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Abstract

Recently, the log cumulative probability model (LCPM) and its special case the proportional
probability model (PPM) was developed to relate ordinal outcomes to predictor variables using
the log link instead of the logit link. These models permit the estimation of probability instead
of odds, but the log link requires constrained maximum likelihood estimation (cMLE). An al-
gorithm that efficiently handles cMLE for the LCPM is a valuable resource as these models are
applicable in many settings and its output is easy to interpret. One such implementation is in
the R package lcpm. In this era of big data, all statistical models are under pressure to meet
the new processing demands. This work aimed to improve the algorithm in R package lcpm to
process more input in less time using less memory.

Keywords constrained maximum likelihood estimation; log link; ordinal outcomes;
proportional probability model

1 Introduction
Considerable work and research has been done for models involving ordinal outcomes. McCullagh
studied Generalized Linear Models with the logit link which estimates odds McCullagh (1980).
An alternative approach is models that estimate probabilities for an ordinal outcome rather
than odds. These models use log links versus logit links to permit easier interpretation of results.
However, such models introduce a challenge not seen with the logit link models. The log link
models have constraints on the parameter space that must be satisfied by the objective function’s
maximum likelihood estimate (MLE).

Blizzard et al. (2013) introduced the proportional probability model (PPM):

log[P(y ⩽ j |xk)] = αj +
p∑

k=1

xkβk,

which used the log link instead of the logit link to relate ordinal outcomes (y with j > 2
categories) to predictor variables (xk). The PPM assumes that the βk do not change for each
category j with the cumulative probability constraint satisfied by αj ⩽ αj+1 and the probability
constraint satisfied by link constraint log[P(y ⩽ j |xk)] ⩽ 0. Blizzard et al. also provided SAS
code for maximum likelihood estimation (MLE) subject to these constraints induced by the
log link and cumulative probability. Williams (2010) produced a solution using Stata and Yee
(2024) created a solution in the R VGAM package. However, both the Williams and Yee solutions
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did not implement the MLE constraint requirement, leaving the burden of the constraint on
the users of these packages. Singh and Fick (2020a,b) introduced the function ppm in the lcpm
package in R which uses the function constrOptim for constrained MLE of the PPM. The use
of constrOptim naturally followed from its extensive use in the log-binomial regression model
which had similar constraints in the use of a log link to relate predictors to binary outcomes
Luo et al. (2014). Andrade eventually developed this approach into an R package called lbreg
Andrade (2019).

In analyzing a diabetic dataset Clore et al. (2014) that had 100,000+ records and 16 (of
47) selected predictors of outcome length of hospitalization (converted to ordinal scale of no
stay, short and long term), package lcpm took time to provide constrained MLEs. Using a
complete case approach to handle missing data, it was noted that as predictors (with varying %
of missingness) changed in the model so did the number of records and runtime of lcpm. Similar
issues arose with other larger datasets. This started the inquiry into the elements of the package
that were leading to increased use of time and memory. Initial thoughts focused on data-specific
elements such as the number of predictors, sample size of dataset, and percentage of missing
data. Eventually, it grew to profile the R code in lcpm to address code bottlenecks.

Several researchers have identified that providing additional data to fit a model will improve
the accuracy of the results more than using a different algorithm. In trying to predict the
classification of a bank customer’s complaint using data from the Consumer Financial Protection
Bureau, Schnoebelen found that the increase in accuracy was greater when increasing training
data rather than changing the features or algorithm Schnoebelen (2016). When changing the
features and algorithm, the greatest mean accuracy increase was 0.02%, but by increasing the
training data size the mean accuracy increase was 1.87%. Two other research teams took a
broader approach Halevy et al. (2009); Rajaraman (2008). Both papers describe cases where
algorithm performance improved by adding additional features. Of course, in the latter case, the
quality of the data is important to prevent the curse of dimensionality issues.

The issues with the large diabetes dataset and the work that described the benefits of
processing with larger training data raise the importance of an algorithm’s ability to handle
large amounts of data efficiently. This work aimed to explore ways to improve Singh and Fick’s
algorithm to process more data in less time and with less memory.

2 Methods
To improve the ppm function in package lcpm, we: a) used profiling to identify high response
time and memory-consuming code blocks; b) developed alternative code; c) tested alternative
code; d) confirmed that the changes produced similar quality and accuracy of MLE.

2.1 Profile Code and Alternative Approaches

The ppm function has three main tasks: a) preparing the problem data for the optimizer (mar-
shaling), b) optimizing, and c) the objective function used by the optimizer (Figure 1).

The Rprof package was used to identify runtime and memory usage for each code block
in ppm. The initial profiling was completed by assessing the performance of ppm on simulated
datasets with 16 predictors (p) and five different sample sizes (n): 5,000; 50,000; 500,000; 1
million; and 1.5 million. Details of the simulation are discussed in Section 2.3 for p > 2. These
tests were performed in both a Linux and Windows environment. Hardware details of each
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Figure 1: Flow of control.

Figure 2: Original code (Test Case A) runtime comparisons.

environment are available in Section 2.4. Profile results can be found in Figure 2. The y-axis
represents seconds, while the bar labels represent minutes.

The tests demonstrated that runtimes increased significantly as the sample size increased.
On a Windows laptop, it took ≈ 4.5 hours to fit a model for a sample size of 1.5 million. The
longer runtimes of the profiling in a Windows environment made us realize that the remainder
of our experiment needed to be run on an AWS Linux cluster Amazon (2025), which would
allow us to run multiple tests in parallel. All future performance comparisons were produced on
the AWS environment. By examining the AWS profile data, we identified three bottlenecks: a
marshaling bottleneck, an objective function bottleneck, and an optimizer bottleneck.

2.1.1 Marshaling Bottleneck

The R package lcpm receives two inputs: a dataframe with predictors and responses; and the
log likelihood function. The internal optimizer must obtain this data as a summary matrix (see
Appendix A and B). Marshaling begins this reformatting by generating a main summary matrix
that provides counts for each combination of predictor values and responses. Profiling showed
that for the smaller sample sizes (< 50,000), the marshaling code took the most time and used
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the most memory. The original code used the model.frame and model.matrix functions in the
stats package to split the dataframe parameter into a vector of responses and a matrix of
predictor rows. Finally, count in the plyr package was used to generate the summary matrix.
As an alternative, labeled as Test Case B, we used model.frame to generate one data structure
with both predictors and responses. A group by summary from the dplyr library was used to
generate the summary matrix. Initial testing showed that the new marshaling code for sample
sizes of 50k with 16 predictors decreased marshaling runtime by 13%. Both the original and the
alternative code are available in Appendix A.

2.1.2 Objective Function Bottleneck

For larger sample sizes (> 50,000), the optimizer and objective function code took the most time
and memory. For our profile test of 10 minutes, the optimizer and objective function consumed
99% of the runtime. The objective function receives a series of matrices containing the data and
generates a loss value that the internal optimizer uses to evaluate a series of coefficients. The
original objective function was coded in R. Many applications have improved performance by
converting problem code from R to C++. The R package RcppArmadillo provides functions
that simplify what is required to interface C++ code with an R application.

To improve the performance of the objective function, the code was converted to C++ code.
Using the RcppArmadillo package, we built two approaches: a) the C++ compile happens either
at runtime (Case C) and b) by calling a package that contained pre-compiled C++ code (Case
D). The latter approach was included to measure the benefit of precompiling the C++ code
and eliminating the compile overhead at runtime. Both the original and alternative code are
available in Appendix B.

2.1.3 Optimizer Bottleneck

Schwendinger et al. (2021) explored several approaches to constraint optimization for the log-
binomial regression model including: Augmented Lagrangian, conic optimization, and others.
These methods manage the range of probability constraint to guarantee that the sum of the
coefficients does not exceed 1. In this manuscript we focus on constrOptim and auglag which are
two easily implemented libraries that can be used for optimization problems with constraints, but
they have different approaches and functionalities. Function constrOptim applies a logarithmic
barrier to enforce the constraints and then optim is called Lange (1994). Function auglag,
in the alabama package Varadhan (2023), applies the Augmented Lagrangian method, which
adds additional terms to the unconstrained objective function, designed to emulate a Lagrange
multiplier. Both optimizers handle linear inequality constraints, while auglag can additionally
handle nonlinear constraints. Both functions minimize a provided objective function. The original
lcpm package code incorporated constrOptim using Nelder-Mead optimization method.

Since our problem contains linear constraints, each algorithm solves the same optimization
problem. In essence, our testing measured each algorithm’s runtime performance. To measure
the differences in runtime for the same data, we added a call to auglag after the original
constrOptim call. Performance and runtime data were captured for both optimizers.

2.2 Test Approach

Table 1 summarizes all test cases and which code changes were applied to each.
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Table 1: Test cases and applied changes.

Test Case Changes

A Original Code
B Marshaling Changes
C Marshaling Changes and C++ Objective Function Compiled at Runtime
D Marshaling Changes and C++ Objective Function Pre-Compiled

Each of the four test cases (A (original ppm), B, C, and D) represent current code or
an alternative approach to the marshaling and objective function code. It was important to
determine how these code changes interacted with the two internal optimizers. For that reason,
both the constrOptim and the auglag optimizer were executed for all test cases.

It was also critical to determine how these changes performed under different conditions,
including the number of predictors, sample size, and number of times the test was run (i.e.
iterations). Test cases were executed using between 2 and 16 predictors, a sample size between
5,000 and 1.5 million, with the tests repeated between 3 and 1000 times.

2.3 Simulation

To assess the impact of bottlenecks and the suggested improvements in code, datasets were
simulated from methods discussed in Schwendinger et al. (2021). The following two scenarios
for p = 2 and p > 2 predictors were used to generate simulated data extending these results for
three ordinal outcomes:

log[P(y ⩽ j |xk)] = αj +
p∑

k=1

xkβk.

• For p = 2, we used:
Parameters α1 = −0.20, α2 = −0.10, β1 = −1, β2 = −0.5.

x1 ∼ bin[0.5], x2 ∼ Unif [1, 5].
• For p > 2, we used:

first half βk = −0.1, and the remaining half are βk = 0.1, α1 = −1 − p/2, α2 = −p/2 and
independent xk ∼ bin[0.5].

Each test case was executed with multiple numbers of predictors (p for 2 to 16) and different
sample sizes (n = 5,000; 50,000; 500,000; 1 million; 1.5 million). Timings were captured after
each call to marshal code and for each optimization call. Each iteration of a test case generated
new data. The greater the iterations requested, the greater the variety of sample datasets the test
case was tested against. The results that follow are based on running the simulation scenario
to generate N datasets which are assessed for bias, RMSE, absolute log-likelihood difference,
convergence, and boundary issues. The following measurements and formulas were used for that
assessment.
• Simulation average runtime (RT).
• Non-convergence (NCR): relative number of times the solver signaled non-convergence or

other issue. This typically occurs when the underlying optimizer exceeds the maximum num-
ber of iterations of 100,000 without attaining the convergence tolerance specified (10−12).



404 DePratti, R. and Singh, G.

• Absolute log-likelihood difference (ALLD): average absolute difference between the log-
likelihood obtained by the solver and the highest log-likelihood obtained by all solvers l(β̂∗).
Values closer to zero imply that a solver is better at attaining a higher maximum likelihood
and a better estimate.

ALLD = 1

N

N∑
k=1

|l(β̂k) − l(β̂∗)|.

• Bias (BIAS) relative bias in percent determined by the following where a BIAS close to zero
is an indicator of a better estimation method:

BIAS = 100

N

N∑
k=1

(β̂k − βk)

(βk)
.

• Root mean square error (RMSE): is an assessment of variation in estimation determined by
the following, where small RMSE is desired:

RMSE =
√√√√ 1

N

N∑
k=1

(β̂k − βk)2.

• Percent of N with MLE on boundary: either MLE in

Ω0 = {(α̂, β̂)|exp(α̂j + x ′
i β̂) ⩽ 0.00001} or Ω1 = {(α̂, β̂)|exp(α̂j + x ′

i β̂) ⩾ 0.99999}.
The boundaries for the LCPM and PPM models are a special consideration and are consid-

ered when the MLEs produce fitted probability estimates of 0 or 1. In a numerical optimization
scenario, these are assessed using the above Ω0 and Ω1 criteria. This metric will also be used
to assess consistency across optimizers in finding boundary MLE. At present, no clear data
structures are identified that induce MLE on a boundary. However, Singh and Fick (2020a) note
several examples in which separability is not necessary.

2.4 Computational Resources
We found the initial profiling using an HP laptop was insufficient for larger simulated scenarios.
As such, we moved the majority of the testing to AWS Amazon (2025). Additional details of the
hardware and simulation scenarios can be found in Tables 2 and 3, respectively.

R (R Core Team, 2021) version 4.3.1 was used both in the HP environment and AWS. The
AWS platform was an AWS ParallelCluster through Amazon’s Cloud Formation Service. No test
iteration were run in parallel, but rather individual tests were sent to different nodes to speed
up a test cycle. The results of these simulations are presented in the following section.

Table 2: Hardware configurations.

Environment Make/Model CPUs Nodes Specs Memory OS

HP Laptop HP Envy 1 1 12th Gen i7-1260P 16GB Win 11
AWS Amazon 16 1 master m6i.4xlarge 64GB Centos 6.2

Amazon 8 4 slaves m6i.2xlarge 32GB Centos 6.2
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Table 3: Simulation scenario environment.
Scenario Fig Test Cases Sample Size p N Optimizers Env

Profiling
Current
State

2 A 5k, 50k,
500k,
1M, 1.5M

16 3 constrOptim HP
AWS

Test 3 A, B, C, D 5k, 50k,
500k,
1M, 1.5M

16 3 constrOptim
auglag

AWS

Marshaling 6 A, B, C, D 5k, 50k,
500k,
1M, 1.5M

16 1000 constrOptim
auglag

AWS

Iterations
Test

4 A, B, C, D 100, 500, 5k 16 1000 constrOptim AWS

Multiple
predictors

5 A, B, C, D 100, 500, 5k 6, 10,
16

3 constrOptim AWS

Optimizer
Comparison

7 A, B 5k, 50k,
500k.
1M. 1.5M

2, 16,
50

1000,
154, 96

constrOptim
auglag

AWS

3 Results
In this section, we present results that encompass several scenarios discussed in the Methods
section. The first scenario was a profile test looking for a general trend in runtimes across the
various test cases. It used 16 predictors, many sample sizes, and 3 iterations of each test. The
scenarios that follow the first scenario adjust predictors and iterations to determine the changes
on the runtime results of the test cases. The impact of individual code changes is then examined
in more detail.

Finally, we compare the performance metrics for both optimizers to guarantee that the
auglag optimizer did not impact the quality of the results.

3.1 High-Level Findings
Figure 3, below, encapsulates the overall findings using p = 16 predictors across multiple sample
sizes (n). Due to the broad differences in response across the different components, the y-axis
scale was adjusted on each chart to allow them to appear together. The chart shows the timing
in each section of the lcpm problem across all test cases. Each test was executed (i.e., iterations)
3 times. The reported runtimes in the plots are the average of those 3 iterations.

Looking at the shape of each diagram, we see significant trends. The left panel displays
marshaling changes (in cases B, C, and D). It shows that marshaling time decreased across all
cases it was applied to. This demonstrates that the alternate coding improved the inefficiencies
of the original method and that the increases in sample size did not increase the marshaling
runtime greatly.

The middle and right panels of Figure 3 compare objective functions, but we also note
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Figure 3: General findings for 16 predictors and 3 iterations.

that the changes (test cases C and D) did not improve runtime performance for either. Both
use cases increased timings for all sample sizes, adding significant time for larger sample sizes.
We suspect that this is because Rcpp must convert the objective function’s passed parameters
to a structure C++ can understand, which adds overhead not present in the original solution.
Also, the optimizer calls the objective function many times to estimate the probabilities, so
any overhead would be multiplied by the number of calls. However, more research is needed
to confirm these suspicions. The optimizer plots show that the performance impact starts at a
sample size of 50k with 16 predictors.

Although the patterns observed were consistent across all sample sizes for all components,
there was an unexplainable anomaly. In the testing of constrOptim, optimizer runtime jumped
up considerably for use cases C and D when the sample size increased from 50,000 to 500,000
and existed for the sample size of 1.5M. However, this same pattern did not exist for 1M sample
size. There was an increase, making the code for use cases C and D not beneficial, but the
increase was not as large. It is important to remember that this test only completed 3 iterations
per use case. It is possible that one of the iterations had especially quick runtime for some yet
undetermined reason, which will have to be explored in future work.

3.2 Measuring Consistent Results Based on Iterations

To assess the impact of the number of iterations on the consistency of the evaluation of the ob-
jective function, simulation scenarios were run for the 4 test cases using 16 predictors requesting
1000 iterations. For these tests, we used the runtime numbers for the constrOptim optimizer.
The results are shown in Figure 4. Since a large number of iterations take a long time to run
on large sample sizes, the sample size was limited to 5k. We then compared the results of the
new test with the results of the earlier test of three iterations (shown in the middle panel of
Figure 3).

Both lines represent optimizer runtimes based on a sample size of 5000. This allows us to
compare the runtimes for that sample size. The charts show a similar shape. However, the range
of runtimes shifted by about 80 seconds for the greater iterations. There also appeared to be a
slight decrease in runtime between use cases C and D. However, the jump in runtime between B
and the C++ use cases (C and D) still existed, i.e., the pattern across the test cases remained
the same.
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Figure 4: Comparing optimizer runtime results with varying iterations.

Figure 5: Impact of number of predictors on runtime of test cases.

3.3 Impact of Number of Predictors on Results

To determine the impact of the number of predictors and various sample sizes on the evaluation
of the objective function, simulations were run for sample sizes (n) 100, 500, and 5000 using
predictors (p) of 6, 10, and 16. Figure 5 shows the average runtimes for the constrOptim
optimizer in 1000 simulations. As before, the scale is adjusted so that all plots appear together.

This chart shows that the objective function changes (test cases C and D) provided decreas-
ing runtimes for fewer predictors and smaller sample sizes, but the impact was the opposite as
predictors and sample size increased. This makes the code less efficient as the problem grows
larger. This is evidence that the size of the passed matrix is the determining factor of the run-
time of the objective function. Fewer predictors result in a smaller passed matrix. This chart
shows that the impact on performance shows up sooner than shown on Figure 3. Here, we see a
performance impact as soon as a sample size of 500 and 10 predictors.

3.4 Marshaling Results

By percentage, the marshaling changes produced large improvements. Figure 6 compares mar-
shaling time between cases A and B for 16 predictors across various sample sizes.
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Figure 6: Marshaling runtimes for various sample sizes.

The lines show a significant drop between cases A and B. However, the change in seconds
was small. For 6 predictors and a sample size of 1.5 million, the savings amounted to 4 seconds.
Figure 3 shown earlier demonstrated that for 16 predictors and 1.5 million samples, the savings
were only ≈ 8 seconds. These savings are not significant for tasks that run from 2 to 4 hours.

3.5 Objective Function Results

As mentioned, conversion of the objective function to C++ did not result in consistent savings
(see Figures 3, 4, and 5). These results reinforced our earlier findings about the changes in the
objective function. As a result, test cases C and D were removed from our continued analysis.

3.6 Optimizer Results

The code changes were applied so that for all other use case scenarios (A, B, C, D) both
optimizers were called. This provided optimizer performance data under all use cases, since per-
formance data was captured at each call for each optimizer. The reported optimizer performance
data provided in the results was the mean under all conditions. As expected, as predictors and
sample size increased so did the runtimes. This is true because these factors influence the size of
passed matrix and the optimizers’ workload. The auglag optimizer change provided the largest
improvement. Figure 7 compares runtimes for 16 predictors across multiple sample sizes.

For 16 predictors, the average runtime across all sample sizes improved from 2.3 hours to
5.6 minutes. The most significant point is the minimal increases that resulted from increasing
the sample size. Function auglag increased from .057 to 3.759 minutes when the sample size
increased from 5000 to 1.5 million, an increase of 3.7 minutes (6400%), while constrOptim
increased from 1.57 to 154 minutes (4900%) for the same sample sizes. Although the percentages
are large for both, the actual increase in runtime is much larger for constrOptim than auglag
(148 minutes vs 3 minutes). The difference in runtime comparing the optimizers is from the use
of the numerical gradient and Hessian by auglag, which allows for faster convergence.

3.7 Confirm Quality of Results

The last step was to confirm that our changes did not impact the quality of the returned model.
Tables 4 and 5 capture the performance information. Table 4 shows the quality measurements
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Figure 7: Comparing optimizer runtimes.

Table 4: Performance data for p = 2 and multiple sample sizes.

Case N Iterations Method Bias % RMSE ALLD Ω1

A 5k 1000 constrOptim −3.03 0.26698 0 0
1000 Auglag −2.97 0.26701 .001091 0

A 50k 1000 constrOptim 0.74 0.15182 0 0
1000 Auglag 0.81 0.15182 0.00124 0

A 500k 1000 constrOptim −0.32 0.08486 0 0
1000 Auglag −0.25 0.08487 0.13169 0

A 1 M 154 constrOptim 0.28 0.71364 0 0
154 Auglag 0.30 0.71382 0.23573 0

A 1.5 M 96 constrOptim 0.61 0.06435 0 0
96 Auglag 0.69 0.06435 0.17773 0

for p = 2 when examining the optimizer executions for case A with various sample sizes across
both optimizers. Table 5 shows runtime, convergence, and boundary performance for the two
optimizers across various predictors. The statistics are means across all iterations. In these
tables, Ω0 represents the number of times that the fitted probability values approached 0 and
Ω1 represents the number of times that the fitted probability values approached 1.

In Table 4 the BIAS and RMSE are very close across the two optimizers regardless of the
sample size. This implies that the optimizers are providing comparable MLE and RMSE. The
ALLD was very small with a slight edge to constrOptim as it provided the higher maximum
likelihood consistently. There was no non-convergence for either optimizer or boundary MLE.
These results are encouraging that on most metrics, the results are similar for the optimizers.

Table 5 shows the performance data from p > 2. A test with p = 50 was added to determine
its impact on the constrOptim and auglag comparison. ALLD measurements were very close
with a slight advantage (smaller ALLD) for auglag as number of predictors (p) increases. The
function constrOptim had 44 occurrences of non-convergence, and auglag did not have a non-
convergence. Both optimizers encountered boundary cases (Ω1) where the MLE provided the
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Table 5: Performance data for p > 2 and multiple sample sizes.

p Method Avg Time Savings ALLD Non-conv Ω0 Ω1

6 constrOptim 1.0987 0.0721 0 0 5920 / 7200
Auglag 0.1679 −85.17 % 0.0637 0 0 5912 / 7200

10 constroptim 11.8208 0.0044 16 0 3062 / 6200
Auglag 0.6011 −94.74 % 0.0000 0 0 3054 / 6200

16 constrOptim 70.0113 0.3753 20 0 1209 / 3627
Auglag 1.6763 −97.47 % 0.0000 0 0 1201 / 3627

50 constrOptim 871.0984 0.9687 8 0 39 / 43
Auglag 6.1620 −99.29 % 0.0000 0 0 39 / 43

fitted probability of 1. For simulations, auglag encountered fewer of these boundaries. Although
these points are marginally favoring auglag, the major improvement is the average runtime.
This clearly favored auglag as the number of predictors increased.

In general, the results show that both optimizers provided similar accuracy and precision in
estimating β coefficients, given the same data. Therefore, auglag’s ability to perform the task
faster did not negatively impact its results.

4 Conclusions
Profiling the current lcpm package showed that it took between ≈ 2 hours (500k sample size) and
≈ 2.5 hours (1.5M) to fit a model for sample sizes greater than 500k. Three runtime bottlenecks
were discovered during profile testing of the current lcpm code: marshaling, objective function,
and optimizer. Four alternative code approaches were developed to improve runtime (one for
marshaling, two for objective function, and one for optimizer). The marshaling alternative ap-
proach showed a considerable percentage saving, but a small real savings in time, i.e., 8 seconds.
The objective function alternatives provided savings only on small sample sizes and actually
negatively impacted runtime for sample sizes > 5k. The auglag optimizer change provided the
largest improvement. For p > 2, we obtained significant improvements in runtime (85% to 99%).
For 16 predictors, the average runtime across all sample sizes improved from 2.3 hours to 5.6
minutes.

Some potential explanations for the ineffectiveness of the objective function alternatives
to improve runtime centered around the need for Rcpp’s need to translate the large matrix
parameters due to the large sample sizes. Validation of this supposition remains for further
study.

5 Discussion
In this work we have explored various bottlenecks and improvements to find that the change in
optimizer provided the greatest improvement. The use of the Nelder-Mead search method subject
to constraints in constrOptim and the package lcpm, led to considerable slow down in setting
with many predictors. In the calls to each optimizer, we did not provide a gradient function
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due to our inability to develop an algorithm that could develop a gradient for all use cases. The
function constrOptim using a Nelder-Mead search can determine the minimum without using a
gradient function, while auglag evaluates the gradient numerically. We wonder if that resulted in
the need for more iterations to get convergence in constrOptim resulting in the longer runtimes
and non-convergence in settings with large sample sizes with many predictors. Schwendinger et
al. find similar results comparing constrOptim and auglag but are able to address additional
optimization methods that have not or cannot be translated to the LCPM or PPM settings.

In exploring the objective function bottleneck, we approached it using package RcppArma-
dillo in the hopes that the conversion to C++ would improve computational efficiency. The
matrix conversion is thought to play the biggest role in slowing this approach down. We would
like to explore why the objective function changes did not improve runtimes as expected. We
wish to further investigate why the small sample size simulation saw initial improvement but
did not carry forward to larger sample sizes.

The final exploration is to understand the causes and nature of boundary issues. While
Albert & Anderson (1984) found necessary and sufficient conditions for the existence of finite
MLE for the logit link, additional exploration still remains for the conditions of both non-finite
MLE and boundary MLE for the log link in the LCPM and PPM. It is essential to identify
settings where inference may be inappropriate.

Supplementary Material
The supplementary zip file contains all source code (both R and CPP), an R package used to
run test case D, a sample windows batch script to run the code and 3 sample csv files that are
input into the batch file. There is also a readme file included with more explanation on how to
use these files.

Appendix

A Marshalling Code Differences

The following function executed the marshaling code for each test case. Test case A is the original
code. Test cases B, C, and D used the new marshaling code.

generateSumdat <− function ( i n ca s e = ’A ’ , fmla , data ) {

i f ( i n ca s e == ’A ’ ) {
Y<−model . frame ( fmla , data ) [ , 1 ]
X<− model . matrix ( fmla , data )
mydata<−na . omit (as . data . frame (cbind (Y,X[ , −1 ] ) ) )
colnames (mydata )<−c ( " y " ,colnames (X) [ −1 ] )
sumdat<−p lyr : : count (mydata )

} else i f ( i n ca s e %in% l i s t ( ’B ’ , ’C ’ , ’D ’ ) ) {
l ibrary ( dplyr )
mydata <− model . frame ( fmla , data ,na . action = na . omit )
colnames (mydata ) [ 1 ] = ’ y ’
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x . col . count <− length (colnames (mydata )
[ colnames (mydata ) !=’ y ’ ] )

mydata$y <− as .numeric ( as . factor (mydata$y ) )
out <− names( F i l t e r ( i s . factor , mydata ) ) [ ]

i f ( length ( out ) > 0) {
colnames <− out [ ! ( out %in% c ( ’ y ’ ) ) ]
mydata <− fastDummies : :dummy_c o l s (mydata ,
s e l e c t_columns=colnames ,

remove_s e l e c t e d_columns=TRUE,
remove_f i r s t_dummy=TRUE)

}
group <− colnames (mydata )
sumdat = data . frame (mydata %>% group_by_at ( group ) %>%

dplyr : : summarise ( f r e q = n ( ) ) )

}
return ( sumdat )

}

B Objective Function Differences

B.1 Original Objective Function Code (Test Case A and B)

minuslogl ikppm<−function ( betapar , Xa1 , XaJ , Xaj1 , Xaj2 , Xaf , . . . ) {
#f i r s t o rd ina l va lue
l o g l i k . 1<−crossprod (Xa1 [ , ncol (Xa1 ) ] , Xa1[ ,−ncol (Xa1 ) ]%∗%

betapar )
#l a s t o rd ina l va lue
l o g l i k . J<−crossprod (XaJ [ , ncol (XaJ ) ] , log(1−exp(XaJ[ ,−

ncol (XaJ ) ]%∗%betapar ) ) )
# a l l o ther o rd ina l va l u e s
l o g l i k . j<−crossprod ( Xaj1 [ , ncol ( Xaj1 ) ] , log (exp( Xaj1 [ ,−

ncol ( Xaj1 ) ]%∗%betapar)−exp( Xaj2 [ ,−
ncol ( Xaj2 ) ]%∗%betapar ) ) )

l o g l i k . i<− as .numeric ( l o g l i k .1)+as .numeric ( l o g l i k . J)+
as .numeric ( l o g l i k . j )

m inus l og l i k<−−l o g l i k . i
m inus l og l i k

}

h<−function ( betapar , Xa1 , XaJ , Xaj1 , Xaj2 , Xaf , . . . ) {

out <− Xaf %∗% betapar
return ( out )

}
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B.2 New C++ Objective Function Code (Test Case C and D

The following code was used for both test cases C and D. For test case C, the code was compiled
at runtime. For test case D, the code was pre-compiled and executed from a package.

#inc l ude <RcppArmadillo . h>
// [ [ Rcpp : : depends ( RcppArmadillo ) ] ]

us ing namespace Rcpp ;

// [ [ Rcpp : : export ( ) ] ]

double minuslogl ikppm100 ( arma : : vec & betapar , arma : : imat & Xa1 ,
arma : : imat & XaJ , arma : : imat
& Xaj1 , arma : : imat & Xaj2 ) {

arma : : uword Xa1_c o l s = Xa1 . n_c o l s ;
arma : : uword Xa1_rows = Xa1 . n_rows ;
double l o g l i k_1 = as_s c a l a r (Xa1 . col (Xa1_co l s −1). t ( ) ∗

(Xa1 . submat (0 , 0 ,Xa1_rows −1, Xa1_co l s −2) ∗ betapar ) ) ;
arma : : uword XaJ_c o l s = XaJ . n_c o l s ;
arma : : uword XaJ_rows = XaJ . n_rows ;
double l o g l i k_J = as_s c a l a r (XaJ . col (XaJ_co l s −1). t ( )
∗ log (1 − exp(XaJ . submat (0 , 0 ,XaJ_rows −1,
Xa1_co l s −2) ∗ betapar ) ) ) ;
arma : : uword Xaj1_c o l s = Xaj1 . n_c o l s ;
arma : : uword Xaj1_rows = Xaj1 . n_rows ;
arma : : uword Xaj2_c o l s = Xaj2 . n_c o l s ;
arma : : uword Xaj2_rows = Xaj2 . n_rows ;

double l o g l i k_j = as_s c a l a r ( Xaj1 . col ( Xaj1_co l s −1). t ( )
∗ log (exp( Xaj1 . submat (0 , 0 , Xaj1_rows −1, Xaj1_co l s −2)
∗ betapar ) − exp( Xaj2 . submat (0 , 0 , Xaj2_rows −1,
Xaj2_co l s −2) ∗ betapar ) ) ) ;

return arma : : as_s c a l a r (−( l o g l i k_J + l o g l i k_1
+ l o g l i k_j ) ) ;

}

// [ [ Rcpp : : export ( ) ] ]
arma : : vec h100 ( arma : : vec & betapar , arma : : imat & Xaf ) {

return arma : : vec ( Xaf ∗ betapar ) ;
}

// [ [ Rcpp : : export ( ) ] ]
arma : : vec apm_der iv100 ( arma : : vec & betapar ) {

return betapar ;
}
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