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Abstract

Forecasting is essential for optimizing resource allocation, particularly during crises such as the
unprecedented COVID-19 pandemic. This paper focuses on developing an algorithm for gener-
ating k-step-ahead interval forecasts for autoregressive time series. Unlike conventional methods
that assume a fixed distribution, our approach utilizes kernel distribution estimation to accom-
modate the unknown distribution of prediction errors. This flexibility is crucial in real-world
data, where deviations from normality are common, and neglecting these deviations can result
in inaccurate predictions and unreliable confidence intervals. We evaluate the performance of
our method through simulation studies on various autoregressive time series models. The results
show that the proposed approach performs robustly, even with small sample sizes, as low as
50 observations. Moreover, our method outperforms traditional linear model-based prediction
intervals and those derived from the empirical distribution function, particularly when the un-
derlying data distribution is non-normal. This highlights the algorithm’s flexibility and accuracy
for interval forecasting in non-Gaussian contexts. We also apply the method to log-transformed
weekly COVID-19 case counts from lower-middle-income countries, covering the period from
June 1, 2020, to March 13, 2022.

Keywords autoregressive time series; empirical cumulative distribution function; kernel
density estimation; prediction interval

1 Introduction
The COVID-19 outbreak in late 2019 marked the first time pandemic data was collected and
shared globally in real-time. Advances in modern technology enabled unprecedented access to
COVID-19 data, allowing for the timely extraction of critical information. Throughout the pan-
demic, numerous time series datasets, such as those shown in Figure 1, were frequently collected
and updated. Accurate forecasting based on these datasets allowed governments and health-
care systems to anticipate demand, allocate resources, and make informed decisions to mitigate
the virus’s impact. Several attempts have been made to forecast COVID-19-related time series,
including studies by Petropoulos et al. (2022) and Abbasimehr et al. (2022). However, most
studies have focused on point forecasting, often at the cost of computational efficiency. While
point forecasts are useful for predicting future values, they are unlikely to precisely match future
observations. A key limitation of point forecasts is that they do not account for the uncertainty
inherent in forecasting. Throughout this paper, we use the terms ‘forecasting’ and ‘prediction’
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Figure 1: (a) scatter plot for {yt}, (b) ACF of linear model residuals {ŵt}.

interchangeably. In contrast, interval forecasts provide a range within which future observations
are expected to fall, based on a specified prediction level, such as 95%. Interval predictions
offer the flexibility to balance forecast precision with associated uncertainty by adjusting the
prediction level. This flexibility supports more informed decision-making, as it considers both
best-case and worst-case scenarios, offering a more objective assessment of data variability.

Forecasting based on the intrinsic correlation structure is a key focus in time series analysis.
A well-known approach involves autoregressive moving-average (ARMA) modeling for stationary
time series, where both the first and second moments remain constant. If the underlying process
that generates the time series can be modeled by an ARMA model, point forecasts can be derived
using the model’s parameter estimates. For more details, readers can refer to standard textbooks,
such as Shumway and Stoffer (2010) and Cryer and Chan (2008). To handle forecasting for
more complex nonstationary time series, many computationally intensive methods have been
proposed. For example, Inoue et al. (2017) employed a nonparametric approach for predicting
time series with structural changes. While nonparametric methods offer greater flexibility, this
advantage comes at a cost—they typically require a large number of observations and significant
computational power to achieve a desired level of accuracy.

Most time series forecasting methodologies have focused on point forecasting, while interval
forecasting has received comparatively less attention. For an ARMA time series with a normal
distribution, constructing a forecast interval is straightforward. However, real-world data often
deviate from the assumptions of stationarity, linearity, or normality. Chatfield (1993) and Gooi-
jer and Hyndman (2006) provide comprehensive summaries of various methods for general time
series forecasting. For instance, Cerqueira et al. (2020) conducted an empirical comparison of
performance estimation methods for time series forecasting and found significant differences in
their effectiveness. Several empirical plug-in methods, particularly those based on computation-
ally intensive techniques, have been developed to address the challenge of unknown distributions.
The primary drawback of these methods is that they often require substantial computational
time.
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The pioneering work of Wang et al. (2014) addresses this challenge by introducing oracle-
efficient estimation for a distribution function. Their approach is based on kernel density estima-
tion (KDE), and it possesses the oracle property, meaning that the prediction intervals derived
from the estimated model coefficients are asymptotically as efficient as those constructed using
true parameter values. Kong et al. (2018) extended this approach to autoregressive time series
(AR), proposing a prediction interval based on kernel estimation of the cumulative distribution
function, which also retains oracle efficiency. Their semiparametric kernel distribution estima-
tion method offers several key advantages, making it particularly well-suited for COVID-19
data. First, it does not require the assumption of normality and can be applied to non-normally
distributed data—an important consideration for COVID-19 case counts, which deviate from
normality. Second, it performs well with relatively small sample sizes; their simulation studies
show that it works effectively with as few as 50 observations. Finally, they demonstrated that
their method is computationally efficient, taking significantly less time than the bootstrap, a
widely known computationally intensive method.

At the onset of the COVID-19 outbreak, no comparable historical datasets were available.
However, even limited data proved valuable to society. The advantages of KDE, combined with
the unique characteristics of COVID-19 time series, motivate our proposal for constructing a
prediction interval (PI). Specifically, we extend the KDE approach to autoregressive time series
with a linear trend and propose an algorithm to construct forecast intervals for such data. The
remainder of the article is structured as follows: In Section 2, we introduce the details of the
algorithm. A linear model is fitted using linear regression with time series errors, and a k-step-
ahead PI is constructed from the prediction residuals. This residual-based approach has been
applied in the analysis of time series with regressors, as in Pierce (1971) for regression models
and Shao and Yang (2017) for nonparametric models. The residuals are used to estimate the
distribution of the prediction errors via kernel estimation. In Section 3, we present simulation
studies for several AR models, comparing different PI construction methods in terms of coverage
frequencies, and the means and standard deviations of PI widths. In Section 4, we apply the al-
gorithm to the log-transformed COVID-19 case count data from lower-middle-income countries.
Finally, in Section 5, we conclude with a summary and final remarks.

2 Construction of Forecasting Intervals
We start with the following simple linear model for the dependent variable y and a fixed inde-
pendent variable x:

yt = β0 + β1xt + wt. (2.1)
When time series exhibits a linear trend, xt is time t . Unlike a classic linear model, the random
error terms {wt} in (2.1) are an autoregressive time series with order p (AR(p))

wt =
p∑

i=1

φiwt−i + εt , (2.2)

where {εt} is white noise or a sequence of independent and identically distributed (i.i.d) random
variables with E (εt ) = 0 and E

(
ε2
t

) = σ 2. In addition, the time series {wt} is causal; that is, there
exists a sequence of constants {ψj } such that

∑∞
j=0 |ψj | < ∞ and

wt =
∞∑

j=0

ψjεt−j .
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These typical conditions on AR(p) time series {wt} ensure that Yule-Walker or maximum likeli-
hood estimators for {φi}pi=1 exist and possess certain asymptotic properties, such as consistency
and normality. Interested readers can refer to, for example, Brockwell and Davis (1991).

From (2.1) and (2.2), we obtain the following combined model:

yt = b0 + b1xt +
p∑

i=1

φiyt−i + εt , (2.3)

where {b0, b1} are functions of the model coefficients {β0, β1, φ1, . . . , φp}. Model (2.3) resembles
a classic linear regression with explanatory variables {xt , yt−1, . . . , yt−p} and independent and
identically distributed error terms {εt}. Although a key difference between model (2.1) and model
(2.3) is the inclusion of lagged explanatory variables {yt−1, . . . , yt−p}, we can still leverage the
linear relationship between the dependent variable yt and the explanatory variables to construct
an out-of-sample prediction interval for yn+k.

Using the true values of model coefficients {b0, b1, φ1, . . . , φp}, a k-step-ahead prediction ỹ
[k]
t+k

for yt+k is defined by

ỹ
[k]
t+k = b0 + b1xt+k +

k−1∑
i=1

φiỹ
[k−i]
t+k−i +

p∑
i=k

φiyt+k−i , (2.4)

and the k-step-ahead prediction errors or residuals
{
ε̃

[k]
t+k

}n−k

t=k+1
can be calculated from yt+k and

ỹ
[k]
t+k,

ε̃
[k]
t+k = yt+k − ỹ

[k]
t+k. (2.5)

Consider one-step-ahead prediction. When k = 1, (2.4) is simplified to

ỹ
[1]
t+1 = b0 + b1xt+1 +

p∑
i=1

φiyt+1−i .

Thus, ε̃
[1]
t+1 = εt+1. Hereafter, we ignore the subscript [k] when k = 1. When k = 2, the two-step-

ahead prediction ỹ
[2]
t+2 relies on the one-step-ahead prediction ỹt+1 as follows:

ỹ
[2]
t+2 = b0 + b1xt+2 + φ1ỹt+1 +

p∑
i=2

φiyt+2−i

= b0 + b1xt+2 + φ1

{
b0 + b1xt+1 +

p∑
i=1

φiyt+1−i

}
+

p∑
i=2

φiyt+2−i

= b0(1 + φ1) + b1(xt+2 + φ1xt+1) +
p−1∑
i=1

(φ1φi + φi+1)yt+1−i + φ1φpyt+1−p.

A two-step-ahead prediction error ε̃
[2]
t+2 is calculated by

ε̃
[2]
t+2 = yt+2 − ỹ

[2]
t+2 = εt+2 + φ1εt+1. (2.6)

Thus, unlike one-step-ahead prediction errors,
{
ε̃

[2]
t+2

}
is not an independent sequence. If {εt} is

independent and normally distributed with mean zero and variance σ 2,
{
ε̃

[2]
t+2

}
is also normally

distributed with mean zero and variance (1 + φ2
1)σ

2.
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A (1−α)% prediction interval for yn+k can be constructed from the cumulative distribution
function F [k] of

{
ε̃

[k]
t+k

}
. Let q

[k]
α/2 and q

[k]
1−α/2 be respectively α/2-th and q1−α/2-th quantiles such

that qα = inf{z : F [k](z) ⩾ α}. Then,(
ỹ

[k]
n+k + q

[k]
α/2, ỹ

[k]
n+k + q

[k]
1−α/2

)
is a (1−α)% prediction interval. However, in general, it is complicated to find the exact distribu-
tion of

{
ε̃

[k]
t+k

}
. We intend to estimate the density function nonparametrically and in particular,

utilize the kernel density estimator as follows:

F̃
[k]
n,h(z) =

∫ z

−∞
1

nh

n∑
t=1

K

(
u − ε̃

[k]
t+k

h

)
du, z ∈ R, (2.7)

where h is a bandwidth and the kernel function K satisfies the conditions: a symmetric bounded
density function and

K(z) ⩾ 0,

∫
K(z)dz = 1,

∫
zK(z)dz = 0.

There has been extensive research on kernel estimators, and interested readers can refer to, such
as Fan and Gijbels (1996). Let q̃

[k]
α/2 and q̃

[k]
1−α/2 be respectively α/2-th and q1−α/2-th quantiles of

F̃
[k]
n,h. Then an approximate (1 − α)% PI is(

ỹ
[k]
n+k + q̃

[k]
α/2, ỹ

[k]
n+k + q̃

[k]
1−α/2

)
. (2.8)

However, using (2.8) presents another challenge: both the prediction ỹ
[k]
t+k and residual ε̃

[k]
t+k

depend on unknown model coefficients. A common approach in statistics to address this issue
is the plug-in method, where estimates are substituted for the unknowns. This leads to our
proposed prediction algorithm for constructing out-of-sample prediction intervals. We elaborate
it as follows: in the first step, model (2.3) is fitted, and the ordinary least squares estimates
{b̂0, b̂1, φ̂i, 1 ⩽ i ⩽ p} are calculated; in the second step, a point prediction ŷ

[k]
t+k is obtained from

equation (2.4) with {b0, b1, φi, 1 ⩽ i ⩽ p} replaced by the estimates {b̂0, b̂1, φ̂i, 1 ⩽ i ⩽ p}, and
residuals

{
ε̂

[k]
t+k

}
are calculated from (2.5) with ỹ

[k]
t+k replaced by ŷ

[k]
t+k; in the third step, the KDE

F̂
[k]
n,h is computed from in (2.7) with ε̃

[k]
t+k replaced by ε̂

[k]
t+k, and a (1 − α)% PI is constructed as

follows: (
ŷ

[k]
n+k + q̂

[k]
α/2, ŷ

[k]
n+k + q̂

[k]
1−α/2

)
, (2.9)

where q̂[k]
α is the αth quantile of the F̂

[k]
n,h(z).

3 Simulation Studies
In this section, we study the performance of one-step-ahead (k = 1) and two-step-ahead (k = 2)
95% PI’s of several time series with a linear trend using the computing platform R (2024). We
follow Kong et al. (2018) to choose white noise distributions and model parameters. Specif-
ically, we use two distributions for white noise {ε1, . . . , εn}: the standard normal distribution
N(0, 1) and kurtotic distribution 2/3N(0, 1) + 1/3N(0, (0.1)2). The linear model parameters are
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(β0, β1) = (6.5, 0.02), which are the estimates in the COVID-19 case count data to be ana-
lyzed in the next section. We consider autoregressive models with two different orders: AR(1)
with φ1 = −0.8, −0.6, −0.2, 0.2, 0.6, 0.8 and AR(2) with (φ1, φ2) = (−0.8, −0.4), (0.2, 0.1),
(0.8, −0.4), (0.2, −0.1), (0.1, −0.05), (−0.1, 0.05), (1.4, −0.56). We simulate four sample sizes:
n = 50, 100, 500, 1000 with 500 sample paths each.

In addition to the coverage frequencies, we also present the mean and the standard deviation
of the widths for the proposed algorithm in Section 2. Moreover, for each model, we include
another two PI’s in the simulation studies for the purpose of comparison. The first one is the
model PI which is calculated from model (2.4) with {b̂0, b̂1, φ̂i, 1 ⩽ i ⩽ p}. It is clear that this
PI is obtained based on the assumption that the error terms are independent and identically
normally distributed, and moreover ŷ

[k−i]
t+k−i on the right-hand-side of the model (2.4) are treated

as observed values. The second one is the empirical PI which is computed from the empirical
cumulative distribution function F̂ [k]

n :

F̂ [k]
n (z) = n−1

n∑
t=k

I
(
ε̂[k]
t ⩽ z

)
, (3.1)

where I
(
ε̂

[k]
t ⩽ z

)
is 1 if ε̂

[k]
t ⩽ z is true and 0 otherwise. Zhong (2024) has discussed how

to use a quantile estimator that is derived from the empirical CDF of prediction residuals of
autoregressive moving-average time series to establish multi-step-ahead prediction intervals for
future observations.

In Tables 2–9, which present the simulation results, the three prediction interval construction
methods are labeled as follows: ‘KDE’ for PIs from kernel density estimation, ‘Normal’ for PIs
from model (2.4) with normal quantiles, and ‘EM’ for PIs from the empirical distribution function
(3.1). In most cases, the KDE PIs demonstrate greater robustness and superiority over the other
methods, with coverage frequencies closer to the nominal 95% level and the smallest mean and
standard deviation of PI widths, especially when the sample size is small. For one-step-ahead
predictions, the performance of KDE and EM becomes very similar as the sample size increases.
However, the coverage frequencies tend to deviate further from 95% at k = 2. The relatively poor
performance of ‘Normal’ and ‘EM’ PIs at small sample sizes is expected. The ‘Normal’ PIs rely
on the assumption that the data are independent and identically normally distributed, or based
on misspecified models, while the ‘EM’ PIs are constructed using the empirical distribution
function, which exhibits sudden jumps at each data point in the sample.

4 Application to COVID-19 Case Counts
In this section, we construct 95% prediction intervals for the weekly log-transformed COVID-19
case counts from lower-middle-income countries between June 1, 2020, and March 13, 2022. These
countries faced more challenges during the pandemic, including limited access to healthcare
resources. Thus, making accurate forecasting is essential for effective policy planning in these
countries.

The log transformation reduces variability and better meets the assumptions of autore-
gressive models. The data set is downloaded from the website Our World in Data (https://
ourworldindata.org/). More detailed information about the data set can be found from Shao
et al. (2024). The observations are marked by blue in Figure 1 (a). The scatter plot exhibits
a pronounced upward linear trend, which suggests that a linear model (2.1) with week as a

https://ourworldindata.org/
https://ourworldindata.org/
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covariate be a candidate for model fitting. Unlike a simulation study, the true AR order p is
unknown. To identify the most appropriate p, we fit a linear model (2.1) and obtain the ordi-
nary least squares estimates for the model parameters: β̂0 = 6.570 and β̂1 = 0.021. Moreover,
we calculate the residuals {ŵt , 1 ⩽ t ⩽ 93} and notice strong correlations from their sample
autocorrelation plot in Figure 1 (b). The correlations at lags 1–4 are significant and beyond
the 95% intervals. After fitting several autoregressive models, we conclude that AR(2) is the
most appropriate model—The sample autocorrelation plot in Figure 2 (a) of the AR(2) residual
sequence does not demonstrate any significant correlation. The Q-Q plot of the residuals in
Figure 2 (b) exhibits a non-normal pattern with some dots outside the confidence band.

We apply the proposed algorithm to construct 95% prediction intervals at k = 1, 2. Firstly
we fit the model (2.3) to the data and obtain the estimates: β̂0 = 1.027, β̂1 = 0.003, φ̂1 =
1.421, φ̂2 = −0.573. We calculate one-step-ahead prediction residuals {ε̂t} and two-step-ahead
prediction residuals

{
ε̂

[2]
t+2

}
, and use these residuals in computing F̂

[1]
n,h(z) and F̂

[2]
n,h(z) which are

respectively plotted in Figures 3 (a) and (b). In addition to the KDE, we also include the PI
from empirical cumulative function in Table 1.

Figure 2: (a) ACF of AR2 residuals {et}, (b) Q-Q plot of {et}.

Table 1: 95% prediction intervals for COVID-19 case count time series.

Point KDE EM

Prediction 95% PI Width 95% PI Width

k = 1 8.194 (7.992, 8.354) 0.362 (8.016, 8.343) 0.328
k = 2 8.301 (7.818, 8.760) 0.942 (7.880, 8.729) 0.849
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Figure 3: Kernel density estimates.

5 Concluding Remarks
The COVID-19 pandemic presented both opportunities and challenges for data scientists seeking
to extract actionable insights to help society understand and combat the disease. Forecasting
played a crucial role in optimizing resource allocation, especially during crises like the unprece-
dented COVID-19 pandemic. In response, we developed an algorithm for constructing k-step-
ahead interval forecasts for time series models, which are widely used in time series analysis due
to their ability to capture temporal dependencies in data.

The strength of the proposed algorithm lies in its ability to incorporate the correlation struc-
ture of the data, a critical factor for accurate forecasting. This flexibility is particularly valuable
in real-world scenarios, where deviations from normality are common, and failing to account for
these deviations can result in inaccurate predictions and unreliable confidence intervals.

Our method addresses several limitations of existing forecasting techniques by explicitly
considering the non-normality and correlated structure inherent in time series data, offering
a powerful tool for resource optimization and decision-making during critical periods like the
COVID-19 pandemic. Other computationally intensive methods, such as bootstrap techniques
extended to ARMA models by Pan and Politis (2016), for example, can also address issues related
to unknown distributions. Further simulation studies are needed to compare these alternative
methods.

Supplementary Material
Interested readers can refer to https://github.com/qinshao/JSD_IF.git for the data and R code.

https://github.com/qinshao/JSD_IF.git
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Table 2: One-step-ahead prediction intervals for AR(1) with N(0, 1).

Coverage Frequency Mean Width SD Width

φ1 n Normal KDE EM Normal KDE EM Normal KDE EM

−0.8 50 0.986 0.976 0.95 5.001 4.760 4.030 0.630 0.541 0.501
100 0.956 0.950 0.932 4.505 4.360 3.930 0.417 0.356 0.360
400 0.968 0.972 0.952 4.090 4.104 3.926 0.160 0.165 0.188
800 0.948 0.946 0.932 4.002 4.041 3.912 0.106 0.118 0.132

−0.6 50 0.964 0.954 0.912 4.609 4.503 3.895 0.516 0.519 0.488
100 0.962 0.960 0.940 4.306 4.317 3.921 0.326 0.333 0.332
400 0.956 0.956 0.952 4.044 4.106 3.921 0.148 0.166 0.188
800 0.948 0.952 0.944 3.975 4.042 3.913 0.099 0.114 0.126

−0.2 50 0.940 0.930 0.898 4.248 4.112 3.567 0.461 0.455 0.445
100 0.934 0.942 0.912 4.092 4.117 3.750 0.302 0.327 0.338
400 0.946 0.952 0.944 3.953 4.042 3.865 0.139 0.162 0.181
800 0.942 0.948 0.934 3.941 4.021 3.895 0.100 0.118 0.134

0.2 50 0.956 0.946 0.890 4.219 4.102 3.568 0.453 0.463 0.449
100 0.940 0.938 0.910 4.074 4.104 3.744 0.299 0.326 0.340
400 0.944 0.956 0.944 3.958 4.043 3.865 0.138 0.160 0.184
800 0.958 0.964 0.956 3.941 4.019 3.895 0.099 0.119 0.136

0.6 50 0.938 0.918 0.862 4.439 4.307 3.739 0.539 0.558 0.509
100 0.948 0.950 0.916 4.252 4.267 3.869 0.332 0.341 0.347
400 0.944 0.958 0.938 4.017 4.081 3.902 0.137 0.153 0.177
800 0.950 0.950 0.944 3.978 4.041 3.915 0.105 0.120 0.134

0.8 50 0.962 0.952 0.898 4.749 4.590 3.920 0.617 0.603 0.510
100 0.968 0.962 0.948 4.452 4.357 3.941 0.398 0.359 0.368
400 0.958 0.962 0.950 4.088 4.096 3.907 0.160 0.170 0.191
800 0.954 0.956 0.956 3.998 4.036 3.907 0.108 0.124 0.138
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Table 3: Two-step-ahead prediction intervals for AR(1) with N(0, 1).

Coverage Frequency Mean Width SD Width

φ1 n Normal KDE EM Normal KDE EM Normal KDE EM

−0.8 50 0.872 0.930 0.890 4.212 5.263 4.556 0.437 0.686 0.661
100 0.878 0.934 0.916 4.066 5.289 4.816 0.288 0.483 0.478
400 0.874 0.942 0.934 3.961 5.195 4.966 0.138 0.233 0.252
800 0.846 0.936 0.926 3.937 5.151 4.989 0.098 0.171 0.186

−0.6 50 0.922 0.946 0.912 4.194 4.820 4.173 0.436 0.620 0.592
100 0.898 0.948 0.920 4.037 4.798 4.363 0.286 0.421 0.425
400 0.916 0.958 0.950 3.959 4.735 4.529 0.141 0.214 0.238
800 0.912 0.966 0.954 3.934 4.689 4.542 0.101 0.160 0.176

−0.2 50 0.946 0.946 0.906 4.214 4.252 3.671 0.458 0.510 0.492
100 0.954 0.956 0.944 4.057 4.201 3.826 0.300 0.327 0.324
400 0.922 0.934 0.924 3.944 4.124 3.937 0.136 0.174 0.187
800 0.964 0.972 0.966 3.944 4.109 3.982 0.103 0.126 0.143

0.2 50 0.938 0.932 0.880 4.192 4.161 3.596 0.461 0.494 0.475
100 0.958 0.966 0.924 4.055 4.177 3.802 0.300 0.349 0.366
400 0.928 0.940 0.922 3.956 4.134 3.956 0.135 0.164 0.183
800 0.946 0.958 0.946 3.929 4.090 3.962 0.101 0.119 0.132

0.6 50 0.864 0.896 0.848 4.199 4.653 4.030 0.463 0.670 0.633
100 0.904 0.944 0.920 4.059 4.701 4.278 0.313 0.451 0.450
400 0.908 0.950 0.946 3.953 4.709 4.506 0.146 0.238 0.256
800 0.912 0.956 0.948 3.942 4.697 4.551 0.101 0.153 0.170

0.8 50 0.826 0.892 0.842 4.158 5.001 4.351 0.464 0.746 0.702
100 0.854 0.934 0.902 4.017 5.089 4.632 0.280 0.488 0.489
400 0.856 0.940 0.924 3.947 5.161 4.938 0.148 0.261 0.278
800 0.846 0.952 0.944 3.938 5.137 4.977 0.105 0.181 0.196
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Table 4: One-step-ahead prediction intervals for AR(2) with N(0, 1).

Coverage Frequency Mean Width SD Width

(φ1, φ2) n Normal KDE EM Normal KDE EM Normal KDE EM

(−0.8, −0.4) 50 0.960 0.940 0.898 4.278 4.038 3.490 0.455 0.437 0.436
100 0.946 0.940 0.920 4.082 4.061 3.696 0.314 0.335 0.341
400 0.952 0.952 0.946 3.958 4.038 3.861 0.144 0.168 0.187
800 0.932 0.946 0.934 3.938 4.013 3.887 0.106 0.122 0.137

(0.2, 0.1) 50 0.940 0.934 0.888 4.288 4.037 3.493 0.442 0.432 0.432
100 0.948 0.950 0.912 4.078 4.057 3.693 0.309 0.326 0.341
400 0.952 0.956 0.942 3.946 4.028 3.851 0.145 0.163 0.178
800 0.956 0.958 0.948 3.935 4.014 3.887 0.096 0.109 0.121

(0.8, −0.4) 50 0.940 0.916 0.878 4.263 4.023 3.486 0.459 0.464 0.459
100 0.956 0.946 0.904 4.078 4.054 3.682 0.295 0.315 0.327
400 0.954 0.956 0.944 3.957 4.031 3.854 0.143 0.164 0.181
800 0.952 0.954 0.946 3.935 4.010 3.882 0.105 0.121 0.133

(0.2, −0.1) 50 0.958 0.938 0.880 4.283 4.032 3.480 0.477 0.464 0.457
100 0.962 0.958 0.936 4.094 4.068 3.703 0.301 0.327 0.345
400 0.954 0.956 0.942 3.956 4.031 3.856 0.145 0.166 0.185
800 0.948 0.952 0.946 3.942 4.017 3.891 0.100 0.119 0.133

(0.1, −0.05) 50 0.938 0.918 0.876 4.241 3.998 3.446 0.459 0.453 0.442
100 0.958 0.956 0.918 4.108 4.086 3.718 0.297 0.314 0.331
400 0.958 0.960 0.944 3.967 4.045 3.870 0.140 0.158 0.183
800 0.940 0.944 0.934 3.940 4.018 3.894 0.099 0.117 0.129

(−0.1, 0.05) 50 0.932 0.926 0.882 4.248 4.000 3.442 0.476 0.460 0.446
100 0.948 0.950 0.926 4.078 4.058 3.688 0.289 0.309 0.338
400 0.972 0.968 0.964 3.968 4.050 3.873 0.140 0.163 0.184
800 0.950 0.952 0.948 3.936 4.011 3.886 0.095 0.110 0.122

(1.4, −0.56) 50 0.952 0.930 0.876 4.260 3.998 3.457 0.467 0.440 0.433
100 0.966 0.952 0.938 4.100 4.069 3.704 0.320 0.346 0.358
400 0.958 0.956 0.946 3.964 4.035 3.858 0.143 0.164 0.178
800 0.954 0.954 0.952 3.935 4.007 3.882 0.099 0.113 0.127
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Table 5: Two-step-ahead prediction intervals for AR(2) with N(0, 1).

Coverage Frequency Mean Width SD Width

(φ1, φ2) n Normal KDE EM Normal KDE EM Normal KDE EM

(−0.8, −0.4) 50 0.818 0.930 0.878 4.278 5.957 5.151 0.485 1.120 1.027
100 0.800 0.922 0.890 4.081 5.813 5.275 0.289 0.824 0.777
400 0.814 0.932 0.914 3.954 5.596 5.345 0.143 0.387 0.387
800 0.768 0.920 0.908 3.935 5.553 5.388 0.103 0.275 0.278

(0.2, 0.1) 50 0.940 0.938 0.886 4.204 4.134 3.558 0.438 0.481 0.477
100 0.952 0.952 0.938 4.074 4.159 3.775 0.297 0.338 0.347
400 0.930 0.94 0.934 3.950 4.082 3.906 0.134 0.167 0.184
800 0.962 0.964 0.956 3.935 4.055 3.927 0.097 0.120 0.132

(0.8, −0.4) 50 0.860 0.958 0.926 4.259 6.403 5.557 0.475 0.978 0.914
100 0.890 0.982 0.976 4.106 6.476 5.891 0.302 0.769 0.734
400 0.894 0.996 0.994 3.968 6.434 6.151 0.138 0.376 0.393
800 0.914 0.990 0.986 3.934 6.365 6.164 0.099 0.277 0.286

(0.2, −0.1) 50 0.932 0.936 0.876 4.204 4.312 3.718 0.468 0.558 0.543
100 0.950 0.952 0.924 4.044 4.281 3.885 0.295 0.391 0.389
400 0.936 0.962 0.946 3.968 4.262 4.078 0.130 0.185 0.204
800 0.946 0.958 0.944 3.935 4.210 4.082 0.101 0.140 0.152

(0.1, −0.05) 50 0.960 0.954 0.922 4.266 4.241 3.652 0.467 0.507 0.496
100 0.944 0.948 0.912 4.080 4.189 3.811 0.298 0.357 0.364
400 0.942 0.954 0.940 3.954 4.101 3.919 0.143 0.175 0.196
800 0.914 0.932 0.920 3.939 4.073 3.946 0.105 0.126 0.138

(−0.1, 0.05) 50 0.938 0.926 0.892 4.240 4.209 3.634 0.453 0.496 0.475
100 0.940 0.940 0.922 4.055 4.171 3.789 0.309 0.358 0.369
400 0.946 0.954 0.944 3.953 4.095 3.912 0.141 0.173 0.192
800 0.95 0.956 0.952 3.940 4.075 3.941 0.103 0.128 0.140

(1.4, −0.56) 50 0.848 0.986 0.976 4.254 8.732 7.553 0.435 1.399 1.279
100 0.892 1.000 1.000 4.072 9.044 8.230 0.297 1.012 0.970
400 0.906 0.998 0.998 3.953 8.997 8.610 0.142 0.507 0.523
800 0.890 1.000 1.000 3.941 8.979 8.693 0.097 0.358 0.386
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Table 6: One-step-ahead prediction intervals for AR(1) with kurtotic.

Coverage Frequency Mean Width SD Width

φ1 n Normal KDE EM Normal KDE EM Normal KDE EM

−0.8 50 0.950 0.942 0.916 4.228 4.165 3.647 0.630 0.590 0.545
100 0.968 0.968 0.950 3.852 3.891 3.618 0.404 0.386 0.38
400 0.948 0.962 0.960 3.397 3.64 3.566 0.154 0.182 0.191
800 0.930 0.954 0.948 3.301 3.592 3.546 0.108 0.127 0.136

−0.6 50 0.954 0.942 0.914 3.827 3.877 3.454 0.539 0.587 0.551
100 0.944 0.956 0.944 3.580 3.803 3.556 0.334 0.382 0.382
400 0.944 0.950 0.952 3.307 3.623 3.548 0.158 0.186 0.195
800 0.944 0.962 0.962 3.271 3.606 3.558 0.104 0.133 0.139

−0.2 50 0.934 0.932 0.908 3.448 3.497 3.143 0.455 0.502 0.474
100 0.934 0.938 0.928 3.333 3.563 3.353 0.308 0.359 0.352
400 0.920 0.946 0.940 3.241 3.575 3.495 0.149 0.187 0.198
800 0.922 0.950 0.950 3.230 3.582 3.536 0.107 0.127 0.130

0.2 50 0.938 0.926 0.912 3.406 3.450 3.108 0.479 0.504 0.481
100 0.940 0.948 0.930 3.348 3.586 3.371 0.327 0.371 0.367
400 0.940 0.952 0.948 3.249 3.583 3.507 0.160 0.194 0.202
800 0.920 0.946 0.944 3.219 3.573 3.528 0.104 0.129 0.137

0.6 50 0.938 0.928 0.904 3.708 3.742 3.343 0.533 0.582 0.565
100 0.932 0.942 0.928 3.535 3.767 3.520 0.338 0.386 0.386
400 0.932 0.948 0.942 3.319 3.628 3.554 0.156 0.187 0.195
800 0.920 0.944 0.942 3.264 3.598 3.550 0.111 0.132 0.139

0.8 50 0.938 0.928 0.896 4.011 4.009 3.511 0.616 0.627 0.568
100 0.958 0.960 0.934 3.743 3.832 3.544 0.401 0.410 0.387
400 0.928 0.946 0.944 3.382 3.614 3.539 0.161 0.183 0.193
800 0.944 0.958 0.956 3.305 3.602 3.557 0.108 0.133 0.139
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Table 7: Two-step-ahead prediction intervals for AR(1) with kurtotic.

Coverage Frequency Mean Width SD Width

φ1 n Normal KDE EM Normal KDE EM Normal KDE EM

−0.8 50 0.902 0.958 0.928 3.448 4.461 3.901 0.433 0.696 0.660
100 0.890 0.954 0.934 3.345 4.464 4.102 0.284 0.450 0.451
400 0.846 0.938 0.932 3.233 4.389 4.240 0.154 0.256 0.270
800 0.886 0.956 0.952 3.224 4.379 4.279 0.108 0.178 0.190

−0.6 50 0.900 0.936 0.904 3.408 4.049 3.575 0.459 0.655 0.631
100 0.908 0.952 0.940 3.306 4.072 3.764 0.295 0.454 0.450
400 0.904 0.960 0.950 3.232 4.039 3.913 0.154 0.232 0.247
800 0.912 0.954 0.954 3.216 4.026 3.946 0.112 0.170 0.178

−0.2 50 0.940 0.948 0.926 3.410 3.606 3.233 0.454 0.516 0.482
100 0.936 0.952 0.940 3.300 3.610 3.373 0.306 0.363 0.358
400 0.924 0.946 0.942 3.239 3.645 3.557 0.155 0.193 0.197
800 0.898 0.922 0.922 3.216 3.634 3.584 0.110 0.140 0.148

0.2 50 0.920 0.926 0.902 3.442 3.566 3.201 0.482 0.537 0.516
100 0.924 0.936 0.926 3.302 3.615 3.394 0.312 0.359 0.357
400 0.932 0.952 0.950 3.242 3.647 3.564 0.146 0.191 0.202
800 0.904 0.934 0.932 3.219 3.626 3.575 0.105 0.139 0.146

0.6 50 0.888 0.914 0.876 3.436 3.887 3.414 0.482 0.636 0.587
100 0.920 0.946 0.928 3.325 4.001 3.698 0.296 0.423 0.417
400 0.912 0.964 0.962 3.238 4.021 3.895 0.157 0.235 0.248
800 0.900 0.958 0.954 3.217 4.019 3.936 0.103 0.157 0.166

0.8 50 0.848 0.906 0.864 3.426 4.196 3.680 0.456 0.701 0.658
100 0.858 0.924 0.912 3.319 4.316 3.973 0.321 0.530 0.521
400 0.866 0.934 0.930 3.230 4.363 4.212 0.149 0.262 0.279
800 0.874 0.940 0.934 3.215 4.353 4.248 0.100 0.179 0.192
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Table 8: One-step-ahead prediction intervals for AR(2) with kurtotic.

Coverage Frequency Mean Width SD Width

(φ1, φ2) n Normal KDE EM Normal KDE EM Normal KDE EM

(−0.8, −0.4) 50 0.938 0.924 0.888 3.504 3.438 3.071 0.476 0.483 0.462
100 0.932 0.946 0.932 3.332 3.514 3.292 0.334 0.382 0.371
400 0.920 0.952 0.946 3.231 3.553 3.478 0.149 0.185 0.198
800 0.948 0.964 0.960 3.225 3.575 3.530 0.102 0.132 0.138

(0.2, 0.1) 50 0.938 0.908 0.878 3.493 3.424 3.067 0.489 0.504 0.485
100 0.920 0.926 0.904 3.324 3.507 3.293 0.318 0.364 0.363
400 0.926 0.934 0.932 3.244 3.573 3.503 0.148 0.186 0.195
800 0.916 0.940 0.932 3.224 3.570 3.525 0.111 0.131 0.140

(0.8, −0.4) 50 0.944 0.932 0.910 3.460 3.386 3.024 0.494 0.509 0.481
100 0.938 0.946 0.936 3.359 3.552 3.338 0.340 0.380 0.373
400 0.934 0.952 0.946 3.245 3.570 3.493 0.161 0.194 0.203
800 0.918 0.940 0.938 3.217 3.567 3.522 0.105 0.130 0.136

(0.2, −0.1) 50 0.928 0.922 0.902 3.453 3.393 3.035 0.468 0.491 0.471
100 0.936 0.940 0.930 3.334 3.525 3.312 0.317 0.360 0.354
400 0.920 0.948 0.940 3.236 3.563 3.485 0.149 0.185 0.193
800 0.924 0.952 0.950 3.228 3.576 3.530 0.108 0.128 0.131

(0.1, −0.05) 50 0.944 0.916 0.892 3.485 3.414 3.055 0.503 0.510 0.495
100 0.928 0.942 0.932 3.343 3.534 3.316 0.321 0.363 0.356
400 0.940 0.946 0.948 3.228 3.566 3.496 0.154 0.183 0.193
800 0.940 0.962 0.958 3.229 3.580 3.531 0.104 0.131 0.134

(−0.1, 0.05) 50 0.934 0.920 0.874 3.474 3.409 3.056 0.517 0.500 0.474
100 0.958 0.960 0.950 3.361 3.550 3.329 0.333 0.372 0.366
400 0.932 0.962 0.960 3.244 3.579 3.506 0.152 0.181 0.190
800 0.928 0.954 0.952 3.223 3.564 3.520 0.105 0.128 0.137

(1.4, −0.56) 50 0.948 0.934 0.902 3.471 3.402 3.039 0.467 0.466 0.458
100 0.904 0.920 0.898 3.316 3.508 3.285 0.325 0.375 0.365
400 0.924 0.946 0.938 3.236 3.562 3.488 0.147 0.181 0.189
800 0.930 0.948 0.946 3.229 3.584 3.541 0.108 0.138 0.144
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Table 9: Two-step-ahead prediction intervals for AR(2) with kurtotic.

Coverage Frequency Mean Width SD Width

(φ1, φ2) n Normal KDE EM Normal KDE EM Normal KDE EM

(−0.8, −0.4) 50 0.844 0.924 0.892 3.477 4.915 4.268 0.462 0.980 0.885
100 0.786 0.920 0.900 3.339 4.874 4.467 0.325 0.730 0.69
400 0.782 0.914 0.906 3.232 4.679 4.502 0.149 0.361 0.371
800 0.790 0.924 0.914 3.216 4.654 4.539 0.101 0.252 0.259

(0.2, 0.1) 50 0.932 0.928 0.912 3.488 3.562 3.185 0.499 0.553 0.534
100 0.924 0.932 0.922 3.323 3.598 3.380 0.321 0.365 0.363
400 0.93 0.954 0.952 3.246 3.617 3.536 0.145 0.189 0.196
800 0.912 0.932 0.932 3.221 3.599 3.551 0.104 0.135 0.142

(0.8, −0.4) 50 0.874 0.964 0.938 3.470 5.298 4.618 0.473 1.024 0.947
100 0.900 0.982 0.964 3.321 5.371 4.933 0.309 0.711 0.689
400 0.872 0.990 0.986 3.245 5.433 5.241 0.155 0.370 0.377
800 0.864 0.980 0.974 3.219 5.389 5.263 0.110 0.272 0.284

(0.2, −0.1) 50 0.918 0.916 0.888 3.441 3.692 3.274 0.475 0.560 0.525
100 0.926 0.946 0.928 3.324 3.710 3.456 0.304 0.407 0.398
400 0.912 0.948 0.944 3.234 3.715 3.617 0.155 0.202 0.210
800 0.930 0.968 0.962 3.217 3.696 3.637 0.112 0.145 0.151

(0.1, −0.05) 50 0.954 0.950 0.930 3.463 3.612 3.223 0.461 0.539 0.516
100 0.924 0.942 0.922 3.352 3.643 3.411 0.292 0.369 0.364
400 0.920 0.944 0.942 3.235 3.611 3.531 0.155 0.200 0.210
800 0.932 0.960 0.958 3.226 3.616 3.568 0.108 0.135 0.143

(−0.1, 0.05) 50 0.932 0.946 0.916 3.418 3.547 3.160 0.490 0.521 0.500
100 0.930 0.946 0.934 3.320 3.620 3.384 0.306 0.38 0.369
400 0.928 0.952 0.944 3.248 3.633 3.556 0.151 0.194 0.200
800 0.922 0.948 0.946 3.219 3.611 3.563 0.109 0.141 0.149

(1.4, −0.56) 50 0.870 0.994 0.982 3.477 7.420 6.496 0.508 1.425 1.322
100 0.910 1.000 1.000 3.313 7.618 7.033 0.321 0.985 0.978
400 0.902 1.000 1.000 3.252 7.764 7.530 0.146 0.497 0.522
800 0.890 1.000 0.998 3.225 7.749 7.585 0.101 0.345 0.365
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