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Abstract

We propose to explore high-dimensional data with categorical outcomes by generalizing the pe-
nalized orthogonal-components regression method (POCRE), a supervised dimension reduction
method initially proposed for high-dimensional linear regression. This generalized POCRE, i.e.,
gPOCRE, sequentially builds up orthogonal components by selecting predictors which maximally
explain the variation of the response variables. Therefore, gPOCRE simultaneously selects sig-
nificant predictors and reduces dimensions by constructing linear components of these selected
predictors for a high-dimensional generalized linear model. For multiple categorical outcomes,
gPOCRE can also construct common components shared by all outcomes to improve the power
of selecting variables shared by multiple outcomes. Both simulation studies and real data analysis
are carried out to illustrate the performance of gPOCRE.

Keywords gPOCRE; latent model; logistic regression; multinomial regression; orthogonal
components

1 Introduction
High-dimensional data with categorical outcomes, such as data from genome-wide association
studies of single or multiple related diseases, challenge statistical inference as we are usually
interested in building models to distinguish the different groups and identifying risk factors that
cause such classification (Tam et al., 2019). Many tools have been developed to address these
two issues in analyzing classical categorical data with few risk factors of interest, for example,
logistic regression, linear discriminant analysis (LDA) (Fisher, 1936), and classification tree
(CT) (Loh, 2011). Since high-dimensional categorical data usually come with a massive number
of features but a relatively small sample size, direct application of these classical methods is
either computationally infeasible or methodologically inappropriate (Fan et al., 2009; Xie et al.,
2020).

Classification based on generalized linear regression models, such as logistic or probit re-
gression, is challenged by multicollinearity and perfect separation due to the available massive
features (Shen and Gao, 2008). Extending LASSO (Tibshirani, 1996) to generalized linear re-
gression models still faces such challenges (Van de Geer, 2008). LDA aims to discriminate cases
and controls in a one-dimensional space and avoid such challenges (McLachlan, 2005). However,
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such a one-dimensional space may involve all features and is still insufficient to discriminate
cases and controls. The classification tree instead builds a decision tree, leading to a conclusion
on case or control based on selected features (Freeman et al., 2013). It models the nonlinear
relationship between features and responses. However, evaluating the significance of individual
features is not straightforward.

Supervised dimension reduction plays a vital role in exploring high-dimensional data in
linear regression (Massy, 1965). While it privileges over the relation between responses and fea-
tures to propose effective data analysis (Velliangiri et al., 2019), supervised dimension reduction
has been studied for partial least squares (PLS) regression (Wold, 1966, 1975; Hoskuldsson,
1988, 1992; De Jong, 1993; Boulesteix and Strimmer, 2006), and further for sparse partial least
squares (SPLS) (Lê Cao et al., 2008; Chun and Keleş, 2010) enabled with variable selection.
Zhang et al. (2009) developed a penalized orthogonal-components regression (POCRE) to fit
high-dimensional linear regression models. POCRE sequentially constructs orthogonal compo-
nents for massive features to maximize, upon standardization, their correlations with the re-
sponse variables. A penalization framework was implemented to select sparse features for each
component. POCRE is computationally efficient owing to its sequential construction of leading
sparse principal components.

Here we will extend the idea of POCRE to generalized linear models, especially multinomial
logistic regression models, by developing a supervised dimension reduction method allowing
for selecting sparse features for categorical outcomes. The challenge here lies in the fact that
fitting a generalized linear model usually relies on iteratively regressing different sets of working
responses against predictors. As the regression at each iteration also presents dynamic weights for
observations, Chung and Keles (2010) proposed the sparse generalized least squares (SGPLS) by
taking each iteration as an independent task of supervised dimension reduction and constructing
its own set of components for the underlying working responses. Therefore, these components
do not converge and indeed different sets may have different numbers of components.

Lin et al. (2015) proposed a generalized orthogonal-components regression (GOCRE) to
address the challenge by fixing the weights, which may be initialized via classical approaches,
and targeting to sequentially construct a set of orthogonal components to maximally account
for the variation in the categorical outcome. GOCRE addresses well the multicollinearity and
perfect separation issues. However, GOCRE lacks the variable selection ability as it constructs
each component with all available predictors. Here we will impose the variable selection ability on
such a supervised dimension reduction method to build up low-dimensional linear combinations
of sparse features and provide a valuable tool for exploratory analysis of high-dimensional data
with categorical outcomes.

In the following sections, we first briefly review GOCRE within the context of generalized
linear regression. Then, we propose gPOCRE by imposing a penalty function into the GOCRE
framework. The algorithms are provided to implement gPOCRE. Section 3 and Section 4 present
simulation studies and real data analysis using gene expression data. We conclude with a dis-
cussion in Section 5.

2 Generalized POCRE
For a set of high-dimensional data with multivariate response {(yi , xi), i = 1, 2, . . . , n}, we have
each response yi a q-dimensional row vector and each predictor xi a p-dimensional row vector.
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The multivariate generalized linear model can be defined as

G(E[yi |xi]) = (G1(E[yi |xi]), . . . , Gq(E[yi |xi])) = μ + xiB, (1)

where μ is a q-dimensional row vector, B is a p × q dimension coefficient matrix, and G(·) is a
vector of q link functions with each modeling one component of the response. In general, this
model allows integration of diverse link functions.

Without loss of generality, we will focus on the case of multiple categorical outcomes mod-
eled via multinomial logistic regression, specifically the baseline categorical model, for easy
illustration. Suppose that each yi is a multinomial response indicating q + 1 categories. That is,
the q-dimensional yi includes q dummy variables with binary values, summing to at most one.
Thus, we have the multinomial logistic regression specified with the multilogit link function,

G(E[yi |xi]) =
(

log E[yi1|xi ]
1−∑q

j=1 E[yij |xi ] , . . . , log E[yiq |xi ]
1−∑q

j=1 E[yij |xi ]

)
. (2)

When q = 1, the above model reduces to a logistic regression.
Denote

X = (xt
1, . . . , xt

n)
t = (x·1, . . . , x·p),

Y = (yt
1, . . . , yt

n)
t = (y·1, . . . , y·q).

Assume that a variance-related weight wi has been appropriately defined, and denote W =
diag(w1, . . . , wn). Further assume that each x·j have been centered such that 1t

nWX = 0t
p, where

1n is an n-dimensional column vector with all components as one and 0p is an p-dimensional
column vector with all components as zero.

We want to explore the model (1) in a low-dimensional space through building sparse or-
thogonal components xi�j , j = 1, 2, . . ., to account for the variation of the nominal multinomial
outcomes, that is,

G(E[yi |xi]) = μ +
∑

j

ϑj (xi�j ), (3)

where each ϑj is a p-dimensional column vector. In addition, the components are orthogonal in
a space with inner product < z1, z2 >= E[zt

1Wz2].
We first review the GOCRE in the following and then introduce the idea of sparsifying

these components to construct sparse orthogonal components sequentially.

2.1 Generalized Orthogonal-Component Regression

The orthogonal components are sequentially constructed based on the prespecified weights W
and accordingly centralized X.

First, let X1 = X and the n × q matrix η is initialized at, e.g., η = η(0). For convenience, we
also denote

η = (ηt
1, . . . , η

t
n)

t = (η·1, . . . , η·q),

which leads to the calculation of

Z(η) = (
Zt

·1(η), . . . , Zt
·q(η)

)t
,
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where

Z·j (η) = η·j + (∇G−1(η·j )
)−1 (

y·j − G−1(η·j )
)
. (4)

Here the function G−1(η) is the inverse function of the multilogit link function G(η) with

G−1(η) = (G−1(η1)
t , . . . , G−1(ηn)

t )t = (G−1(η·1), . . . , G−1(η·q))

where, for each ηi ,

G−1(ηi) =
(

eηi1

1 + ∑q

j=1 eηij
, . . . ,

eηiq

1 + ∑q

j=1 eηij

)
. (5)

A component X1α(η) can be constructed with α = α(η) maximizing

‖Z(η)tWX1α‖2 = αtXt
1WZ(η)Z(η)tWX1α,

under the condition ‖α(η)‖ = 1. Then regressing Z = Z(η) against X1α with α = α(η) leads to
an update of η,

η(α) = WZ/(1t
nW1n) + X1αγ1, (6)

where
γ1 = αtXt

1WZ/αtXt
1WX1α.

Alternatively update α(η) and η(α) until α(η) converges to α1, which leads to the construction
of the first component X1α1.

After constructing the (j − 1)-st component Xj−1αj−1, we obtain Xj = Xj−1 − Xj−1αj−1θj

by removing Xj−1αj−1 from Xj−1 such that

Xt
jWXj−1αj−1 = 0,

i.e., Xj is orthogonal to Xj−1αj−1, leading to

θj−1 = αt
j−1Xt

j−1WXj−1/α
t
j−1Xj−1WXj−1αj−1. (7)

With the estimate of η from constructing the first j − 1 orthogonal components, we can
update Z(η) following (4). Then the component Xjα(η) can be constructed with

α(η) = arg max
α:‖α‖=1

{‖Z(η)tWXjα‖2}, (8)

where α(η) is the eigenvector corresponding to the largest eigenvalue of Xt
jWZ(η)Z(η)tWXj .

Regressing Z = Z(η) against Xjα(η) as well as the other j components updates η as,

η(α) = WZ/(1t
nW1n) +

j−1∑
k=1

Xkαkγk + Xjαγ, (9)

where, for k = 1, . . . , j − 1,

γk = αt
kXt

kWZ/αt
kXt

kWXkαk, γ = αtXt
jWZ/αtXt

jWXjα.
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Alternatively update α(η) and η(α) until α(η) converges to αj , leading to the construction of
the j -th component Xjαj . Thus, the j -th component Xjαj maximizes its correlation with the
working response Z and maximally explains the variation of the response variables.

Such construction stops whenever W1/2Z(η) is uncorrelated to W1/2Xj . Because

Xjαj = Xj−1(I − αj−1θj−1)αj = · · · = X
{

j−1∏
l=1

(I − αj−lθj−l)

}
αj ,

we can denote each component Xjαj = X�j . Upon completion of the construction, we have the
generalized orthogonal-components regression model with orthogonal components X�1, X�2,
X�3, · · · , because W1/2X�1, W1/2X�2, W1/2X�3, · · · , are uncorrelated.

Theorem 1. Each component Xjαj can be rewritten as X�j where

�j =
{

j−1∏
l=1

(I − αj−lθj−l)

}
αj .

Furthermore, with the inner product defined before, the components X�1, X�2, . . ., are orthogo-
nal.

2.2 Sparsifying the Components

As shown in the above, we construct the j -th component Xjαj by maximizing ‖Z(η)tWXjαj‖2

under the condition that ‖αj‖ = 1. That is, it seeks a sequence of loading vectors that not only
relate X to Z(η) but also capture the variation in X, and each loading vector αj turns out to
be the leading eigenvector of Xt

jWZ(η)Z(η)tWXj . The solution to this optimization problem is
not a sparse vector, which leads to the fact that each component is a linear combination of all
features.

Here we intend to enforce the variable selection function in constructing orthogonal compo-
nents and build each component with selected important features. Specifically, to get the sparse
loading vectors, we follow Zhang et al. (2009) and consider the following optimization problem
to obtain α(η) = α/‖α‖,

(α, ϑ) = arg min
α,ϑ :‖ϑ‖=1

{−2αtXt
jWZ(η)Z(η)tWXjϑ + ‖α‖2 + pλ(α)}, (10)

where pλ(α) is a penalty function with tuning parameter λ. Different penalty functions will be
considered to obtain sparse α(η) to sparsify the constructed components, with α(η) = 0 implying
uncorrelated W1/2Z(η) and W1/2Xj .

When q = 1, Z(η) is a column vector. Applying the method of Lagrange multipliers to (10),
we can get

ϑ = Xt
jWZ(η)/‖Xt

jWZ(η)‖,
which implies the following results.

Theorem 2. In the case of logistic regression with q = 1, the optimization problem in (10) can
be simplified and rewritten as, with τ = ‖Xt

jWZ(η)‖,

α = arg min
α

{∥∥α − τXt
jWZ(η)

∥∥2 + pλ(α)}. (11)
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2.2.1 Sparsifying the Components via Empirical Bayes Thresholding

When pλ(·) is specified by the logarithm of a prior density function, the optimal α in (11) will
be a Bayesian shrinkage of Xt

jWZ(η). In consideration of the sparsity of α, we can employ the
empirical Bayes thresholding (EBT) proposed by Johnstone and Silverman (2004) to obtain a
sparsified α(η) from Xt

jWZ(η).
In general, we can solve (10) by iterating alternatively between optimal ϑ and α. For a fixed

α, we have,
ϑ = Xt

jWZ(η)Z(η)tWXjα/‖Xt
jWZ(η)Z(η)tWXjα‖.

For a fixed ϑ , we denote
ξ = Xt

jWZ(η)Z(η)tWXjϑ.

Then we have

α = arg min
α

{−2αtξ + ‖α‖2 + pλ(α)} = arg min
α

{‖ξ − α‖2 + pλ(α)}. (12)

Thus the optimal α is an estimate of the mean of ξ under the prior distribution specified by
pλ(α), which will be selected to obtain a sparse α.

Since each ξi/‖ξ‖ is an estimate of the certain conditional correlation coefficient, we can
take a Fisher’s z-transformation,

zi = 1

2
log

1 − ξi/‖ξ‖
1 + ξi/‖ξ‖ ,

and further assume,

zi = μi + εi, εi ∼ N

(
0,

λ2

p − 3

)
,

where μi = 1
2 log{(1 − αi)/(1 + αi)}, and λ partially accounts for possible under-dispersion or

over-dispersion due to dependent data.
To obtain sparse μ and thus sparse α, we assume a mixture prior with a point mass at zero

and a quasi-Cauchy distribution for each μi , i.e.,

π(μi) = (1 − w)δ0(μi) + w
1√
2π

{
1 − |μi |Φ(−|μi |)

φ(μi)

}
,

where δ0(·) is Dirac’s delta function. An estimate of w, say ŵ, can be calculated by maximizing
the marginal likelihood, and μi can be estimated by the posterior median, i.e.,

μ̂i = μ̂(ξi) = median(μi |zi, ŵ),

leading to

α̂i = 1 − e2μ̂i

1 + e2μ̂i
‖ξ‖.

Note that, as ŵ provides a data-driven estimate of the parameter sparsity, the resultant estimate
is adaptive to the sparsity of the underlying parameter and can reach the overall risk bounds.
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2.2.2 Sparsifying the Components via Parametric Penalties

Many parametric penalty functions have been proposed to combine variable selection and param-
eter estimation, for example, the L1 penalty function by Tibshirani (1996), smoothly clipped
absolute deviation (SCAD) by Fan and Li (2001), and minimax concave penalty (MCP) by
Zhang (2010), among others. As shown below, such parametric penalty functions result in ex-
plicit solutions to (12).

With sparse α in (12), we can calculate

σ = median1⩽j⩽p{|ξj |}/Φ−1(0.75),

and rewrite (12) as

α = arg min
α

{‖ξ − α‖2/σ 2 + pλ(α/σ)}, (13)

that is, optimal α can be obtained from estimating the mean α/σ from standardized data ξ/σ

under different penalty functions, such as L1, SCAD, and MCP. When ξ contains pure noise, α

can be zero, which implies no further construction of components.

3 Simulation Studies
We consider different cases of large p small n data to compare the performance of gPOCRE
with other approaches, i.e., sparse generalized partial least squares (SGPLS) by Chung and Keles
(2010) and generalized linear model with lasso penalty (LASSO) by Friedman et al. (2010). For
gPOCRE, we use four different methods to enable the variable selection, that is, empirical Bayes
thresholding, L1 penalty, SCAD, and MCP, and the corresponding algorithms are denoted as
gPOCREEB , gPOCREL1

, gPOCREMCP , and gPOCRESCAD, respectively.
We present six case studies here. The first two consider highly and mildly correlated predic-

tors. The third one has clustered predictors, the fourth one demonstrates a measurement-error
model, and the fifth and sixth ones study the multinomial response case. Within each case, the
simulated data consists of a training set with sample size 200 or 500 and a test set with sample
size fixed at 200, with the number of predictors fixed at p = 1000. For each simulated data
set, a five-fold cross-validation method is used to select the optimal tuning parameters based on
the training data. The sample misclassification rate (MR), number of detected true predictors
(NTP), and number of false predictors (NFP) are calculated based on the test data set.

3.1 Predictors with High or Mild Correlations

To study the effects of correlated predictors, we simulate data from the following model,

logit(E(yi |xi )) = 2
10∑

j=1

xij +
110∑

j=101

xij , i = 1, . . . , n,

where each xi = (xi1, . . . , xip) consists of ten independently distributed blocks, with each block
{xi,k+1, . . . , xi,k+100} simulated from an AR(1) process with the correlation coefficient ρ. We con-
sider ρ = 0.9 and 0.5 for high and mild correlations, respectively.

We summarize the simulation results in Table 1. First, we note that as the ratio of the
number of observations to the number of predictors increases, the prediction ability of each
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Table 1: Results from simulation studies of predictors with high/mild correlation. Reported are
the median values across 100 simulation runs. Numbers in the parentheses are the corresponding
standard errors.

ρ n LASSO SGPLS gPOCRE gPOCRE gPOCRE gPOCRE
(EB) (L1) (SCAD) (MCP)

0.9 MR 200 .0700 .0600 .0500 .0500 .0500 .0500
(.0021) (.0022) (.0023) (.0024) (.0024) (.0024)

500 .0500 .0425 .0400 .0450 .0475 .0450
(.0016) (.0016) (.0016) (.0017) (.0016) (.0017)

NTP 200 11 19 20 20 20 20
(.1941) (.2183) (.1218) (.1058) (.0946) (0.1058)

500 16 20 20 20 20 20
(.1608) (.0834) (.0403) (.0273) (.0239) (.0273)

NFP 200 5 1 3.5 6 6 6
(.6488) (.2788) (.2624) (.5747) (.3657) (.5586)

500 5.5 1 3 6 6 6
(.4856) (.2156) (.1457) (.3111) (.3215) (.4564)

0.5 MR 200 .1400 .1425 .1400 .1550 .1550 .1550
(.0029) (.0038) (.0038) (.0036) (.0034) (.0036)

500 .0800 .0800 .0800 .0850 .0900 .0085
(.0020) (.0023) (.0025) (.0026) (.0023) (.0027)

NTP 200 15 13 14 15 15 15
(.2301) (.3044) (.2672) (.2793) (.2864) (.2793)

500 19 18 18 19 19 19
(.0832) (.1311) (.1458) (.0815) (.0928) (.0815)

NFP 200 14 1 2 4.5 3 4.5
(1.4567) (3.1936) (1.9000) (2.8678) (2.7846) (2.8678)

500 18.5 0 0 1.5 1 1.5
(1.8809) (.1423) (.1114) (.3427) (.2796) (.3292)

method increases as expected. For example, MR of gPOCREL1
decreases from 0.05 to 0.045,

and MR of SGPLS decreases from 0.06 to 0.043, as the ratio increases from 1/5 to 1/2 in the
case of high correlation. In terms of MR, simulation results suggest that gPOCREEB performs
better than the other methods in most cases. In terms of NTP and NFP, all methods improve the
ability to identify the true predictors as the number of observations increases, and gPOCREEB

slightly outperforms the other methods. We noticed that when the correlation between predictors
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increases, all methods except LASSO improve the performance to identify the true predictors.

3.2 Clustered Predictors
We consider a latent variable model as follows,

logit(E(yi |xi )) = 1.5
30∑

j=1

xij , i = 1, . . . , n,

where, for j = 1, . . . , p,

xij = zi11{j⩽10} + zi21{11⩽j⩽20} + zi31{21⩽j⩽30} + ξij ,

with the three latent variables zi1, zi2, zi3
iid∼ N(0, 1) and ξij

iid∼ N(0, 0.12).
The simulation results are summarized in Table 2. We noticed that different versions of

gPOCRE have similar performance as SGPLS, and both of them outperform LASSO in terms of
MR, NTP, and NFP. With much smaller standard errors reported, different versions of gPOCRE
also demonstrate robust performance than SGPLS and LASSO across different criteria.

3.3 Predictors Observed with Errors
With the common concern of errors in predictors, we consider the following model, including
predictors observed with errors,

logit(E(yi |xi )) = zi1 + 2zi2 + zi3, i = 1, . . . , n,

Table 2: Results from simulation studies of clustered predictors. Reported are the median values
across 100 simulation runs. Numbers in the parentheses are the corresponding standard errors.

n LASSO SGPLS gPOCRE gPOCRE gPOCRE gPOCRE
(EB) (L1) (SCAD) (MCP)

MR 200 .0500 .0400 .0500 .0500 .0500 .0500
(.0019) (.030) (.0021) (.0030) (.0030) (.0030)

500 .0300 .0300 .0300 .0300 .0325 .0300
(.0014) (.0015) (.0017) (.0020) (.0017) (.0020)

NTP 200 7 30 30 30 30 30
(.1739) (.1960) (.0141) (.0100) (.0100) (.0100)

500 11 30 30 30 30 30
(.2068) (.0539) (.0100) (.0000) (.0000) (.0000)

NFP 200 2 0 0 0 0 0
(.9085) (.2031) (.8663) (.0656) (.1149) (.06557)

500 1 0 0 0 0 0
(.8560) (.1444) (.0141) (.0389) (.0321) (.0389)
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Table 3: Results from simulation studies of predictors observed with errors. Reported are the
median values across 100 simulation runs. Numbers in the parentheses are the corresponding
standard errors.

n LASSO SGPLS gPOCRE gPOCRE gPOCRE gPOCRE
(EB) (L1) (SCAD) (MCP)

MR 200 .2600 .2450 .2300 .2450 .2500 .2450
(.0032) (.0034) (.0033) (.0036) (.0040) (.0036)

500 .2350 .2200 .2150 .2200 .2200 .2200
(.0031) (.0030) (.0028) (.0029) (.0030) (.0030)

NTP 200 13 22 21.5 21 21.5 21
(.3025) (.7015) (.5434) (.5472) (.5902) (.5472)

500 20 29 26 29 29 29
(.2918) (.3074) (.3102) (.2419) (.2418) (.2399)

NFP 200 5.5 2 .5 0 0 0
(1.7845) (17.9083) (.6991) (.6642) (1.0049) (.6642)

500 4 0 0 0 0 0
(2.2903) (7.2884) (.0609) (.1785) (.2286) (.2270)

where, for j = 1, . . . , 1000,

xij = sign(5.5 − j)zi11{j⩽10} + sign(15.5 − j)zi21{11⩽j⩽20} + zi31{21⩽j⩽30} + ξij ,

with latent variables zi1, zi2, zi3
iid∼ N(0, 1) and ξij

iid∼ N(0, 1).
We summarize the simulation results in Table 3. In terms of MR and NTP, the four versions

of gPOCRE are comparable to each other and SGPLS. While LASSO is outperformed by all
other methods in terms of MR and NTP, it can identify much less number of true predictors
than others. In terms of NFP, the four versions of gPOCRE perform similarly but outperm both
SGPLS and LASSO with LASSO the worst.

3.4 Multinomial Models
Here we simulate data from the following multinomial model,{

log(E[yi1|xi]/E[yi3|xi]) = θ ∗ ∑10
j=1 xij + θ ∗ ∑110

j=101 xij ,

log(E[yi2|xi]/E[yi3|xi]) = 1−√
3

2 ∗ θ ∗ ∑10
j=1 xij + 1+√

3
2 θ ∗ ∑110

j=101 xij ,
(14)

where, for i = 1, 2, . . . , n, each xi is simulated from an AR(1) process with ρ = 0.5.
We summarized the simulation results in Table 4, which shows that SGPLS outperforms

all other methods in terms of MR. However, the four versions of gPOCRE reports higher NTP,
especially that gPOCREL1 , gPOCRESCAD, and gPOCREMCP tend to identify all true predictors.
On other hand, all methods, except gPOCREEB , may report a large number of false predictors.
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Table 4: Simulation results of the multinomial model. Reported are the median values across
100 simulation runs. Numbers in the parentheses are the corresponding standard errors.

θ n LASSO SGPLS gPOCRE gPOCRE gPOCRE gPOCRE
(EB) (L1) (SCAD) (MCP)

MR 2 200 0.19 0.1 0.18 0.2 0.21 0.2
(0.04) (0.05) (0.05) (0.04) (0.04) (0.04)

500 0.11 0.07 0.1 0.12 0.14 0.12
(0.02) (0.03) (0.03) (0.03) (0.03) (0.03)

4 200 0.18 0.09 0.16 0.2 0.2 0.2
(0.04) (0.04) (0.05) (0.04) (0.05) (0.04)

500 0.085 0.06 0.09 0.12 0.12 0.12
(0.02) (0.03) (0.03) (0.03) (0.03) (0.03)

NTP 2 200 31 36 36 40 40 40
(3.03) (5.19) (2.5) (2.06) (2.15) (2.04)

500 36 38 40 40 40 40
(1.4) (2.83) (0.69) (0.34) (0.59) (0.34)

4 200 31 36 36 40 40 40
(2.92) (4.59) (2.3) (1.99) (1.97) (1.99)

500 37 38 40 40 40 40
(1.34) (2.86) (0.73) (0.28) (0.34) (0.28)

NFP 2 200 19.5 2 4 31 29 35
(30.64) (11.53) (50.69) (66.8) (65.62) (66.56)

500 21.5 20 0 4 2 4
(36.67) (27.13) (2.15) (8.53) (9.08) (10.16)

4 200 24 2 4 24 29 25
(28.79) (10.46) (46.02) (65.22) (64.16) (64.98)

500 17 17 0 4 4 4
(28.32) (43.25) (1.64) (8.66) (8.52) (8.66)

3.5 Running Time Analysis

In high-dimensional data analysis, computational time is an important factor when comparing
the performance of different methods. Table 5 summarizes the time used to analyze one data set
from the case with highly correlated predictors with sample size fixed at 200. All methods used
5-fold cross-validation to select tuning parameters. We noted that LASSO uses the shortest time
to select the tuning parameter and fit the model. Among the rest, gPOCREEB takes much less
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Table 5: Time consumption (in seconds) in analyzing one dataset.

LASSO SGPLS gPOCRE gPOCRE gPOCRE gPOCRE
Model (EB) (L1) (SCAD) (MCP)

High Correlation 0.36 31 16 27 27 27
Mild Correlation 0.41 35 16.6 25.6 26 26
Clustered Predictors 0.46 32 18 30 37 30
Predictors with Errors 0.46 30 19 31 35 32
Multinomial Model 0.88 63 43 66 80 66

time than the others, while SGPLS is comparable to gPOCREL1 and gPOCREMCP . This result
was obtained on a MacBook Pro with 2.5 GHz Intel Core i7.

4 Real Data Analysis

4.1 Logistic Regression for Isolated Letter Speech Recognition

Here we analyze a subset of the Isolated Letter Speech Recognition (ISOLET) data (Fanty and
Cole, 1990), collected from 150 subjects, each speaking the first two letters of the alphabet twice.
A total of 617 waveform features are available for predicting the spoken letter. We randomly
chose 80% of the data as training data and the remaining 20% as the test data, with data
stratified between the letters. We applied each of gPOCRE, SGPLS, and LASSO to the training
data to build a logistic model, using a five-fold CV to optimize the tuning parameters. The
MR values were calculated based on the test data. We repeated this procedure 50 times, and
reported all MR and numbers of non-zero coefficients in Figure 1.

All methods performed well in terms of MR on the test sets, with median values at zero.
While all three models reported MR values predominantly at 0 and 0.008, gPOCRE and LASSO
occasionally reported higher MR values of 0.017. SGPLS, in contrast, produced one notable
outlier with an MR of 0.034. Additionally, SGPLS exhibited considerably variability in feature
selection, identifying between tens and over 600 features across the 50 models. As shown in
Table 6, only 15 features were consistently selected by SGPLS in every model. LASSO, despite
producing models with similarly small numbers of features (median at 40), consistently selected
only four features across all 50 models. In contrast, gPOCRE not only stably selected larger
numbers of features (median at 192), but also demonstrated strong consistency by selecting the
same 39 features across all 50 models, with 91 features appearing in at least 80% of them.

4.2 Multinomial Regression for Breast Cancer Data

We employed a subset of the breast cancer data from The Cancer Genome Atlas (TCGA) (Hutter
and Zenklusen, 2018). We focused our analysis on the three breast cancer subtypes, i.e., Basal,
HER2, and Luminal, with sample sizes of 66, 44, and 110, respectively. Each subject included 384
predictors representing the gene expressions of 184 miRNAs and 200 mRNAs. We allocated the
data into training and test sets using an 80%-20% stratified random split, and applied gPOCRE,
SGPLS, and LASSO to predict the three subtypes of breast cancer. For each split, the tuning
parameters for each method were obtained through five-fold cross-validation. The process was
repeated 50 times, and the misclassification rates of the three methods are reported in Table 7.
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Figure 1: Boxplot of results from analyzing ISOLET data across 50 random splits.

Table 6: The number of variables consistently identified by different methods.

Identified Times gPOCRE SGPLS LASSO

50 39 15 4
45∼49 35 13 5
40∼44 17 13 4

Table 7: Summary for the breast cancer data analysis. Reported are the median values across
50 random splits. The numbers in the parentheses are the corresponding standard errors.

Methods #(β �= 0) MR

gPOCREEB 74.5 (1.30) 0.07 (0.005)
SGPLS 301 (10.79) 0.09 (0.006)
LASSO 60 (0.86) 0.09 (0.006)

Among the methods, gPOCRE outperformed both SGPLS and LASSO in terms of misclas-
sification rate (MR). LASSO has similar MR to SGPLS, but it has selected the fewest genes. In
contrast, gPOCRE selected more genes than LASSO but fewer than SGPLS. Notably, SGPLS
demonstrated instability, exhibiting a large standard error in the number of selected genes, while
gPOCRE achieved a more stable selection with the lowest MR.

5 Discussion
In this work, we introduced gPOCRE, a regression-based model tailored for high-dimensional
generalized linear models (GLMs). By constructing sparse components, gPOCRE addresses the
challenges posed by high dimensionality and multicollinearity, offering a solution to ill-posed
problems while identifying important features. Both simulation studies and real data examples
highlight the superior performance of gPOCRE and its comparability to other existing methods.

Several algorithms have been proposed to implement sparse partial least squares (PLS)
for high-dimensional GLMs. Chung and Keles (2010) introduced SPLSDA and SGPLS, which
extend sparse partial least squares (Chung and Keles (2010)) to classification problems. SPLSDA
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is a two-stage procedure that replaces PLS with a sparse PLS method in the first stage of the
classification framework developed by Nguyen and Rocke (2002a,b). However, SGPLS extends
SPLS by, within each iteration of IRWLS, employing weighted SPLS instead of weighted least
squares (LS). SGPLS uses cross-validation (CV) to determine the optimal tuning parameters and
the number of components. Simulations and real data examples show that SGPLS is significantly
more time-consuming than gPOCREEB .

gPOCRE applies penalization through four strategies: empirical Bayes thresholding, L1

penalty, SCAD penalty, and MCP. Each of these strategies enables gPOCRE to select sparse
variables effectively within the large p, small n paradigm. Empirical Bayes thresholding can
take a threshold adaptive to parameter sparsity, thus providing data-driven sparsification of
components in gPOCRE. Our simulation studies have verified its advantage over other penalty
methods. On the other hand, gPOCREEB also outperforms LASSO and SGPLS in practical
scenarios such as predictors observed with errors and multiple outcomes. As shown in Table 3
and Table 4, SGPLS may unstably report a large number of false predictors, which resonates
with the observed large standard errors of SGPLS when analyzing both sets of real data.

Supplementary Material
The MATLAB code for gPOCRE is available on the journal’s website. The ISOLET data by
Fanty and Cole (1990) can be downloaded from https://www.openml.org/search?type=data&
sort=version&status=any&order=asc&exact_name=isolet&id=41966, and the breast cancer
data can be found in the R package mixOmics (https://mixomics.org/).

A Proof of Theorem 2
We can apply Lagrange multipliers to (10),

L(α, ϑ, γ ) = −2αtXt
jWZ(η)Z(η)tWXjϑ + ‖α‖2 + pλ(α) + γ (‖ϑ‖2 − 1).

Taking the partial derivative of ϑ , we have

∂L(α, ϑ, γ )

∂ϑ
= −2αtXt

jWZ(η)Z(η)tWXj + 2γϑt = 0,

which leads to
ϑt = 1

γ
αtXt

jWZ(η)Z(η)tWXj .

Taking the partial derivative of γ , we have

∂L(α, ϑ, γ )

∂γ
= ‖ϑ‖2 − 1 = 0,

which implies γ = ‖αtXt
jWZ(η)Z(η)tWXj‖. Because q = 1, both γ and αtXt

jWZ(η) are scalars.
Thus we have

ϑ = Xt
jWZ(η)

‖Xt
jWZ(η)‖ .

Plugging ϑ into (10), we can get (11).

https://www.openml.org/search?type=data&sort=version&status=any&order=asc&exact_name=isolet&id=41966
https://www.openml.org/search?type=data&sort=version&status=any&order=asc&exact_name=isolet&id=41966
https://mixomics.org/
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