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Appendix A: Additional simulation details, settings and results

A.1: Appendix for Simulation details

Denoting the sample size as n and number of features p, we generate data with the combinations
(n, p) = (1000, 60), (1000, 120) or (400, 60).

First sample the feature matrix X ∼ N (0,ΣX). Here we let ΣX = AR(σX , ρX , p), where
AR(σ, ρ, p) denotes a p×p matrix with (i, j)-th element equals to σ2ρ|i−j|. We use σ2 to control the
magnitude of the variation, and ρ to control the correlation between the predictors. Specifically,
we set σ2

X = 1 and ρX = 0.5.
Second, we sample outcome Yi from a logistic regression model

log
P(Yi = 1|Xi)

P(Yi = 0|Xi)
= β0 +AβX

⊤
i β for i ∈ [n].

where β = (1s/3 ⊗ (3, 1.5, 0, 0, 2, 0, 0),0p−7s/3)⊙ ϵ is a sparse vector with sparsity level s = p/4,
Aβ = 0.5 or 1.5 controls the magnitude of the effect while ϵ is a vector of independent Rademacher
variables, and β0 controls the prevalence of outcome and is set as β0 = −1.

Third, we sample measurement error ϵw ∼ N (0,Σϵ) and calculate W = X + ϵw. Here we
consider Σϵ = AR(σϵ, ρϵ, p) where σ2

ϵ = 0, 0.1, 0.6 or 1 controls the scale of measurement errors,
and ρϵ controls the correlation between measurement errors, which is set at ρϵ = 0.3.

Fourth, we sample missing data indicators ∆ij under the missing at random (MAR) mech-
anism. We first randomly choose subsets Smis0 ⊂ [p] ∩H and Smis1 ⊂ [p] ∩Hc so that |Smis0| =
πmis · (p − s) and |Smis1| = πmis · s where πmis controls the proportion of variables that will
contain missing values and is set at 2/15 to approximate the proportion of variables with more
than 5% missing in our real data set or at 0 for setting without missing data. Then for each
j ∈ Smis = Smis0 ∪ Smis1, we sample ∆ij independently from a sequence of logistic regression
models

log
P(∆ij = 1|Wi,−j)

P(∆ij = 0|Wi,−j)
= η0j +W⊤

i,−jηj ,
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where the intercept η0j is used to control the average proportion of missing at 5% or 15% and
elements of ηj are independently sampled from Uniform[−2, 2]. For j /∈ Smis, we let ∆ij = 1.
Additional simulation when the missing depend on X rather than W are also considered where
we will then sample ∆ij for each j ∈ Smis by

log
P(∆ij = 1|Xi,−j)

P(∆ij = 0|Xi,−j)
= η0j +X⊤

i,−jηj ,

where the intercept η0j is used to control the average proportion of missing among those variables
with missing value at pmis = 5% or 15% and elements of ηj are independently sampled from
Uniform[−2, 2].

We first consider a setting with Σϵ = 0, which is a setting with only missing data but not
measurement errors. Under this setting, we compare the performance of the following methods:
Lasso, Lasso Order, RF in terms of the FDR control and power, calculated from 200 replicates
when using multiple imputations from chained equations with 5 imputed datasets each. We
considered either including or excluding the outcome Y when performing the imputations and
consider three different imputation methods (default method using generalized linear models,
classification and regression tree (cart), and random forest (rf ).

The second setting is with πmis = 0, which reflects a setting with only measurement errors,
but not missingness in the data. Under this setting, we compare the performance of the following
methods: Lasso, Lasso Order, RF, GDS, GMUS, and Corrected Lasso in terms of FDR control
and power calculated from 200 replicates.

The third setting is with πmis ̸= 0 and Σϵ ̸= 0, which reflects a setting with both missing
data and measurement errors. Under this setting, we compare the performance of the following
methods: Lasso, Lasso Order, RF, GDS, GMUS, and Corrected Lasso with respect to FDR
control and power calculated from 200 replicates when using multiple imputations from chained
equations with 5 imputed datasets each.

Appendix A.2: Additional Simulation Settings and Results

To investigate the poor performance in terms of the power of the random forest model, we
further evaluate its predictive performance on a test set comprising 20% of the data with the
same optimized hyperparameters as Table 1. The classification metrics, including accuracy, pre-
cision, recall, F1 score, and Area Under the Curve (AUC), are shown in Table S1. The results
demonstrated robust predictive performance of random forest.

The results of simulation settings with both measurement errors and missing data for larger
measurement scales where the missing probabilities depend on W are shown in Table S2. The
FDR is under control for most of the methods except Lasso Order and RF. Regarding power,
the Lasso, GDS, and GMUS methods demonstrated superior performance, while Lasso Order
and Random Forest showed moderate effectiveness. The Corrected Lasso method still exhibited
notably low power.

Since the missing at-random assumption based on error-prone variables (W) can be strong
for some applications, here we present the simulation study to see how the result will be sensitive
to that assumption when the truth is that the missing probability depends on the error-free
variables (X). The results are summarized in Table S3.

To highlight the performance improvements achieved with our proposed methods for han-
dling missing data and measurement errors, we conducted a comparative analysis under Setting
3. Specifically, we compared our methods against a baseline approach where Lasso with knockoff
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filtering was directly applied to the dataset, using a minimal-value imputation method to address
missing data (referred to here as the Oracle method). We use the same setting from setting 3,
data with both measurement errors and missing data for n = 1000, p = 60, pmis = 0.15, and
Aβ = 1. We vary the scale of measurement error σ2

ϵ , and the missing probability depends on the
error-prone variables W or the error-free variables X. The results are shown in Table S4.

Appendix A.3: Additional Simulation Settings and Results for General Simul-
taneous Knockoff Methods

We generate two independent datasets with the same settings outlined in Table 3, except for the
values for the coefficient vectors. First, we sample two feature matrices X1,X2 independently
with the same as the description in Appendix A.1. Second, for coefficients, the mutual signals for
both datasets are the same, and two non-mutual signals have magnitudes 0.5 and 1 with random
direction in both data sets.

β1 = (1s/3 ⊗ (3, 1.5, 0, 0, 2, 0, 0),ω1,02,0p−7s/3−4)⊙ ϵ,

β2 = (1s/3 ⊗ (3, 1.5, 0, 0, 2, 0, 0),02,ω2,0p−7s/3−4)⊙ ϵ,

where ω1 = (0.5, 1)⊙ ϵ1, ω2 = (0.5, 1)⊙ ϵ2, ϵ1, ϵ2, and ϵ are vectors of independent Rademacher
variables. Then Y 1

i , Y
2
i s are generated from logistic regression models

log
P(Y 1

i = 1|X1
i )

P(Y 1
i = 0|X1

i )
= β0 +AβX

1⊤
i β1,

log
P(Y 2

i = 1|X2
i )

P(Y 2
i = 0|X2

i )
= β0 +AβX

2⊤
i β2

fo i ∈ [n].where Aβ = 1 controls the magnitude of the effect, β0 controls the prevalence of outcome
and is set as β0 = −1. The measurement error and missing data indicators are independently
sampled for both datasets and the same as the description in Appendix A.1.

We simulate both datasets using Setting 3 (both data with both missing data and mea-
surement errors). The results are summarized in Table S5. The same as Table 3, we include
the variable selection methods Lasso, Lasso Order, RF, GDS, Corrected Lasso, and GMUS. We
present the results where the missing probabilities depend on W rather than X here. We consider
two levels of Scales for the measurement errors. For imputation methods, we consider the default,
cart, and rf. We also compare the performance based on whether to impute Y. When the scale of
measurement errors is small (Scale = 0.1), all methods control the FDR under the nominal values
of 0.2. With bigger scale measurement errors (Scale = 0.6), Lasso Order and RF methods also
fail to control the FDR. Corrected Lasso consistently has the lowest FDR, followed by GMUS
across all the designed settings. Lasso and GDS also control FDR across all the settings but
the FDR are larger than Corrected Lasso and GMUS. In terms of power, the GDS and Lasso
methods have the best performance, followed by GMUS and Lasso Order. Corrected Lasso does
not have good power. The results for general simultaneous knockoff methods are consistent with
the single dataset settings.

Appendix A.4: Additional Simulation from Empirical Data Distributions based
on the LC-MS platform (RelQuant).

Setting: We keep the same sample size n = 1331 and number of features p = 148 as the real
data in LC-MS platform (RelQuant).
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First, we sample the feature matrix W by approximating the empirical distribution from real
data using the following steps: (1) Sample We from the empirical distribution of W (i.e., observed
transformed metabolites’ levels) and sample Ee from the estimated distribution of measurement
error independently. For each column, we sample We(j) with the replacement for a sample size
nsample = 10000 to get We. We sample Ee ∼ N (0,Σe) with the same sample size nsample = 10000
where Σe is the measure error from the real data. Then we compute Xe = We − Ee to obtain
the distribution of X approximately. We denote Fj as the estimated marginal distribution for
the j−th column of Xe. (2) We sample n individual Zi from ∼ N (0,ΣZ). Here we let ΣZ =
AR(σZ , ρZ , p), where AR(σ, ρ, p) denotes a p×p matrix with (i, j)-th element equals to σ2ρ|i−j|.
We use σ2 to control the magnitude of the variation, and ρ to control the correlation between the
predictors. Specifically, we set σZ = 1, ρZ = 0.4. (3) For each i,j, compute Xij = F−1

j (Φ(Zij)).
(4) We sample ϵw ∼ N (0, σ2

ϵΣe), where σ2
ϵ = 0.1 or 1 controls the scale of measurement errors.

(5) We get W = X+ ϵw.
Second, we sample outcome Yi from a logistic regression model

log
P(Yi = 1|Xi)

P(Yi = 0|Xi)
= β0 +AβX

⊤
i β for i ∈ [n].

where β = (13⊗(3, 1.5, 0, 0, 2, 0, 0), 1,021)⊙ϵ is a sparse vector with sparsity level s = 10, Aβ = 1
controls the magnitude of the effect while ϵ is a vector of independent Rademacher variables,
and β0 controls the prevalence of outcome and is set as β0 = −1.

Third, we sample missing data indicators ∆ij under the missing at random (MAR) mecha-
nism. We first randomly choose subsets Smis0 ⊂ [p] ∩ H and Smis1 ⊂ [p] ∩ Hc so that |Smis0| =
πmis · (p − s) and |Smis1| = πmis · s where πmis controls the proportion of variables that will
contain missing values and is set at 0.1 to approximate the proportion of variables with more
than 5% missing in our real data set. Then for each j ∈ Smis = Smis0 ∪ Smis1, we sample ∆ij

independently from a sequence of logistic regression models

log
P(∆ij = 1|Wi,−j)

P(∆ij = 0|Wi,−j)
= η0j +W⊤

i,−jηj ,

where the intercept η0j is used to control the average proportion of missing at 15% and elements
of ηj equal 1. For j /∈ Smis, we let ∆ij = 1. Additional simulation when the missing depend on
X rather than W are also considered where we will then sample ∆ij for each j ∈ Smis by

log
P(∆ij = 1|Xi,−j)

P(∆ij = 0|Xi,−j)
= η0j +X⊤

i,−jηj ,

where the intercept η0j is used to control the average proportion of missing among those variables
with missing value at pmis = 15% and elements of ηj equal 1.

Results: Under this setting, we compare the performance of the following methods: Lasso,
Lasso Order, RF, GDS, GMUS, and Corrected Lasso with respect to FDR control and power
calculated from 100 replicates when using multiple imputations from chained equations with 5
imputed datasets each.

Considering that the Missing At Random (MAR) assumption, predicated on error-prone
variables (W), may be overly stringent for certain applications, we conducted a simulation study
to evaluate the sensitivity of our results to this assumption. Specifically, we investigated scenarios
where the missing probability is contingent on the error-free variables (X), as opposed to W. The
outcomes of this investigation are succinctly summarized in Table S6. The results are consistent
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with what we found when missingness depended on error-prone variables (W). This analysis is
crucial for understanding the robustness of our findings under different assumptions regarding
the nature of the missing data mechanism.

Appendix B: Additional data analysis details

Appendix B.1: Matching Method

Cases and controls for this analysis were selected from the entire Women’s Health Initiative
(WHI) Bone Mineral Density (BMD) Subcohort (n=11,020). The BMD was comprised of women
in both the Clinical Trial (CT) and Observational Study (OS), who were enrolled at three
specified WHI clinical centers (Birmingham, Pittsburgh, and Tucson/Phoenix), had dual X-
ray absorptiometry at baseline and follow-up time points, and provided spot urine specimens,
as well as fasting blood samples. For the CT samples, they include both dietary modification
trials (DM) and hormone therapy trials (HT). Here the eligible sample was restricted to women
who had sufficient WHI serum (300 µl) and urine (550 µl) samples from the same time point,
before and closest to the case diagnosis date and were required to have no missing covariate
data (n=10,451). The cases were defined as the earliest incident invasive breast cancer (BC)
or colorectal cancer (CRC) so that the biospecimen collection would be reasonably proximate.
Each of the 758 case women was matched 1-to-1 to a control woman, disease-free at the case
occurrence follow-up time, based on age (within 2 years; Table I), WHI enrollment date (within
2 months to control for follow-up duration), and race/ethnicity. Participants could only be a
control for one case, and a case could not be a control for another case. The matching algorithm
was applied to select the closest match based on criteria to minimize an overall distance measure
(Bergstralh and Kosanke, 1995). Each matching factor was given the same weight. Controls were
excluded for the following reasons: a) history of BC or CRC reported at baseline (n=382); b) no
follow-up (n=32); c) missing any covariate data (n=3513 breast, n=2905 colorectal). The number
of eligible controls was n=6477 BC controls, n=7056 CRC controls.

Because these two control groups overlap; the 181 CRC cases were matched first, matched
controls were removed from the eligible pool, then BC cases were matched. 54% of the selected
sample were in the OS, 34% in the DM, and 12% in the HT-not DM.

Appendix B.2: Data preprocessing

Data are analyzed separately for each metabolomics platform. For metabolic variables, we re-
moved those with more than 20% missing values. We take log transformation to all lab-measured
variables to be consistent with other analyses in the Nutrition and Physical Activity Assessment
Study Feeding Study (NPAAS-FS) Zheng et al. (2021). Outliers were truncated to Q1-3*IQR or
Q3+3*IQR where Q1 and Q3 are the first and the third quartiles and IQR is the interquartile
range. To remove the batch and run order effect for LC-MS and GC-MS data, normalization was
performed using local polynomial regression fitting over run order within each batch.

Appendix B.3: Calculation of variance-covariance matrix for the measurement
errors

To calculate the variance-covariance matrix for the measurement errors, we utilize the QC sam-
ples. Specifically, we use pooled NPAAS-FS first void urine QC samples for the GC-MS platform



6 Wang, R. et al.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

and NMR platform and we use pooled NPAAS and NPAAS-FS serum QC samples for the
LC-MS platform and the lipidomic platform. Log transformation is also performed on all the
lab-measured variables to be consistent with non-QC samples. We also remove variables with
more than 20% missing values in non-QC samples and all missings in QC samples. The same
normalization method is also performed for QC samples. For GC-MS and NMR, we use the sam-
ple variance and covariance matrix of the QC samples to estimate the variance-covariance matrix
for the measurement errors. For lipidomic and NMR platforms, QC samples are collected twice
for each batch. To fully remove the batch effect, we use half of the sample variance-covariance
matrix of the difference within each batch to estimate the variance-covariance matrix for the
measurement error. If the estimated variance-covariance matrix as above is not positive definite,
we add a data-adaptive value (i.e., the first eigenvalue less than a threshold 10−4) to the corre-
sponding correlation matrix and re-calculate the covariance matrix based on the new correlation
matrix and original standard deviations. The summary information of missing and measurement
error for each platform (after removing those with > 20% missing) is shown in Table S7.

Appendix C: Additional data analysis results

In this section, we first provide the detailed list of metabolites selected for at least 10% of times
from the stability selection for each method and each cancer outcome separately. Then we provide
the detailed list of metabolites selected for at least 10% of times from the stability selection for
associated with both breast and colorectal cancer using preferred methods (Lasso, Lasso order,
and GMUS). Finally, we provide the selected for at least 50% of times from the stability selection
for the preferred method and each cancer outcome separately when using only matched controls
specific to that cancer.

Data analysis results using Lasso

Metabolites that are selected using Lasso among ⩾10% of replications associated with BC and
CRC are listed in Tables S8 and S9.

Data analysis results using Lasso Order

Metabolites that are selected using Lasso Order among ⩾10% of replications associated with BC
and CRC are listed in Tables S10 and S11.

Data analysis results using Random Forest

Metabolites that are selected using RF among ⩾10% of replications associated with BC and
CRC are listed in Tables S12 and S13.

Data analysis results using GDS

Metabolites that are selected using GDS among ⩾10% of replications associated with BC and
CRC are listed in Tables S14 and S15.

Data analysis results using GMUS

Metabolites that are selected using GMUS among ⩾10% of replications associated with BC and
CRC are listed in Tables S16 and S17.
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Data analysis results using Corrected Lasso

Metabolites that are selected using Corrected Lasso among ⩾10% of replications associated with
BC and CRC are listed in Tables S18 and S19.

Metabolites selected for more than 10% of times that are associated with both
BC and CRC.

Tables S20, S21 and S22 provide the variables selected from at least 10% of the replications and
the corresponding percentage time of selection for mutual risk factor analysis.

Sensitivity analysis using cancer-specific matched controls

Metabolites that are robustly (⩾50% times selected) associated with BC, CRC, and mutual
risks and the direction of their marginal association to the BC/CRC/mutual risks using the
corresponding cancer specific matched controls are listed in Tables S23, S24 and S25.

References
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Table S1: Simulation results for Prediction Performance of Random Forest for Setting 1 (missing
data only) varying n, p and pmis; with different imputation methods (Imp M) and choice of
whether to include Y in the imputation (Imp Y).

Performance
n p pmis Imp M Imp Y Accuracy Precision Recall F1 AUC

400 60 0.05 cart yes 0.76 0.80 0.64 0.70 0.85
400 60 0.05 cart no 0.76 0.80 0.64 0.70 0.85
400 60 0.05 default yes 0.76 0.80 0.64 0.70 0.85
400 60 0.05 default no 0.75 0.80 0.63 0.70 0.85
400 60 0.05 rf yes 0.75 0.80 0.64 0.70 0.85
400 60 0.05 rf no 0.76 0.80 0.64 0.70 0.85
400 60 0.15 cart yes 0.75 0.79 0.63 0.69 0.85
400 60 0.15 cart no 0.75 0.79 0.64 0.69 0.85
400 60 0.15 default yes 0.76 0.80 0.64 0.70 0.85
400 60 0.15 default no 0.75 0.79 0.64 0.70 0.85
400 60 0.15 rf yes 0.75 0.80 0.64 0.70 0.85
400 60 0.15 rf no 0.75 0.79 0.63 0.70 0.85
1000 60 0.05 cart yes 0.79 0.82 0.70 0.75 0.89
1000 60 0.05 cart no 0.79 0.82 0.70 0.75 0.88
1000 60 0.05 default yes 0.79 0.82 0.70 0.75 0.89
1000 60 0.05 default no 0.79 0.82 0.70 0.75 0.88
1000 60 0.05 rf yes 0.79 0.82 0.70 0.75 0.88
1000 60 0.05 rf no 0.79 0.82 0.70 0.75 0.88
1000 60 0.15 cart yes 0.79 0.82 0.70 0.75 0.88
1000 60 0.15 cart no 0.79 0.81 0.70 0.75 0.88
1000 60 0.15 default yes 0.80 0.82 0.70 0.76 0.89
1000 60 0.15 default no 0.79 0.81 0.70 0.75 0.88
1000 60 0.15 rf yes 0.79 0.82 0.70 0.75 0.88
1000 60 0.15 rf no 0.79 0.81 0.70 0.75 0.88
1000 120 0.05 cart yes 0.76 0.81 0.65 0.72 0.86
1000 120 0.05 cart no 0.76 0.81 0.65 0.72 0.86
1000 120 0.05 default yes 0.76 0.81 0.65 0.72 0.86
1000 120 0.05 default no 0.76 0.81 0.65 0.72 0.86
1000 120 0.05 rf yes 0.76 0.81 0.65 0.72 0.86
1000 120 0.05 rf no 0.76 0.81 0.65 0.71 0.86
1000 120 0.15 cart yes 0.76 0.81 0.65 0.72 0.85
1000 120 0.15 cart no 0.76 0.80 0.65 0.71 0.85
1000 120 0.15 default yes 0.76 0.81 0.65 0.72 0.86
1000 120 0.15 default no 0.76 0.80 0.65 0.72 0.85
1000 120 0.15 rf yes 0.76 0.81 0.65 0.71 0.85
1000 120 0.15 rf no 0.76 0.80 0.65 0.71 0.85
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Table S2: Simulation results (FDP and Power) for Setting 3 (data with both measurement errors
and missing data) for n = 1000, σ2

ϵ = 0.6, pmis = 0.15, and Aβ = 1, varying p, Imp M and Imp
Y when the missing probability depends on the error-prone variables W.

FDP
p Imp M Imp Y Lasso Lasso Order RF GDS Corrected Lasso GMUS
60 default yes 0.20 0.25 0.25 0.20 0.19 0.17
60 default no 0.18 0.26 0.27 0.20 0.21 0.17
60 cart yes 0.20 0.26 0.26 0.20 0.19 0.18
60 cart no 0.19 0.28 0.26 0.21 0.18 0.19
60 rf yes 0.20 0.27 0.28 0.21 0.20 0.16
60 rf no 0.19 0.28 0.26 0.20 0.18 0.18
210 default yes 0.19 0.20 0.19 0.17 0.00 0.19
210 default no 0.17 0.21 0.20 0.17 0.01 0.16
210 cart yes 0.18 0.21 0.18 0.18 0.01 0.17
210 cart no 0.19 0.22 0.19 0.19 0.00 0.17
210 rf yes 0.19 0.22 0.21 0.17 0.01 0.17
210 rf no 0.19 0.22 0.20 0.18 0.00 0.17

Power
p Imp M Imp Y Lasso Lasso Order RF GDS Corrected Lasso GMUS
60 default yes 0.94 0.86 0.78 0.93 0.61 0.93
60 default no 0.93 0.85 0.77 0.93 0.61 0.91
60 cart yes 0.94 0.86 0.78 0.93 0.57 0.92
60 cart no 0.93 0.86 0.77 0.93 0.56 0.92
60 rf yes 0.93 0.86 0.78 0.92 0.60 0.92
60 rf no 0.93 0.86 0.77 0.93 0.58 0.91
210 default yes 0.65 0.48 0.35 0.57 0.01 0.60
210 default no 0.63 0.48 0.35 0.57 0.02 0.56
210 cart yes 0.64 0.49 0.36 0.61 0.02 0.59
210 cart no 0.64 0.52 0.37 0.61 0.01 0.59
210 rf yes 0.65 0.50 0.39 0.58 0.02 0.60
210 rf no 0.64 0.51 0.38 0.58 0.01 0.60
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Table S3: Simulation results (FDP and Power) of different methods for Setting 3 (data with both
measurement errors and missing data) for n = 1000, p = 60, pmis = 0.15, and Aβ = 1, varying
σ2
ϵ , Imp M and Imp Y when the missing probability depends on the error-prone variables when

the missing probability depends on the error-free variables X.
FDP

σ2
ϵ Imp M Imp Y· Lasso Lasso Order RF GDS Corrected Lasso GMUS

0.1 default yes 0.34 0.23 0.12 0.36 0.04 0.31
0.1 default no 0.32 0.22 0.14 0.33 0.03 0.28
0.1 cart yes 0.32 0.24 0.12 0.33 0.04 0.28
0.1 cart no 0.30 0.23 0.15 0.32 0.03 0.26
0.1 rf yes 0.34 0.24 0.15 0.34 0.04 0.29
0.1 rf no 0.32 0.25 0.15 0.32 0.02 0.29
0.6 default yes 0.57 0.26 0.10 0.54 0.07 0.52
0.6 default no 0.56 0.27 0.13 0.50 0.07 0.49
0.6 cart yes 0.56 0.32 0.13 0.54 0.08 0.50
0.6 cart no 0.56 0.30 0.12 0.52 0.08 0.50
0.6 rf yes 0.56 0.32 0.13 0.54 0.07 0.49
0.6 rf no 0.56 0.30 0.13 0.54 0.07 0.50

Power
σ2
ϵ Imp M Imp Y Lasso Lasso Order RF GDS Corrected Lasso GMUS

0.1 default yes 1.00 0.93 0.76 1.00 0.41 1.00
0.1 default no 1.00 0.91 0.77 1.00 0.36 1.00
0.1 cart yes 1.00 0.92 0.78 1.00 0.37 1.00
0.1 cart no 1.00 0.91 0.78 1.00 0.37 1.00
0.1 rf yes 1.00 0.93 0.79 1.00 0.37 1.00
0.1 rf no 1.00 0.93 0.78 1.00 0.33 1.00
0.6 default yes 0.93 0.70 0.52 0.93 0.32 0.92
0.6 default no 0.92 0.73 0.56 0.92 0.29 0.92
0.6 cart yes 0.94 0.73 0.59 0.94 0.31 0.93
0.6 cart no 0.94 0.74 0.56 0.94 0.29 0.93
0.6 rf yes 0.94 0.77 0.60 0.94 0.30 0.93
0.6 rf no 0.94 0.75 0.58 0.94 0.29 0.93

Table S4: Oracle results (FDP and Power) for Setting 3 (data with both measurement errors
and missing data) for n = 1000, p = 60, pmis = 0.15, and Aβ = 1, varying σ2

ϵ , and the missing
probability depends on the error-prone variables W or the error-free variables X .

σ2
ϵ Type FDP Power

0.1 W 0.33 0.95
0.6 W 0.34 0.87
0.1 X 0.34 0.97
0.6 X 0.35 0.95
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Table S5: Simulation results (FDP and Power) for Simultaneous Knockoff Methods for Two
datasets with both measurement errors and missing data) for n = 1000, p = 60, pmis = 0.15, and
Aβ = 1, varying σ2

ϵ , Imp M and Imp Y when the missing probability depends on the error-prone
variables W.

FDP
σ2
ϵ Imp M Imp Y Lasso Lasso Order RF GDS Corrected Lasso GMUS

0.1 default yes 0.09 0.18 0.18 0.11 0.00 0.05
0.1 default no 0.08 0.19 0.17 0.10 0.00 0.05
0.1 cart yes 0.08 0.18 0.17 0.11 0.00 0.05
0.1 cart no 0.08 0.19 0.18 0.10 0.00 0.04
0.1 rf yes 0.10 0.19 0.18 0.12 0.00 0.05
0.1 rf no 0.10 0.18 0.18 0.12 0.00 0.05
0.6 default yes 0.11 0.21 0.21 0.12 0.07 0.07
0.6 default no 0.11 0.22 0.23 0.12 0.08 0.07
0.6 cart yes 0.11 0.22 0.22 0.12 0.09 0.09
0.6 cart no 0.10 0.21 0.22 0.14 0.07 0.08
0.6 rf yes 0.11 0.23 0.21 0.13 0.08 0.09
0.6 rf no 0.12 0.24 0.23 0.14 0.08 0.08

Power
σ2
ϵ Imp M Imp Y Lasso Lasso Order RF GDS Corrected Lasso GMUS

0.1 default yes 1.00 0.96 0.85 1.00 0.22 0.98
0.1 default no 1.00 0.96 0.85 1.00 0.19 0.96
0.1 cart yes 1.00 0.95 0.85 1.00 0.19 0.96
0.1 cart no 1.00 0.96 0.84 1.00 0.20 0.95
0.1 rf yes 1.00 0.95 0.85 1.00 0.22 0.96
0.1 rf no 1.00 0.95 0.86 1.00 0.21 0.96
0.6 default yes 0.94 0.87 0.82 0.94 0.42 0.89
0.6 default no 0.93 0.87 0.81 0.93 0.42 0.89
0.6 cart yes 0.93 0.87 0.81 0.93 0.42 0.89
0.6 cart no 0.93 0.87 0.82 0.93 0.39 0.89
0.6 rf yes 0.93 0.87 0.82 0.93 0.41 0.89
0.6 rf no 0.93 0.87 0.82 0.93 0.42 0.89
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Table S6: Simulation results (FDP and Power) for Empirical Data Distribution from LC-MS
platform (RelQuant) for n = 1331, p = 148, pmis = 0.15, and Aβ = 1, varying σ2

ϵ , Imp M and
Imp Y when the missing probability depends on the error-prone variables X.

FDP
σ2
ϵ Imp M Imp Y Lasso Lasso Order RF GDS Corrected Lasso GMUS

0.1 default yes 0.18 0.18 0.15 0.19 0.03 0.20
0.1 default no 0.18 0.17 0.14 0.19 0.04 0.19
0.1 cart yes 0.17 0.16 0.15 0.19 0.05 0.19
0.1 cart no 0.17 0.17 0.14 0.20 0.05 0.18
0.1 rf yes 0.18 0.18 0.14 0.20 0.05 0.19
0.1 rf no 0.18 0.18 0.15 0.19 0.02 0.18
0.5 default yes 0.20 0.19 0.14 0.23 0.05 0.19
0.5 default no 0.20 0.19 0.14 0.21 0.04 0.19
0.5 cart yes 0.19 0.18 0.15 0.20 0.04 0.20
0.5 cart no 0.19 0.19 0.15 0.20 0.05 0.19
0.5 rf yes 0.20 0.19 0.15 0.21 0.04 0.20
0.5 rf no 0.19 0.20 0.15 0.19 0.05 0.20

Power
σ2
ϵ Imp M Imp Y Lasso Lasso Order RF GDS Corrected Lasso GMUS

0.1 default yes 1.00 0.95 0.72 1.00 0.11 1.00
0.1 default no 1.00 0.93 0.70 1.00 0.10 1.00
0.1 cart yes 1.00 0.92 0.71 1.00 0.11 1.00
0.1 cart no 1.00 0.92 0.71 1.00 0.12 1.00
0.1 rf yes 1.00 0.93 0.71 1.00 0.12 1.00
0.1 rf no 1.00 0.94 0.72 1.00 0.10 1.00
0.5 default yes 1.00 0.94 0.72 1.00 0.29 1.00
0.5 default no 1.00 0.93 0.70 1.00 0.28 1.00
0.5 cart yes 1.00 0.93 0.72 1.00 0.28 1.00
0.5 cart no 1.00 0.93 0.71 1.00 0.29 1.00
0.5 rf yes 1.00 0.93 0.72 1.00 0.28 1.00
0.5 rf no 1.00 0.93 0.71 1.00 0.28 1.00
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Table S7: Summary information of missing and measurement errors for each platform

Platform
Number of variables
having missing
N (%)

The proportion (%)
of missing
Mean (SD)

SNR†

Median, [Q1, Q3]
(Min−Max)

NMR 10 (16.95) 2.36 (2.67) 100.7, [58.2, 169.1]
(8.0−1873.3)

GC-MS 58 (86.57) 6.25 (6.05) 34.0, [14.8, 92.1]
(0.1−1397328.9)

LC-MS
(AbsQuant) 23 (76.67) 0.07 (0) 37.3, [13.8, 79.0]

(1.0−1786.6)
LC-MS
(RelQuant) 91 (61.69) 1.36 (3.6) 92.4, [31.3, 251.8]

(0.2−44362.3)
Lipidyzer
(composition) 413 (60.82) 2.14 (3.61) 37.5, [14.8, 100.0]

(0.9−2133.4)
Lipidyzer
(concentration) 413 (60.82) 2.14 (3.61) 76.8, [28.3, 228.5]

(1.9−2695.9)

SNR is signal noise ratio defined as V ar(X)/V ar(ϵW ).

Table S8: Metabolites that are selected using Lasso among ⩾10% of replications associated with
BC risks and the direction of their marginal association to the BC risks.

Platform Half Min Imputation Multiple Imputation
NMR
GC-MS Alpha−ketoglutarate (76%)(-)
LC-MS
(AbsQuant)

Choline (13%)(+)
3HBA (13%)(+) Choline (13%)(+)

LC-MS
(RelQuant)

Lipidyzer
(composition)

DAG 14:1/18:1 (40%)(+)
TAG 47:0(FA15:0)) (39%)(-)
TAG 48:3 (FA18:1) (24%)(-)

TAG 48:5(FA18:3) (80%)(-)
DAG 14:1/18:1 (78%)(+)
TAG 48:0(FA16:0 )(20%)(+)

Lipidyzer
(concentration)

DAG 14:1/18:1 (97%)(+)
TAG 48:0(FA16:0) (49%)(+)
TAG 56:9(FA20:4) (17%)(-)
PE 18:1/20:3 (14%)(-)

DAG 14:1/18:1 (97%)(+)
TAG48:5(FA18.3) (64%)(-)
PE 18:2/20:4 (11%)(-)
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Table S9: Metabolites that are selected using Lasso among ⩾10% of replications associated with
CRC risks and the direction of their marginal association to the CRC risks.

Platform Half Min Imputation Multiple Imputation

NMR N−methylnicotinic acid (43%)(-)
Taurine (22%)(+) Taurine (16%)(+)

GC-MS 2,3−Dihydroxybutanoic acid (46%)(+) 2,3−Dihydroxybutanoic acid (93%)(+)

LC-MS
(AbsQuant)

Glucose (84%)(+)
Cystine (52%)(-)
Serine (44%)(+)
Urate (42%)(+)
Choline (32%)(+)
Glycine (18%)(+)
Proline (11%)(+)

Glucose (62%)(+)
Serine (43%)(+)
Urate (14%)(+)
Choline (10%)(+)

LC-MS
(RelQuant)

Glycerate (69%)(+)
Adenosine (66%)(-)
Adipic Acid (14%)(+)

Adenosine (69%)(-)
Glycerate (67%)(+)

Lipidyzer
(composition)

TAG 48:5(FA18:2) (59%)(+)
TAG 47:2(FA14:0) (36%)(-)
TAG 52:8(FA16:1) (32%)(-)
TAG 54:0(FA16:0) (25%)(-)
TAG 46:4(FA18:2) (17%)(+)

Lipidyzer
(concentration)

Table S10: Metabolites that are selected using Lasso Order among ⩾10% of replications asso-
ciated with BC risks and the direction of their marginal association to the BC risks.

Platform Half Min Imputation Multiple Imputation
NMR N−methylnicotinic acid (59%)(+) N−methylnicotinic acid (63%)(+)
GC-MS Alpha−ketoglutarate (54%)(-) 2,3−Dihydroxybutanoic acid (42%)(-)
LC-MS
(AbsQuant)

3HBA (67%)(+)
Cystine (66%)(-)

Cystine (34%)(-)
3HBA (19%)(+)

LC-MS
(RelQuant) Malate (45%) (-) Malate (47%)(-)

Lipidyzer
(composition) TAG 47:0(FA15:0) (68%)(-)

TAG 48:5(FA18:3) (80%)(-)
DAG 14:1/18:1 (76%)(+)
TAG 58:10(FA20:5) (37%)(-)
TAG 56:9(FA20:4) (21%)(-)
TAG 46:3(FA16:1) (16%)(-)

Lipidyzer
(concentration) TAG 44:1(FA12:0) (24%)(-)



Variable selection with FDR control for noisy data 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Table S11: Metabolites that are selected using Lasso Order among ⩾10% of replications asso-
ciated with CRC risks and the direction of their marginal association to the CRC risks.

Platform Half Min Imputation Multiple Imputation
NMR N−methylnicotinic acid (76%)(-) N−methylnicotinic acid (54%)(-)
GC-MS 2,3−Dihydroxybutanoic acid (46%)(+) 2,3−Dihydroxybutanoic acid (63%)(+)

LC-MS
(AbsQuant)

Cystine (100%)(-)
3HBA (75%)(+)
Glutamic acid (18%)(+)
Glucose (16%)(+)
Glycine (12%)(+)
Choline (12%)(+)
Urate (12%)(+)

Cystine (94%)(-)
3HBA (31%)(+)

LC-MS
(RelQuant) Malate (57%)(+) Malate (49%)(+)

Lipidyzer
(composition)

TAG 48:5(FA18:2) (60%)(+)
TAG 54:0(FA16:0) (40%)(-)
TAG 52:8(FA16:1) (34%)(-)
TAG 47:2(FA14:0) (20%)(-)
TAG 46:4(FA18:2) (13%)(+)

TAG 48:4(FA14:0) (21%)(-)

Lipidyzer
(concentration) TAG 47:2(FA14:0) (61%)(-)

Table S12: Metabolites that are selected using Random Forest among ⩾10% of replications
associated with BC risks and the direction of their marginal association to the BC risks.

Platform Half Min Imputation Multiple Imputation
NMR Uracil (72%)(-) Uracil (35%)(-)
GC-MS

LC-MS
(AbsQuant)

Choline (38%)(+)
Citrulline (32%)(-)
Cystine (18%)(-)
3HBA (11%)(+)

Choline (12%)(+)

LC-MS
(RelQuant) Glycochenodeoxycholate (33%)(+)

Lipidyzer
(composition)

DAG 14:1/18:1 (44%)(+)
PE 18:0/20:2 (25%)(+) DAG 14:1/18:1 (23%)(+)

Lipidyzer
(concentration)

DAG 14:1/18:1 (67%)(+)
PEP 18:1/22:5 (16%)(-)

DAG 14:1/18:1 (82%)(+)
PE 18:2/20:4 (13%)(-)
PEO 18:0/18:1 (11%)(-)
PC 18:0/20:0 (10%)(-)
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Table S13: Metabolites that are selected using Random Forest among ⩾10% of replications
associated with CRC risks and the direction of their marginal association to the CRC risks.

Platform Half Min Imputation Multiple Imputation
NMR
GC-MS

LC-MS
(AbsQuant)

Glucose (73%)(+)
Cystine (55%)(-)
Pentothenate (54%)(+)
Histidine (43%)(-)
Threonine (19%)(-)
Serine (11%)(+)

Glucose (73%)(+)
Histidine (44%)(-)
Cystine (44%)(-)
Pentothenate (35%)(+)
Threonine (20%)(-)

LC-MS
(RelQuant) Adenosine (24%)(-)

Lipidyzer
(composition)

LCER 16:0 (14%)(-)
PC 18:0/18:0 (13%)(+)
TAG 50:5(FA18:1) (10%)(-)

PC 18:0/18:0 (28%)(+)
LCER 16:0 (23%)(-)

Lipidyzer
(concentration)

PC 18:1/18:3 (21%)(-)
LPE 18:0 (14%)(+)
PC 18:2/18:3 (13%)(-)

PEO 16:0/18:2 (14%)(-)
LPE 20:4 (12%)(+)
PC 18:1/18:3 (11%)(-)

Table S14: Metabolites that are selected using GDS among ⩾10% of replications associated with
BC risks and the direction of their marginal association to the BC risks.

Platform Half Min Imputation Multiple Imputation

NMR Uracil (21%)(-)
Formate (19%)(+)

GC-MS
LC-MS
(AbsQuant) Choline (61%)(+) Choline (27%)(+)

LC-MS
(RelQuant)

Lipidyzer
(composition)

TAG 52:2(FA18:2) (68%)(+)
PE 18:1/20:3 (36%)(-)
TAG 50:4(FA18:1) (20%)(-)

PC 16:0/18:2 (52%)(+)
TAG 52:2(FA18:2) (34%)(+)
FFA 20:2 (13%)(+)

Lipidyzer
(concentration)

DAG 14:1/18:1 (64%)(+)
PC 18:1/22:5 (40%)(-)
SM 20:0 (25%)(+)
FFA 20:2 (12%)(+)

DAG 14:1/18:1 (86%)(+)
PE 18:2/20:4 (44%)(-)
SM 20:0 (42%)(+)
PC 18:1/22:5 (34%)(-)



Variable selection with FDR control for noisy data 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Table S15: Metabolites that are selected using GDS among ⩾10% of replications associated with
CRC risks and the direction of their marginal association to the CRC risks.

Platform Half Min Imputation Multiple Imputation

NMR Taurine (51%)(+)
Histidine (24%)(-) Taurine (14%)(+)

GC-MS

LC-MS
(AbsQuant)

Serine (90%)(+)
Histidine (89%)(-)
Choline (60%)(+)
Glucose (55%)(+)
Urate (40%)(+)
Glutamic acid (17%)(+)

Histidine (90%)(-)
Serine (74%)(+)
Glucose (33%)(+)
Choline (25%)(+)
Urate (15%)(+)
Glutamic acid (11%)(+)

LC-MS
(RelQuant)

Adenosine (76%)(-)
Glycerate (19%)(+) Adenosine (84%)(-)

Lipidyzer
(composition)

HCER 24:0 (21%)(-)
TAG 54:2(FA18:1) (18%)(+)

Lipidyzer
(concentration)

CER 16:0 (53%)(+)
PC 18:2/20.3 (20%)(-)
CER 24:1 (18%)(+)

CER 16:0 (70%)(+)
PC 18:2/20:3 (11%)(-)

Table S16: Metabolites that are selected using GMUS among ⩾10% of replications associated
with BC risks and the direction of their marginal association to the BC risks.

Platform Half Min Imputation Multiple Imputation

NMR Uracil (19%)(-)
Formate (11%)(+)

GC-MS
LC-MS
(AbsQuant) Choline (46%)(+) Choline (38%)(+)

LC-MS
(RelQuant)
Lipidyzer
(composition)

TAG 52:2(FA18:2) (66%)(-)
PE 18:1/20:3 (21%)(-)

PC 16:0/18:2 (52.6%)(+)
TAG 52:2(FA18:2) (24.2%)(+)

Lipidyzer
(concentration)

DAG 14:1/18:1 (63%)(+)
PC 18:1/22:5 (42%)(-)
TAG 54:8(FA20:4)(13%)(-)
FFA 20:2 (11%)(+)
SM 20:0 (11%)(+)

DAG 14:1/18:1 (93.3%)(+)
PE 18:2/20:4 (37.8%)(-)
PC 18:1/22:5 (31.1%)(-)
SM 20:0 (13.3%)(+)
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Table S17: Metabolites that are selected using GMUS among ⩾10% of replications associated
with CRC risks and the direction of their marginal association to the CRC risks.

Platform Half Min Imputation Multiple Imputation

NMR Taurine (35%)(+)
Histidine (19%)(-) Taurine (28%)(+)

GC-MS

LC-MS
(AbsQuant)

Choline (42%)(+)
Glucose (39%)(+)
Serine (35%)(+)
Histidine (35%)(-)
Cystine (31%)(-)
Glutamic acid (25%)(+)
Urate (12%)(+)

Histidine (69%)(-)
Serine (46%)(+)
Glucose (25%)(+)
Choline (23%)(+)
Glutamic acid (16%)(+)

LC-MS
(RelQuant)

Adenosine (42%)(-)
Glycerate (28%)(+)

Adenosine (29%)(-)
Glycerate (11%)(+)

Lipidyzer
(composition)

HCER 24:0 (12%)(-)
TAG 54:2(FA18:1) (10%)(+)

Lipidyzer
(concentration)

CER 16:0 (52%)(+)
PC 18:2/20:3 (22%)(-)
CER 24:1 (15%)(+)

CER 16:0 (66%)(+)

Table S18: Metabolites that are selected using Corrected Lasso among ⩾10% of replications
associated with BC risks and the direction of their marginal association to the BC risks.

Platform Half Min Imputation Multiple Imputation
NMR N−methylnicotinic acid (95%)(+) N−methylnicotinic acid (99%)(+)

GC-MS

Alpha−ketoglutarate (55%)(-)
2,3−Dihydroxybutanoic acid (35%)(-)
Serine (21%)(-)
Phenol (15%)(-)

Alpha−ketoglutarate (73%)(-)
2,3−Dihydroxybutanoic acid (11%)(-)

LC-MS
(AbsQuant)

Aspartic Acid (17%)(+)
Glucose (15%)(+)
Cystine (11%)(-)

LC-MS
(RelQuant)

Ribose−5−P (43%)(-)
Malate (12%)(-) Ribose−5−P (30%)(-)

Lipidyzer
(composition)

DAG 14:1/18:1 (25%)(+)
TAG 47:0(FA15:0) (18%)(-)
PC 18:1/22:4 (13%)(-)
PEP 18:1/22:4 (13%)(+)
DAG 16:1/18:1 (12%)(-)
DAG 18:0/18:1 (12%)(+)
DAG 18:2/20:4 (10%)(-)
TAG 44:0(FA16:0) (10%)(-)
TAG 44:1(FA12:0) (10%)(-)

Lipidyzer
(concentration)

TAG 44:0(FA16:0) (34%)(-)
TAG 44:1(FA12:0) (15%)(-)
TAG 44:0(FA14:0) (13%)(-)
TAG 46:0(FA16:0) (12%)(-)

TAG 44:0(FA16:0) (32%)(-)
TAG 46:1(FA16:1) (10%) (-)
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Table S19: Metabolites that are selected using Corrected Lasso among ⩾10% of replications
associated with CRC risks and the direction of their marginal association to the CRC risks.

Platform Half Min Imputation Multiple Imputation
NMR N−methylnicotinic acid (86%)(-) Taurine (86%)(+)

GC-MS
2,3−Dihydroxybutanoic acid (47%)(+)
Phenol, 2,4−bis(1,1−dimethylethyl)−,
phosphite (3:1)(22%)(+)

Pseudo uridine penta−tms (20%)(+)
2,3−Dihydroxybutanoic acid (17%)(+)
Alpha−ketoglutarate (15%)(+)
4,5−dihydroxy−1,2−dithiane (14%)(+)

LC-MS
(AbsQuant)

Methionine (46%)(-)
Glucose (29%)(+)

Methionine (59%)(-)
Glucose (59%)(+)
iso−Leucine (23%)(+)
Leucine (15%)(+)

LC-MS
(RelQuant) Malate (71%)(+) Malate (87%)(+)

Lipidyzer
(composition)

TAG 44:0(FA16:0) (15%)(+)
TAG 44:0(FA14:0) (14%)(-)
TAG 46:0(FA14:0) (11%)(-)
TAG 46:0(FA16:0) (11%)(-)

Lipidyzer
(concentration)

TAG 44:0(FA16:0) (43%)(-)
TAG 44:0(FA14:0) (21%)(-)
TAG 44:1(FA14:0) (11%)(-)

Table S20: Metabolites that are selected using Lasso among ⩾10% of replications associated
with both BC and CRC risks and the direction of their marginal association to these two cancer
risks.

Platform Half Min Imputation Multiple Imputation
NMR
GC-MS

LC-MS
(AbsQuant)

Cystine (44%)(B:-)(C:-)
Choline (39%)(B:+)(C:+)
3HBA (31%)(B:+)(C:+)
Glutamic acid (16%)(B:+)(C:+)

Choline (17%)(B:+)(C:+)

LC-MS
(RelQuant) Malate (11%)(B:-)(C:+)

Lipidyzer
(composition)
Lipidyzer
(concentration)
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Table S21: Metabolites that are selected using Lasso Order among ⩾10% of replications asso-
ciated with both BC and CRC risks and the direction of their marginal association to these two
cancer risks.
Platform Half Min Imputation Multiple Imputation
NMR N−methylnicotinic acid (48%)(B:+)(C:-) N−methylnicotinic acid (57%)(B:+)(C:-)
GC-MS 2,3−Dihydroxybutanoic acid (28%)(B:-)(C:+) 2,3−Dihydroxybutanoic acid (17%)(B:-)(C:+)

LC-MS
(AbsQuant)

Cystine (89%)(B:-)(C:-)
3HBA (68%)(B:+)(C:+)
Glutamic acid (49%)(B:+)(C:+)
Choline (21%)(B:+)(C:+)

Cystine (99%)(B:-)(C:-)
3HBA (83%)(B:+)(C:+)
Glutamic acid (78%)(B:+)(C:+)
Pentothenate (28%)(B:-)(C:+)
Urate (17%)(B:+)(C:+)
Aspartic Acid (12%)(B:+)(C:+)

LC-MS
(RelQuant) Malate (30%) (B:-)(C:+)

Lipidyzer
(composition)

TAG 50:5(FA16:1) (15%)(B:-)(C:-)
TAG 44:1(FA12:0) (14%)(B:-)(C:-) DAG 14:1/18:1 (19%)(B:+)(C:+)

Lipidyzer
(concentration)

Table S22: Metabolites that are selected using GMUS among ⩾10% of replications associated
with both BC and CRC risks and the direction of their marginal association to these two cancer
risks.

Platform Half Min Imputation Multiple Imputation
NMR
GC-MS

LC-MS
(AbsQuant)

Choline (56%)(B:+)(C:+)
Glutamic acid (23%)(B:+)(C:+)
Cystine (12%)(B:-)(C:-)

Choline (63%)(B:+)(C:+)
Glutamic acid (10%)(B:+)(C:+)

LC-MS
(RelQuant)
Lipidyzer
(composition)
Lipidyzer
(concentration)
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Table S23: Metabolites that are robustly (⩾50% times selected) associated with BC risks and
the direction of their marginal association to the BC risks using BC specific matched controls.

Method Platform Half Min Imputation Multiple Imputation
Lasso NMR N−methylnicotinic acid (53%)(+)

Lasso Lipidyzer
(composition) TAG 47:0(FA15:0) (54%)(-) DAG 14:1/18:1 (81%)(+)

Lasso Lipidyzer
(concentration)

DAG 14:1/18:1 (88%)(+)
TAG 48:0(FA16:0) (59%)(+)

Lasso Order GC-MS Alpha−ketoglutarate (100%)(-)
Lasso Order NMR N−methylnicotinic acid (53%)(+) N−methylnicotinic acid (65%)(+)

Lasso Order LC-MS
(AbsQuant) Cystine (58%)(-)

Lasso Order Lipidyzer
(composition) TAG 47:0(FA15:0) (62%)(-) DAG 14:1/18:1 (99%)(+)

GMUS NMR Uracil (95%)(-)
Formate (83%)(+)

Uracil (97%)(-)
Formate (82%)(+)

GMUS Lipidyzer
(composition) TAG 52:2(FA18:2) (60%)(+)

Table S24: Metabolites that are robustly (⩾50% times selected) associated with CRC risks and
the direction of their marginal association to the CRC risks using CRC specific matched controls.

Method Platform Half Min Imputation Multiple Imputation

Lasso LC-MS
(AbsQuant)

3HBA (66%)(+)
Cystine (60%)(-)

Lasso LC-MS
(RelQuant) Adenosine (52%)(-) Adenosine (90%)(-)

Lasso Lipidyzer
(composition)

TAG 48:5(FA18:3) (80%)(+)
DAG 14:1/18:1 (78%)(+)

Lasso Order NMR N−methylnicotinic acid (86%)(-) N−methylnicotinic acid (94%)(-)

Lasso Order LC-MS
(AbsQuant)

3HBA (95%)(+)
Cystine (89%)(-)

3HBA (98%)(+)
Cystine (89%)(-)

Lasso Order LC-MS
(RelQuant) Adenosine (90%)(-)

Lasso Order Lipidyzer
(composition)

TAG 48:5(FA18:3) (80%)(+)
DAG 14:1/18:1 (76%)(+)

GMUS LC-MS
(AbsQuant) Choline (67%)(+)

GMUS LC-MS
(RelQuant) Adenosine (90%)(-)

GMUS Lipidyzer
(composition) PC 16:0/18:2 (55%)(-)
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Table S25: Metabolites that are robustly (⩾50% times selected) associated with both BC and
CRC risks and the direction of their marginal association to these two cancer risks using specific
cancer controls.

Method Platform Half Min Imputation Multiple Imputation

Lasso Lipidyzer
(composition) DAG 14:1/18:1 (58%)(B:+)(C:+)

Lasso Order NMR N−methylnicotinic acid (56%)(B:+)(C:-)

Lasso Order LC-MS
(AbsQuant)

Cystine (89%)(B:-)(C:-)
3HBA (68%)(B:+)(C:+) Cystine (52%)(B:-)(C:-)

GMUS LC-MS
(AbsQuant) Choline (56%)(B:+)(C:+)


