC, CRC, or both
cancers. The biomarker findings are largely consistent with the existing literature. For example,
pentanedioic acid derivatives have been proposed as a potential agent for the treatment of BC
(Zhang et al., 2022). N-methyl nicotinic acid level in LC-ESI-MS has been reported to be posi-
tively associated with BC (Valko-Rokytovská et al., 2021). The increase of 3-hydroxybutyric acid
(3HBA) level has been found as an indication of the increased fatty acid oxidation, a hallmark
for cancer aggressiveness (Cappelletti et al., 2017). For CRC, serum 2,3-dihydroxybutanoic acid
has been reported as a biomarker (Loktionov, 2020). Glucose (Vulcan et al., 2017), glycerate (Ni
et al., 2014), adenosine (Hata et al., 2023), N-methyl nicotinic acid, cystine (Miller et al., 2013),
malate (Neitzel et al., 2020), histidine (Rothwell et al., 2023) and CER (16:0) (Machala et al.,
2019) have also been discovered to be associated with CRC in other independent studies. Choline
has been reported to be positively associated with risks for both BC (Bae et al., 2014) and CRC
(Xu et al., 2008). The results confirm some findings of previous literature and also discover a few
new potential metabolite biomarkers for future validation. The matching method (see details
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Table 6: Metabolites that are robustly (selected among ⩾50% of replications) associated with
CRC risks and the direction of their marginal association to the CRC risks.

Method Platform Half Min Imputation Multiple Imputation

Lasso GC-MS 2,3-Dihydroxybutanoic acid (93%)(+)

Lasso LC-MS
(AbsQuant)

Glucose (84%)(+)
Cystine (52%)(−) Glucose (62%)(+)

Lasso LC-MS
(RelQuant)

Glycerate (69%)(+)
Adenosine (66%)(−)

Adenosine (69%)(−)
Glycerate (67%)(+)

Lasso Lipidyzer
(composition) TAG 48:5(FA18:2) (59%)(+)

Lasso Order NMR N-methylnicotinic acid (76%)(−) N-methylnicotinic acid (54%)(−)
Lasso Order GC-MS 2,3-Dihydroxybutanoic acid (63%)(+)

Lasso Order LC-MS
(AbsQuant)

Cystine (100%)(−)
3HBA (75%)(+) Cystine (94%)(−)

Lasso Order LC-MS
(RelQuant) Malate (57%)(+)

Lasso Order Lipidyzer
(composition) TAG 48:5(FA18:2) (60%)(+)

Lasso Order Lipidyzer
(concentration) TAG 47:2(FA14:0) (61%)(−)

GMUS LC-MS
(AbsQuant) Histidine (69%)(−)

GMUS Lipidyzer
(concentration) CER 16:0 (52%)(+) CER 16:0 (66%)(+)

Table 7: Metabolites that are robustly (selected among ⩾50% of replications) associated with
both BC and CRC risks and the direction of their marginal association to these two cancer risks.

Method Platform Half Min Imputation Multiple Imputation

Lasso Order NMR N-methylnicotinic acid (57%)(B:+)(C:-)

Lasso Order LC-MS
(AbsQuant)

Cystine (89%)(B:-)(C:-)
3HBA (68%)(B:+)(C:+)

Cystine (99%)(B:-)(C:-)
3HBA (83%)(B:+)(C:+)
Glutamic acid (78%)(B:+)(C:+)

GMUS LC-MS
(AbsQuant) Choline (56%)(B:+)(C:+) Choline (63%)(B:+)(C:+)

in Web Appendix B) to construct the analytical dataset ensures non-overlapping independent
samples for the BC and CRC outcomes to satisfy the assumption of the simultaneous knockoff
method Dai and Zheng (2023). One small caveat of the case-control study is the potential X

distribution shift. However, this impact is very minor in our analysis given the distribution of
X is estimated using the case-control study rather than larger population data.

One limitation of the current study is our cohort only contains post menopausal women.
A limitation of the current study is the small sample size for QCs which leads to large variations
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in the estimation of the variance-covariance matrix of measurement error. This could make the
measurement error correction method vulnerable to potential misspecification of the measure-
ment error distribution and be sensitive to the result of an outlier in 1 or 2 QC pairs. In the
current application, we use second-order Model-X knockoff construction. When the variables X

and measurement errors both follow the multivariate Gaussian distribution, the second-order
condition is sufficient to guarantee the exchangeability of the whole distribution. However, when
the variable is non-Gaussian distributed, the higher order moment mismatching could lead to
the difference in the distribution of Z and ˜︁Z for null variables, which will affect the FDP from
the knockoff, especially the simultaneous knockoff procedure. When the measurement error is
non-Gaussian, Corrected Lasso will not be suitable, and estimating the optimal error bound
for GMUS will be challenging and require a larger sample size for QCs. Further measurement
error correction methods for both the estimation of the effect and the variable selection will
be worth future research. Another issue is that some metabolites are highly correlated to each
other, which will make the knockoff feature very close to the original feature and thus lead to
low power. Further method development for group variable selection (by treating metabolites
from the same pathway as a group or treating highly correlated metabolites as a group) is worth
further exploration but is beyond the scope of this paper. In addition, the current analysis is
based on considering each platform’s data separately. In the future, methods need to be de-
veloped to handle multiple platform data together by solving the challenge of very different
measurement scales and potential screening methods to reduce the number of features to allow
powerful knockoff construction.
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