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Abstract 

The generalized exponentiated exponential Lindley distribution is a 

novel three parameter distribution due to Hussain et al. (2017). They 

studied its properties including estimation issues and illustrated 

applications to four datasets. Here, we show that several known 

distributions including those having two parameters can provide better 

fits. We also correct errors in the derivatives of the likelihood function. 
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1 Introduction 

Hussain et al. (2017) introduced a three parameter distribution given by the probability 

density function 

𝑓(𝑥) =
𝜃2

𝜃 + 𝛽
{𝛼[1 − exp(−𝜃𝑥)]𝛼−1 + 𝛽𝑥}exp(−𝜃𝑥) （1） 

for > 0  , 𝜃 >  0 , 𝛼 >  0  and 𝛽 ≥ −10−3 . It was referred to as the generalized 

exponentiated exponential Lindley distribution.Other recent generalizations of the Lindley 

distribution include the beta Lindley distribution (MirMostafaee et al., 2015), the log 

generalized Lindley-Weibull distribution (Oluyede et al., 2015) and an extended inverse 

Lindley distribution (Sharma and Khandelwal, 2017). 

Hussain et al. (2017) studied various properties of the GEEL distribution, including 

shape of density function, shape of hazard rate function, moments, conditional moments, L 

moments, mean deviations, information generating function, Shannon entropy (Shannon, 

1948), order statistics, and characterizations in terms of hazard rate function. Hussain et al. 

(2017) also wrote down the log-likelihood function, derived its derivatives, discussed 

inference issues and provided four real data applications. 

We would like to point out that the derivatives of the log-likelihood function do not 

appear correct.This incorrect log-likelihood function however does not appear to have 

affected the es- timates presented in Hussain et al.  (2017).It appears that Hussain et al.  

(2017) have coded  the log-likelihood function correctly (in spite of the given form for 

log-likelihood function being incorrect).In Section 2 of this note, we state the correct 

log-likelihood function and its derivatives. 

The three parameter GEEL distribution may provide excellent fits for many datasets. For 

datasets considered by Hussain et al. (2017), however, several known distributions including 

those having two parameters can provide better fits. This is illustrated in Section 3. A 

discussion is given in Section 4. 
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2 Maximum likelihood estimation 

Suppose x1, x2, … , xn is a random sample from (1). The log-likelihood function is 

log 𝐿(𝜃, 𝛼, 𝛽) = 2𝑛 log 𝜃 − 𝑛 log(𝜃 + 𝛽) + ∑ log{𝛼[1 − exp(−𝜃𝑥𝑖)]𝛼−1 + 𝛽𝑥𝑖} − 𝜃 ∑ 𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 （2） 

The first order partial derivatives of (2) with respect to 𝜃, 𝛼 and 𝛽 given in Hussain et 

al. (2017) do not appear correct. According to our calculations, 

∂ log L(θ,α,β)

∂θ
=

2n

θ
−

n

θ+β
+ α(α − 1) ∑

[1−exp(−θxi)]α−2xiexp(−θxi)

α[1−exp(−θxi)α−1+βxi]
n
i=1 − ∑ xi

n
i=1   

𝜕 log 𝐿(𝜃, 𝛼, 𝛽)

𝜕𝜃
= ∑

[1 − exp(−𝜃𝑥𝑖)]𝛼−1{1 + 𝛼 log[1 − exp(−𝜃𝑥𝑖)]}

𝛼[1 − exp(−𝜃𝑥𝑖)𝛼−1 + 𝛽𝑥𝑖]

𝑛

𝑖=1

 

and 

∂ log L(θ, α, β)

∂β
=

𝑛

𝜃 + 𝛽
+ ∑

𝑥𝑖

𝛼[1 − exp(−𝜃𝑥𝑖)]𝛼−1 + 𝛽𝑥𝑖

𝑛

𝑖=1

 

The second order partial derivatives of (2) given in Hussain et al. (2017) do not appear 

correct either. Furthermore, only three second order partial derivatives are given. According 

to our calculations, the six second order partial derivatives are 

𝜕2 log 𝐿(𝜃,𝛼,𝛽)

𝜕𝜃2 = −
2𝑛

𝜃2 +
𝑛

(𝜃+𝛽)2 + 𝛼(𝛼 − 1)(𝛼 − 2) ∑
[1−exp(−𝜃𝑥𝑖)]𝛼−3𝑥𝑖

2exp(−2𝜃𝑥𝑖)

𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖

𝑛
𝑖=1 −

𝛼(𝛼 − 1) ∑
[1−exp(−𝜃𝑥𝑖)]𝛼−2𝑥𝑖

2exp(−𝜃𝑥𝑖)

𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖
−𝑛

𝑖=1 𝛼2(𝛼 − 1)2 ∑
[1−exp(−𝜃𝑥𝑖)]2𝛼−4𝑥𝑖

2exp(−2𝜃𝑥𝑖)

{𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖}2
𝑛
𝑖=1   

𝜕2 log 𝐿(𝜃,𝛼,𝛽)

𝜕𝜃2
= −

2𝑛

𝜃2
+

𝑛

(𝜃+𝛽)2
+ 𝛼(𝛼 − 1)(𝛼 − 2) ∑

[1−exp(−𝜃𝑥𝑖)]𝛼−3𝑥𝑖
2exp(−2𝜃𝑥𝑖)

𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖

𝑛
𝑖=1 −

𝛼(𝛼 − 1) ∑
[1−exp(−𝜃𝑥𝑖)]𝛼−2𝑥𝑖

2exp(−𝜃𝑥𝑖)

𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖
−𝑛

𝑖=1 𝛼2(𝛼 − 1)2 ∑
[1−exp(−𝜃𝑥𝑖)]2𝛼−4𝑥𝑖

2exp(−2𝜃𝑥𝑖)

{𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖}2
𝑛
𝑖=1   

𝜕2 log 𝐿(𝜃,𝛼,𝛽)

𝜕𝜃𝜕𝛼
= ∑

[1−exp(−𝜃𝑥𝑖)]𝛼−2𝑥𝑖exp(−𝜃𝑥𝑖){2𝛼−1+𝛼(𝛼−1) log[1−exp(−𝜃𝑥𝑖)]}

𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖

𝑛
𝑖=1 − 𝛼(𝛼 −

1) ∑
[1−exp(−𝜃𝑥𝑖)]2𝛼−3𝑥𝑖exp(−𝜃𝑥𝑖){1+𝛼 log[1−exp(−𝜃𝑥𝑖)]}

{𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖}2
𝑛
𝑖=1  ,  

  



366      ON THE GENERALIZED EXPONENTIATED EXPONENTIAL LINDLEY DISTRIBUTION

 

𝜕2 log 𝐿(𝜃,𝛼,𝛽)

𝜕𝜃𝜕𝛽
=

𝑛

(𝜃+𝛽)2 − 𝛼(𝛼 − 1) ∑
[1−exp(−𝜃𝑥𝑖)]𝛼−2 log[exp(−𝜃𝑥𝑖)]{2+𝛼 log[exp(−𝜃𝑥𝑖)]}

{𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖}2
𝑛
𝑖=1  ,  

𝜕2 log 𝐿(𝜃,𝛼,𝛽)

𝜕𝛼2 = ∑
[1−exp(−𝜃𝑥𝑖)]𝛼−1𝑥𝑖

2exp(−𝜃𝑥𝑖)

{𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖}2
𝑛
𝑖=1 −

∑
[1−exp(−𝜃𝑥𝑖)]2𝛼−2{1+𝛼 log[1−exp(−𝜃𝑥𝑖)]}2

{𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖}2
𝑛
𝑖=1  ,  

𝜕2 log 𝐿(𝜃,𝛼,𝛽)

𝜕𝛼𝜕𝛽
= − ∑

[1−exp(−𝜃𝑥𝑖)]𝛼−1{1+𝛼 log[1−exp(−𝜃𝑥𝑖)]}

{𝛼[1−exp(−𝜃𝑥𝑖)]𝛼−1+𝛽𝑥𝑖}2
𝑛
𝑖=1   

and 

𝜕2 log 𝐿(𝜃, 𝛼, 𝛽)

𝜕𝛽2
=

𝑛

(𝜃 + 𝛽)2
− ∑

𝑥𝑖
2

{𝛼[1 − exp(−𝜃𝑥𝑖)]𝛼−1 + 𝛽𝑥𝑖}2

𝑛

𝑖=1

 

These second order derivatives can be used for confidence intervals and tests of 

hypotheses. 

 

3 Data analysis 

Here, we compare the fit of the three parameter GEEL distribution (Hussain et al., 2017) 

to known distributions including those having two parameters. We show evidence that 

known distributions provide better fits. This is not a criticism of Hussain et al.’s novel 

contribution. The GEEL distribution of Hussain et al. (2017) may give adequate fits to many 

datasets. 

We consider fitting the following seven distributions to the four datasets in Hussain et 

al.(2017): 

1. the gamma distribution (Jambunathan, 1954) with pdf 

𝑓(𝑥) =
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1exp(−𝛽𝑥) 

for > 0 , 𝛼 > 0 , 𝛽 > 0 ,where 

Γ(𝛼) = ∫ 𝑡𝛼−1exp
∞

0

(−𝑡)𝑑𝑡 
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denotes the gamma function; 

2. the Weibull distribution (Weibull, 1951) with pdf 

𝑓(𝑥) =
𝛼

𝛽
(

𝑥

𝛽
)

𝛼−1

 exp[−(𝑥/𝛽)𝛼] 

for > 0 , 𝛼 > 0 , 𝛽 > 0; 

3. the exponentiated exponential distribution (Gupta and Kundu, 1999) with pdf 

𝑓(𝑥) = 𝛼𝛽[1 − exp(−𝛽𝑥)]𝛼−1 exp(−𝛽𝑥) 

for > 0 , 𝛼 > 0 , 𝛽 > 0; 

4. the Gompertz distribution (Gompertz, 1825) with pdf 

𝑓(𝑥) = 𝛼𝛽exp(𝛼 + 𝛽𝑥) exp[−𝛼 exp(𝛽𝑥)] 

for > 0 , 𝛼 > 0 , 𝛽 > 0; 

5. the generalized gamma distribution (Stacy, 1962) with pdf 

𝑓(𝑥) =
𝜃/𝛼𝛽

Γ(𝛽/𝜃)
𝑥𝛽−1exp[−(𝑥/𝛼)𝜃] 

for > 0 , 𝛼 > 0 , 𝛽 > 0 and 𝜃 > 0; 

6. the generalized Gompertz distribution (El-Gohary et al., 2013) with pdf 

𝑓(𝑥) = 𝛽𝛼 exp(𝜃𝑥)exp {−
𝛼

𝜃
[exp(𝜃𝑥) − 1]} [1 − exp {−

𝛼

𝜃
[exp(𝜃𝑥) − 1]}]

𝛽−1

 

for > 0 , 𝛼 > 0 , 𝛽 > 0 and 𝜃 > 0; 

7. the gamma Gompertz distribution (Manton et al., 1986) with pdf 

𝑓(𝑥) =
𝛼𝛽𝜃

[𝜃 − 1 + exp(𝛼𝑥)]𝛽+1
 

for > 0 , 𝛼 > 0 , 𝛽 > 0 and 𝜃 > 0. 
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Each distribution was fitted by the method of maximum likelihood. Tables 1, 4, 7 and 10 

show the log-likelihood value, value of Akaike Information Criterion (AIC) due to Akaike 

(1974) and value of Bayesian Information Criterion (BIC) due to Schwarz (1978) for the 

fitted distributions. n denotes the sample size of the datasets and k the number of estimated 

parameters. Tables 3, 6, 9 and 12 give the parameter estimates and standard errors. Tables 2, 

5, 8 and 11 perform goodness of fit tests based on Kolmogorov Smirnov, Anderson Darling 

and Cramer von Mises tests. Figures 1, 2 and 3 show the density plot, quantile-quantile plot 

and probability-probability plot of the GEEL distribution as well as three distributions 

(generalized Gompertz, exponentiated exponential and gamma Gompertz distributions) that 

fitted best for all four datasets. 

  

  

Figure 1: Density plots; Left to right, top to bottom, datasets 1 to 4 
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Figure 2: Quantile - Quantile plots; Left to right, top to bottom, datasets 1 to 4. 

 

  



370      ON THE GENERALIZED EXPONENTIATED EXPONENTIAL LINDLEY DISTRIBUTION

 

  

  

Figure 3: Probability - Probability plots; Left to right, top to bottom, datasets 1 to 4 
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Table 1 Information criteria for dataset 1. 

Distribution 𝑛 𝑘 Log-likelihood AIC BIC 

GEEL 47 3 -293.05 592.11 591.13 

Gamma 47 2 -293.07 590.13 589.48 

Weibull 47 2 -293.15 590.29 589.64 

Exponentiated exponential 47 2 -293.06 590.11 589.46 

Gompertz 47 2 -293.29 590.59 589.93 

Generalized gamma 47 3 -292.97 591.93 590.95 

Generalized Gompertz 47 3 -293.06 592.11 591.13 

Gamma Gompertz 47 3 -291.99 589.98 588.99 

 

Table 2 Goodness of fit tests for dataset 1. 

Dataset 1 k KS p-value AD p-value CVM p-value 

GEEL 3 0.069 0.969 0.246 0.972 0.036 0.953 

Gamma 2 0.076 0.927 0.345 0.900 0.055 0.850 

Weibull 2 0.062 0.988 0.230 0.980 0.033 0.967 

Exponentiated exponential 2 0.068 0.970 0.243 0.974 0.036 0.955 

Gompertz 2 0.067 0.973 0.302 0.936 0.044 0.915 

Generalized gamma 3 0.079 0.909 0.252 0.969 0.038 0.943 

Generalized Gompertz 3 0.068 0.970 0.243 0.974 0.036 0.954 

Gamma Gompertz 3 0.093 0.773 0.402 0.846 0.057 0.836 
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Table 3:Parameter estimates and standard errors in parentheses for dataset 1. 

Distribution α̂ β̂ θ̂ 

Gamma 
1.1940 0.0060 - 

(0.22) (0.00137) - 

Weibull 
1.0900 195.700 - 

(0.0395) (1.47) - 

Exponentiated exponential 
1.1860 0.0059 - 

(0.234) (0.00108) - 

Gompertz 
11.4380 0.0004 - 

(4.66) (0.000152) - 

Generalized gamma 
72.5150 1.4220 0.7490 

(165) (0.709) (0.491) 

Generalized Gompertz 
0.0059 1.1863 0.0000 

(0.00205) (0.307) (0.00109) 

Gamma Gompertz 
0.80808 0.006 0.2686 

(0.000413) (0.000995) (0.477) 

 

Table 4:Information criteria for dataset 2. 

Distribution 𝑛 𝑘 Log-likelihood AIC BIC 

GEEL 50 3 -168.03 342.06 341.16 

Gamma 50 2 -168.37 340.74 340.14 

Weibull 50 2 -170.16 344.33 343.72 

Exponentiated exponential 50 2 -167.99 339.99 339.38 

Gompertz 50 2 -175.13 354.25 353.65 

Generalized gamma 50 3 -167.98 341.96 341.06 

Generalized Gompertz 50 3 -167.99 341.99 341.08 

Gamma Gompertz 50 3 -167.38 340.76 339.85 
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Table 5:Goodness of fit tests for dataset 2. 

Dataset 2 k KS p-value AD p-value CVM p-value 

GEEL 3 0.085 0.836 0.411 0.837 0.056 0.841 

Gamma 2 0.094 0.728 0.527 0.719 0.084 0.669 

Weibull 2 0.118 0.458 0.825 0.463 0.135 0.438 

Exponentiated exponential 2 0.085 0.830 0.415 0.833 0.061 0.810 

Gompertz 2 0.182 0.063 1.644 0.146 0.253 0.184 

Generalized gamma 3 0.089 0.787 0.426 0.822 0.068 0.765 

Generalized Gompertz 3 0.087 0.812 0.419 0.829 0.063 0.798 

Gamma Gompertz 3 0.075 0.918 0.293 0.943 0.041 0.930 

 

Table 6:Parameter estimates and standard errors in parentheses for dataset 2. 

Distribution α̂ β̂ θ̂ 

Gamma 
3.9250 0.2580 - 

(0.754) (0.0529) - 

Weibull 
2.0490 17.2690 - 

(0.0395) (1.47) - 

Exponentiated exponential 
5.2650 0.1540 - 

(1.39) (0.0209) - 

Gompertz 
0.3592 0.074 - 

(0.0509) (0.00104) - 

Generalized gamma 
0.0720 7.3880 0.5060 

(NaN) (0.897) (NaN) 

Generalized Gompertz 
0.1535 5.2648 0.0000 

(0.0593) (2.54) (0.0217) 

Gamma Gompertz 
0.8297 0.1433 354.1567 

(0.324) (0.0661) (699) 
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Table 7 Information criteria for dataset 3. 

Distribution 𝑛 𝑘 Log-likelihood AIC BIC 

GEEL 72 3 -251.01 508.02 507.59 

Gamma 72 2 -251.34 506.69 506.40 

Weibull 72 2 -251.50 507.00 506.71 

Exponentiated exponential 72 2 -251.29 506.59 506.30 

Gompertz 72 2 -252.13 508.26 507.97 

Generalized gamma 72 3 -251.07 508.13 507.70 

Generalized Gompertz 72 3 -250.85 507.70 507.27 

Gamma Gompertz 72 3 -250.23 506.46 506.03 

 

Table 8 Goodness of fit tests for dataset 3. 

Dataset 2 k KS p-value AD p-value CVM p-value 

GEEL 3 0.103 0.433 0.652 0.600 0.109 0.542 

Gamma 2 0.102 0.446 0.770 0.503 0.135 0.438 

Weibull 2 0.105 0.404 0.844 0.450 0.149 0.394 

Exponentiated exponential 2 0.102 0.447 0.744 0.523 0.130 0.458 

Gompertz 2 0.141 0.115 1.473 0.183 0.234 0.210 

Generalized gamma 3 0.108 0.371 0.647 0.604 0.106 0.559 

Generalized Gompertz 3 0.105 0.406 0.623 0.626 0.103 0.573 

Gamma Gompertz 3 0.079 0.765 0.550 0.696 0.094 0.615 
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Table 9: Parameter estimates and standard errors in parentheses for dataset 3. 

Distribution α̂ β̂ θ̂ 

Gamma 
0.8380 0.2580 - 

(0.121) (0.0529) - 

Weibull 
0.9010 17.2690 - 

(0.0855) (1.47) - 

Exponentiated exponential 
0.8280 0.1540 - 

(0.123) (0.0209) - 

Gompertz 
117.7995 0.0007 - 

(NaN) (NaN) - 

Generalized gamma 
24.3830 0.7110 1.4920 

(11.4) (0.156) (0.727) 

Generalized Gompertz 
0.0575 0.7503 0.0125 

(0.0177) (0.137) (0.013) 

Gamma Gompertz 
0.3620 0.1966 0.4337 

(0.241) (0.121) (0.194) 

 

Table 10: Information criteria for dataset 4 

Distribution 𝑛 𝑘 Log-likelihood AIC BIC 

GEEL 37 3 -105.48 216.95 215.66 

Gamma 37 2 -125.06 254.11 253.25 

Weibull 37 2 -114.20 232.40 231.54 

Exponentiated exponential 37 2 -127.80 259.60 258.74 

Gompertz 37 2 -104.38 212.76 211.89 

Generalized gamma 37 3 -108.72 223.44 222.14 

Generalized Gompertz 37 3 -103.78 213.56 212.27 

Gamma Gompertz 37 3 -104.39 214.77 213.48 
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Table 11: Goodness of fit tests for dataset 4. 

Dataset 2 k KS p-value AD p-value CVM p-value 

GEEL 3 0.075 0.986 0.263 0.963 0.027 0.987 

Gamma 2 0.272 0.008 4.141 0.008 0.748 0.009 

Weibull 2 0.182 0.171 1.658 0.143 0.246 0.193 

Exponentiated exponential 2 0.289 0.004 4.783 0.004 0.887 0.004 

Gompertz 2 0.086 0.948 0.411 0.837 0.052 0.864 

Generalized gamma 3 0.176 0.201 1.293 0.234 0.219 0.233 

Generalized Gompertz 3 0.103 0.829 0.461 0.786 0.069 0.758 

Gamma Gompertz 3 0.086 0.948 0.408 0.839 0.052 0.868 

 

Table 12: Parameter estimates and standard errors in parentheses for dataset 4. 

Distribution α̂ β̂ θ̂ 

Gamma 
4.2410 0.2670 - 

(0.95) (0.0635) - 

Weibull 
3.6640 17.2250 - 

(0.518) (0.792) - 

Exponentiated exponential 
3.8030 0.1230 - 

(0.941) (0.0175) - 

Gompertz 
0.0066 0.2810 - 

(0.00507) (0.0385) - 

Generalized gamma 
22.1270 2.3290 14.8010 

(0.972) (0.453) (8.7) 

Generalized Gompertz 
0.0003 0.6167 0.3737 

(NaN) (0.0432) (NaN) 

Gamma Gompertz 
0.2826 102.1808 15824.0980 

(0.0428) (1000) (152000) 

  



Hok Shing Kwong , Saralees Nadarajah                         377

 

For dataset 1, we see that all of the fitted distributions (including the two parameter 

gamma, Weibull and exponentiated exponential distributions) fit better than the GEEL 

distribution in terms of AIC and BIC. The best fitted distribution in terms of AIC and BIC is 

the gamma Gompertz distribution, AIC and BIC are 589.98 and 588.99, respectively. The 

best fitted distribution in terms of goodness of fit tests is the Weibull distribution. 

For dataset 2, gamma, exponentiated exponential, generalized Gompertz, generalized 

gamma and gamma Gompertz distributions fit better than the GEEL distribution in terms of 

AIC and BIC. The best fitted distribution in terms of AIC and BIC is the exponentiated 

exponential distribution, AIC and BIC are 339.99 and 339.38, respectively. The second best 

fitted distribution in terms of AIC and BIC is the gamma Gompertz distribution. The gamma 

Gompertz distribution appearsto give a slightly better fit than the GEEL, exponentiated 

exponential and generalized Gompertz distributions in terms of density, Q-Q and P-P plots. 

The best fitted distribution in terms of goodness of fit tests is also the gamma Gompertz 

distribution. 

For dataset 3, all fitted distributions except for the Gompertz and generalized gamma 

distributions fit better than the GEEL distribution in terms of AIC and BIC. The best fitted 

distribution in terms of AIC and BIC is the gamma Gompertz distribution. The best fitted 

distribution in terms of goodness of fit tests is also the gamma Gompertz distribution. 

For dataset 4, Gompertz, generalized Gompertz and gamma Gompertz distributions fit 

better than the GEEL distribution. Most of the other fitted distributions have much higher 

AIC and BIC than the GEEL distribution. They should be considered unsuitable for this 

dataset. We can see from the density plot that, even though the GEEL, generalized Gompertz 

and gamma Gompertz distributions give similar fits in terms of AIC and BIC, their shapes 

are quite different. The GEEL pdf has a bimodal shape, the gamma Gompertz pdf has a 

unimodal shape with negative skewness and the generalized Gompertz pdf has negative 

skewness and approaches infinity near zero. We also see that both the generalized Gompertz 

and gamma Gompertz distributions fit considerably better than the GEEL distribution, see 

the P-P and Q-Q plots. The GEEL distribution provides the best p-values of the goodness of 

fit tests, but this is due to the bimodal shape. We shall show later that the bimodal shape is 

unrealistic. 

Both the gamma Gompertz and generalized Gompertz distributions perform better than 

the GEEL distribution in all four datasets and the gamma Gompertz distribution performs 

slightly better than the generalized Gompertz distribution in terms of density, Q-Q and P-P 

plots. For the first three datasets, apart from the differences in AIC and BIC, the best fitted 
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distributions give similar shapes and they should all be considered as suitable for these 

datasets. For the fourth dataset, the shapes of the pdfs of the top three best fitted distributions 

are quite different. We are skeptical of the bimodality of the fitted GEEL distribution, as the 

dataset describe the annual lowest seven-day average flows at a gauging station. We also 

consider the behavior of the generalized Gompertz pdf near zero unsuitable. The most 

natural looking pdf exhibiting a unimodal shape with negative skewness is given by the 

gamma Gompertz distribution. The gamma Gompertz distribution also provides the second 

best p-values of the goodness of fit tests. The Gompertz distribution (the limiting case of the 

gamma Gompertz distribution for 𝜃 → ∞) could also be considered most natural as it has 

smaller AIC and BIC values. But its p-values are slightly smaller. 

Hussain et al. (2017) appear to have proposed a “one-for-all” distribution to describe 

many kinds (maximum, average, minimum type) of hydrological data. We question this 

approach. We have shown, with empirical evidence, that some existing distributions (for 

example, the gamma Gompertz distribution and the generalized Gompertz distribution) are 

more suitable for the datasets. The generalized Gompertz distribution is a flexible 

distribution. It contains the Gompertz distribution as a particular case for 𝛽 = 1 . It 

accommodates both maximum stability and minimum stability, properties desirable to model 

datasets consisting of maximum order statistics and minimum order statistics. We believe 

that it can be a more suitable distribution than the GEEL distribution for many kinds of 

hydrological datasets. 

4 Discussion 

There is no doubt that the GEEL distribution is a very flexible distribution, which can 

attain desirable shapes in many situations. However, the GEEL distribution is a mixture of 

exponentiated exponential and gamma distributions. Similar fits can be achieved by many 

other mixture distributions. The GEEL distribution is highly prone to overfit datasets when 

the sample size is small. Taking dataset 4 as an example, we can see from Figure 1 that the 

bimodality of the data is very insignificant since the sample size is only 37. Therefore, the 

GEEL distribution should be considered as overfitting this dataset. 

There are various tests in the literature to test for unimodality. We performed the 

following tests for unimodality for each of the four datasets: Silverman (1981)’s test, Hall 

and York (2001)’s test, Hartigan and Hartigan (1985)’s test, Cheng and Hall (1998)’s test 

and Ameijeiras-Alonso et al. (2016)’s test. The p-values are given in Table 13. All of the 

p-values are well above 0.05. Hence, there is no evidence that any of the four datasets are 

multimodal. Hence, fitting a distribution to these datasets that accommodates bimodality is 
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inappropriate. 

Table 13: p-values of the tests for unimodality. 

Test Dataset 1 Dataset 2 Dataset 3 Dataset 4 

SI 0.264 0.936 0.196 0.290 

HY 0.184 0.830 0.118 0.164 

HH 0.868 0.486 0.920 0.640 

CH 0.556 0.100 0.540 0.268 

NP 0.504 0.098 0.594 0.308 

In statistical modelling of extreme values, it is often the case that there exists a small 

cluster of outliers. Sometimes likelihood can be improved a lot by adding another 

distribution to model that cluster of outliers, but will the fitted distribution be always 

reasonable? We fitted a mixture of two Weibull distributions, a mixture of two gamma 

distributions and a mixture of two exponentiated exponential distributions to all four datasets. 

Many of these distributions fitted better than all other fitted distributions for all four datasets 

in terms of likelihood, AIC and BIC. But their fits did not appear reasonable. 

We believe that unimodality or bimodality of a dataset should not be solely determined 

in terms of likelihood based values. Unimodality or bimodality should be determined based 

more on the physical mechanism underlying the data. We do not want the GEEL distribution 

giving a bimodal fit to a dataset which is truly unimodal. A better practice is to choose 

mixture models on a case by case basis. 
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