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Abstract

The rapid accumulation and release of data have fueled research across various fields. While
numerous methods exist for data collection and storage, data distribution presents challenges, as
some datasets are restricted, and certain subsets may compromise privacy if released unaltered.
Statistical disclosure control (SDC) aims to maximize data utility while minimizing the disclosure
risk, i.e., the risk of individual identification. A key SDC method is data perturbation, with
General Additive Data Perturbation (GADP) and Copula General Additive Data Perturbation
(CGADP) being two prominent approaches. Both leverage multivariate normal distributions to
generate synthetic data while preserving statistical properties of the original dataset. Given the
increasing use of machine learning for data modeling, this study compares the performance of
various machine learning models on GADP- and CGADP-perturbed data. Using Monte Carlo
simulations with three data-generating models and a real dataset, we evaluate the predictive
performance and robustness of ten machine learning techniques under data perturbation. Our
findings provide insights into the machine learning techniques that perform robustly on GADP-
and CGADP-perturbed datasets, extending previous research that primarily focused on simple
statistics such as means, variances, and correlations.

Keywords data confidentiality; data perturbation; machine learning; predictive modeling;
statistical disclosure control

1 Introduction
In the growing and evolving data environment, larger volumes of data are being generated and
utilized for various purposes. While this presents many opportunities for analysis, inference, or
construction of machine learning workflows, it can pose risks to the participants or members of
a particular dataset. To be able to counteract potential threats of vulnerable information being
taken from datasets organized by data producers, statistical disclosure control (SDC) methods
have been developed (Willenborg and de Waal, 2001; Hoshino, 2020; Elliot and Domingo-Ferrer,
2018). SDC enhances dataset accessibility for researchers by applying techniques that prevent
unauthorized actors from linking data subjects to their actual identities. Various SDC methods
exist, each with its pros, cons, assumptions, and restrictions that can encourage, discourage, or
restrict their usage in various scenarios (Elliot and Domingo-Ferrer, 2018; Hoshino, 2020). For
tabular datasets, SDC methods are broadly classified as either perturbative or non-perturbative.
Perturbative methods modify the actual values of sensitive variables, while non-perturbative
methods employ suppression or recoding to obscure individual identities.
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Two key measures are used to evaluate SDC methods: disclosure risk and data utility. Dis-
closure risk refers to the probability that a malicious actor could extract sensitive or identifying
details from an SDC-protected dataset, and it must be minimized according to legal and ethical
standards. Data utility, on the other hand, reflects the extent to which meaningful and accurate
insights can still be derived from the protected dataset and should be maximized to maintain
usability. The balance between these measures depends on the specific SDC method employed
and the intended use of protected data.

Non-perturbative methods have been shown to reduce accuracy and increase disclosure risk,
particularly when masking multivariate confidential numerical data (Willenborg and de Waal,
2001). Even for univariate confidential data, they often fail to guarantee accuracy preservation
(e.g., Sarathy et al., 2002). Therefore, we focus on perturbation-based SDC methods. Precisely,
the two SDC methods we focus on in this work are general additive data perturbation (GADP)
and copula-based general additive data perturbation (CGADP). GADP, first proposed in Mu-
ralidhar et al. (1999), encompasses a broader family of methods that utilize additive noise to
protect confidential, possibly multivariate, continuous data. A major drawback of GADP is that
it relies on the assumption that the data being processed is normally distributed (Muralidhar
et al., 1999). Sarathy et al. (2002) extended GADP to a far broader range of distributions by
introducing the copula-based GADP (CGADP). Under CGADP, Gaussian copulas are used to
transform all variables to a standard multivariate normal distribution, retaining their correla-
tions to one another. GADP is then applied to the transformed variables before transforming
them back to their original distributions.

Previous work on additive data perturbation tended to focus on simple statistical measures.
For example, Muralidhar et al. (1999) examined the effects of several versions of additive data
perturbation that can be considered special cases of GADP along with multiplicative data per-
turbation on simple statistics including means, standard deviations, and covariance matrices of
banking data. Potential biases of the data perturbation methods were identified in the statis-
tics calculated from the perturbed data. Similarly, Sarathy et al. (2002) studied CGADP in
comparison to unperturbed data and GADP-perturbed data using the same banking data ex-
ample. Attention was given to the correlation matrices of the involved variables and the means
of variables for specified groupings. Overall, CGADP faired better at sustaining statistical de-
tails that required distribution-specific attributes or non-linear phenomena. Chu et al. (2019)
used GADP and CGADP to perturb health data and examine their effects when estimating the
means, standard deviations, and correlations of health-related variables. They found that GADP
was more effective for maintaining the means and standard deviations, while CGADP was more
effective at maintaining the correlation matrices. The difference in the extent of preservation of
the means versus correlation matrices demonstrates that applying GADP or CGADP could lead
to a decrease in data utility. To the best of our knowledge, no research has examined the effects
of data perturbation using GADP and CGADP on the performance of machine learning (ML)
methods for predictive modeling.

In this study, we aim to fill this gap by investigating the impacts of data perturbation for
SDC on the predictive performance of popular ML techniques through an empirical comparative
analysis. More specifically, using extensive Monte Carlo simulations and a real data application,
we seek to determine which ML techniques are more robust/sensitive to data perturbation via
GADP or CGADP, and if particular ML models favor one method over the other.

The remainder of this paper is organized as follows. Section 2 reviews the two general
additive data perturbation methods investigated in this study. For completeness and context,
Section 3 provides a brief overview of other statistical disclosure control methods, with a par-
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ticular focus on synthetic data generation techniques. Section 4 describes the machine learning
techniques evaluated under data perturbation. Section 5 outlines the simulation experiment
setup and presents the simulation results, while Section 6 reports findings from a real data
application. Finally, Section 7 concludes the paper with a discussion of key findings.

2 Additive Data Perturbation Methods
In this section, we describe two additive data perturbation methods for SDC. The general setting
assumed in the paper is as follows. The dataset to be released consists of two sets of variables.
The first set consists of p variables that are insensitive (nonconfidential) auxiliary variables and
thus do not require any disclosure control. The second set consists of q confidential variables,
i.e., possess vulnerable information, that should be masked before release to the public. Let X

and Y denote the data matrices for the nonconfidential variables and the confidential variables,
respectively. Let the mean vectors for X and Y be μX and μY , and the variance-covariance
matrices for X and Y be 𝚺XX and 𝚺YY , respectively. Finally, let the matrix Z = [X Y ] augment
the data in X and Y .

2.1 GADP and CGADP Algorithms

Under the above setup, we describe how the GADP and CGADP algorithms can be used to
protect vulnerable information Y . Since Y is confidential and cannot be released directly, both
algorithms generate a set of variables Ỹ which maintains the same statistical characteristics of
Y with the privacy versus data utility trade-off managed by a tuning parameter ϑ .

Let μỸ and 𝚺Ỹ Ỹ denote the mean vector and variance-covariance matrix of Ỹ . Let 𝚺XY

denote the variance-covariance matrix of X and Y , and 𝚺ỸZ denote the variance-covariance
matrix of Ỹ and Z. The GADP algorithm assumes that the nonconfidential (X), confidential
(Y ), and perturbed (Ỹ ) variables have a joint normal distribution (Muralidhar et al., 1999).
Further, GADP puts the following conditions on the mean vectors and covariance matrices:

{μỸ = μY , 𝚺Ỹ Ỹ = 𝚺YY , and 𝚺ỸX = 𝚺YX}. (1)

These specifications make the joint distributions of (X, Y ) and (X, Ỹ ) multivariate normal with
identical parameters (means and covariances). Therefore, GADP ensures that the characteristics
of the variables in the original database are the same as those variables in the perturbed database.
Moreover, by setting

𝚺Y Ỹ = 𝚺YX𝚺−1
XX𝚺XY , (2)

GADP ensures that for any linear combination of variables, the proportion of variability ex-
plained is the same before and after perturbation (Muralidhar and Sarathy, 2003).

Under the above specifications, we can show that the conditional distribution of Ỹ given
Z = [X Y ] is also multivariate normal:

Ỹ |Z = Zi ∼ N
(
μY + 𝚺ỸZ𝚺−1

ZZ(Zi − μZ), 𝚺YY − 𝚺ỸZ𝚺−1
ZZ𝚺ZỸ

)
. (3)

Note that 𝚺ỸZ = [𝚺ỸX 𝚺Ỹ Y ], where 𝚺Ỹ Y = ϑ2𝚺YY . GADP randomly generates perturbed Ỹi

value for each confidential Yi value from the above conditional density. Finally, the perturbed
database [X Ỹ ] is released to allow for statistical analysis.
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Algorithm 1 GADP Algorithm.
Input submatrices X (nonconfidential attributes) and Y (confidential attributes).
Select ϑ according to the necessary data utility and privacy safeguards.
1. Calculate μX, μY , 𝚺XX, and 𝚺YY .
2. Define Z = [X Y ] and calculate μZ = [μX μY ] and 𝚺ZZ.
3. Set 𝚺ỸX = 𝚺YX and 𝚺Ỹ Y = ϑ2𝚺YY .
4. Concatenate 𝚺ỸX and 𝚺Ỹ Y to form 𝚺ỸZ = [𝚺ỸX 𝚺Ỹ Y ].
5. For each confidential Yi value, randomly generate a value

Ỹi |Zi ∼ N
(
μY + 𝚺ỸZ𝚺−1

ZZ(Zi − μZ), 𝚺YY − 𝚺ỸZ𝚺−1
ZZ𝚺ZỸ

)
. (4)

6. Release the perturbed data [X Ỹ ] for analysis.

The steps in the GADP algorithm are summarized in Algorithm 1.
Unlike the GDAP method, CGADP does not require all variables to be normally distributed.

Therefore, the CGADP method can be effective for perturbing non-normal confidential variables
while maintaining the monotonic correlation structure of the variables in the database. This is
achieved through the use of copula functions, such as the Gaussian copula, as described below.

Let the matrices X, Y , Ỹ , and Z be as defined in the previous section. Further, let the
marginal distribution of non-confidential variable Xj be denoted by Fj ; j = 1, 2, . . . , p. Similarly,
the marginal distribution of confidential variables Yk is denoted by Gk; k = 1, 2, . . . , q. With
this notation, we formulate CGADP in Algorithm 2.

The CGADP algorithm is motivated by the multivariate Gaussian copula given by

cρ(u) = 𝚽k
ρ

(
X∗, Y ∗, Ỹ

∗)
, (5)

where 𝚽k
ρ is the distribution function of a k-variate normal distribution with correlation matrix ρ.

The perturbed database [X Ỹ ] maintains the correlation structure of the original database [X Y ]
as well as the characteristics of the marginal distributions. However, CGADP has two major lim-
itations. The first is that it can only be successful for variables that have monotonic relationships
with one another (Chu et al., 2019; Sarathy et al., 2002). An additional concern with CGADP
is the marginal distribution that each of the variables in X is identified to follow. If a different
distribution than the actual family for any one variable is used, then the resulting application
of CGADP can cause the values in Ỹ to be generated from a different distribution than that of
Y (Sarathy et al., 2002). This will not hinder the resulting safeguards provided by CGADP, but
the same cannot be said about the utility of the data in Ỹ (Sarathy et al., 2002).

The extended skew-t copula method was proposed by Chu et al. (2022) to better capture
skewness and kurtosis as well as accommodate longer-tailed distributions. Another version of
GADP, called Enhanced GADP (EGADP), was developed to better handle data perturbation
on small datasets where the utility of GADP data and safeguards against disclosure risk could
suffer (Muralidhar and Sarathy, 2005).

2.2 Theoretical Basis for Additive Data Perturbation
In this section, we summarize the theory underlying additive data perturbation to provide a
foundation for parsing our empirical findings in later sections. We adopt the framework of Mu-
ralidhar and Sarathy (2003). Let g(·) denote the probability density function of the confidential
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Algorithm 2 CGADP Algorithm.
Input submatrices X (nonconfidential attributes) and Y (confidential attributes).
Select ϑ according to the necessary data utility and privacy safeguards.
1. Identify the marginal distribution of each variable in X (Fj ; j = 1, 2, . . . , p) and Y (Gk; k =

1, 2, . . . , q). Note that some or all of these distributions may be non-normal.
2. Transform the original variables in the database to have standard normal distribution:

X∗
j = Φ−1

(
Fj(Xj)

); j = 1, 2, . . . , p,

Y ∗
k = Φ−1

(
Gk(Yk)

); k = 1, 2, . . . , q,

where Φ−1(·) is the inverse cumulative distribution function of a univariate standard normal
random variable.

3. Compute the Spearman’s rank order correlations among the variables in Z = [X Y ] and
store them in matrix R. Note that R retains the same values whether the variables are
transformed or not.

4. Obtain the Pearson’s product moment correlations among the transformed variables in Z∗ =
[X∗ Y ∗] via the relationship

ρj,k = 2 · sin(πrj,k)/6,

where rj,k is element in the j -th row and k-th column of R. Store these correlations in matrix
ρ. Since the transformed variables have a standard normal distribution, the correlation matrix
ρ serves as the variance-covariance matrix, 𝚺Z∗Z∗ .

5. Apply GADP (see Algorithm 1) to Z∗ = [X∗ Y ∗] to generate Ỹ ∗, the perturbed version
of Y ∗.

6. Compute the final perturbed variables Ỹ from Ỹ
∗ via the back-transformation

Ỹk = G−1
k

(
Φ

(
Ỹ ∗

k

)); k = 1, 2, . . . , q.

7. Release the perturbed data [X Ỹ ] for analysis.

data Y . The generation of perturbed data is carried out using the conditional distribution g(Y |X)

to obtain Ỹ that is independent of Y conditional on X. Precisely, each data point i will have a
corresponding perturbed data value ỹi obtained by

ỹi ∼ g(Y |X = xi ) (6)

such that
g(Y, Ỹ |X) = g(Y |X)g(Ỹ |X). (7)

To uphold data utility and disclosure risk at their expected levels, some presumptions must
be maintained. For data utility, the first condition is that the marginal distribution of the orig-
inal data is maintained within the perturbed data, i.e., g(Ỹ ) = g(Y ). The second condition
is related to the joint distribution of the confidential and non-confidential variables where it
is expected that g(Ỹ , X) = g(Y, X). Similarly, for maintaining the expected levels of disclo-
sure risk, two assumptions must hold. The first point is that all relevant information about
Y and X is contained in the conditional density g(Y |X) and X. When perturbed data Ỹ is
disseminated, the conditional density can be expressed as g(Y |X, Ỹ ), assuming Ỹ provides ad-
ditional details about Y . Ideally, this is not the case, meaning the perturbed data should ensure
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g(Y |X, Ỹ ) = g(Y |X), preventing Ỹ from revealing extra information about Y . This assumes that
Ỹ and X retain sufficient information for inference. A key question is whether X still contributes
meaningful information post-perturbation. Prior research examines how covariates influence es-
timation when incorporating external data sources (Estes et al., 2018). When transportability
violations occur—meaning Y |X differs between datasets—estimator performance can degrade.
This is particularly relevant to data perturbation, where any shift in g(Y |X) between the per-
turbed and unperturbed datasets can impact the reliability of statistical methods. If perturbation
alters this relationship too severely, analyses conducted on the perturbed dataset may deviate
from those on the original, reducing data utility. Similarly, research on synthetic data genera-
tion highlights the importance of maintaining g(Y |X) for accurate predictions (Gu et al., 2019).
Artificial data generation methods rely on well-supported models, relevant external data, and
imputation techniques to supplement a research dataset while minimizing distortions in the con-
ditional distribution. In data perturbation, a similar challenge arises: ensuring that g(Y |X) and
g(Y |X, Ỹ ) remain aligned to preserve analytical validity. Methods such as GADP and CGADP
aim to maintain key statistical properties, including covariances and means, ensuring compati-
bility with machine learning models that depend on these features. Models benefiting from these
preserved structures perform better under GADP and CGADP, whereas those requiring more
intricate distributional properties may face limitations.

3 Related Methods
In addition to additive data perturbation, other statistical disclosure control methods aim to
balance data privacy with data utility. One such approach is data swapping, which protects
confidentiality by reordering dataset values rather than altering them. Data swapping can be
implemented in various ways to switch the values of confidential variables while maintaining
dataset structure. A well-known technique was introduced by Moore (1996), where the extent
of value swaps is controlled by a parameter that directly affects both data utility and disclosure
risk. Another approach, proposed by Carlson and Salabasis (2002), partitions the dataset into
smaller subsets, swaps values within these subsets, and then recombines them to form a final
perturbed dataset. While effective at reducing disclosure risk, these methods do not leverage the
conditional distribution g(Y |X), making it difficult to assess their impact on data utility within
the data perturbation framework. Data shuffling, on the other hand, incorporates the distribution
g(Y |X) and can be studied within the framework of Muralidhar and Sarathy (2003). Unlike data
swapping, which directly exchanges values, data shuffling reorders values based on the ranks of
randomly generated variates rather than replacing them outright. This makes data shuffling
more compatible with additive data perturbation techniques. Despite these advantages, data
shuffling is prone to increased variance when applied to small datasets and struggles to capture
non-monotonic associations between variables, reducing its effectiveness in certain scenarios
(Muralidhar and Sarathy, 2006).

Another approach to statistical disclosure control is differential privacy, which injects noise
into the data, often through the Laplace mechanism. Differential privacy can be applied at two
levels: global sensitivity, which is primarily used in theoretical analyses, and local sensitivity,
which is more practical for real-world implementations. The amount of noise added through the
Laplace mechanism must be carefully calibrated to balance privacy protection and data utility
(Hu et al., 2022a). Wang et al. (2016) proposed using the randomized response technique in
the context of differential privacy, which scrambles Y independently of X and uses distributional
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properties of the scrambled values to facilitate accurate inference. Their empirical results suggest
that randomized response outperforms the Laplace mechanism for categorical variables and
network analysis tasks. Lately, Bayesian methods have been incorporated into the differential
privacy framework to improve synthetic data generation (Hu et al., 2022b). For a recent review
of differential privacy techniques and their implementation in the context of machine learning,
we refer the reader to Blanco-Justicia et al. (2022). Similarly, a recent review of synthetic data
generation methods can be found in Kokosi et al. (2022).

More recently, generative AI has been explored as a tool for supplementing datasets with
synthetic data while maintaining privacy protections. The Syn framework, for example, inte-
grates differential privacy to generate artificial datasets that retain the distributional properties
of the original data (Shen et al., 2023). By reducing the degree of distortion introduced by earlier
privacy-preserving methods, generative AI has the potential to improve data utility while still
protecting against disclosure risks. However, ensuring that artificial data maintains statistical
properties that align with the original dataset remains an ongoing challenge.

Each of these methods represents a different approach to balancing privacy protection with
data utility. While additive data perturbation techniques focus on modifying individual val-
ues, data swapping and data shuffling attempt to preserve relationships while reordering values.
Differential privacy introduces controlled noise, and Bayesian methods refine this approach by
leveraging probabilistic modeling. Recent advances, such as generative AI, introduce new possi-
bilities, but raise questions about the fidelity of synthetic data. These diverse methods highlight
the complexity of statistical disclosure control and the need for a unified evaluation framework
(Elliot and Domingo-Ferrer, 2018).

4 Predictive Machine Learning Techniques
In this investigation, we considered six popular machine learning techniques for predictive mod-
eling as well as stacked ensembles of these techniques. In the following, we give a high-level
description of each of these techniques and their implementation.

Linear Regression (LR): is an interpretable machine learning technique widely used for
predictive modeling (Hastie et al., 2009). It assumes a linear relationship between the predic-
tors and the response variable. While it serves as a useful baseline for evaluating predictive
performance, its sensitivity to multicollinearity, outliers, and high-dimensional settings limits
its applicability. In the context of data perturbation, LR provides insight into how distortions
affect models reliant on explicit feature relationships. LR can be implemented using built-in R
functions such as lm or glm (R Core Team, 2022).

Least Absolute Shrinkage and Selection Operator (LASSO) Regression: extends
linear regression by applying L1 regularization, which shrinks some coefficients to zero, effectively
performing variable selection (Hastie et al., 2009). This makes LASSO well-suited for high-
dimensional data, particularly when many predictors are correlated. Studying LASSO under data
perturbation helps assess how regularization on perturbed data impacts predictive performance.
LASSO is implemented in the glmnet package and its respective glmnet function available in
R (Tay et al., 2023).
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Support Vector Machines (SVMs): is a nonparametric method that constructs hyper-
planes to minimize a chosen loss function, with kernel functions enabling flexibility in capturing
nonlinear relationships (Li et al., 2006). Popular choices of the kernel function in SVMs include
the linear kernel, the polynomial kernel, and the radial kernel (Lundell, 2023). Hereafter, we
denote an SVM with a linear kernel as Linear_SVM, an SVM with a polynomial kernel by
Poly_SVM, and an SVM with a radial kernel by Radial_SVM. Unlike LR, SVMs do not rely
on explicit feature assumptions, making them potentially resilient to data perturbation effects.
However, the performance of SVMs depends heavily on hyperparameter tuning, which might be
further complicated by data perturbation. SVMs can be deployed using the svm and tune.svm
functions from the e1071 package in R (Meyer et al., 2023).

Neural Networks (NNETs): are highly flexible nonparametric predictive models that learn
complex patterns through multiple layers of processing (Hastie et al., 2009), namely, an input
layer, one or more hidden layers, and an output layer. NNETs are considered nonlinear models
because they transform input data into increasingly abstract representations through a series
of weighted connections and activation functions. Unlike linear models, NNETs can capture in-
tricate dependencies between variables without requiring explicit feature engineering. For an
in-depth introduction to neural networks, we refer the reader to Hastie et al. (2009, Ch. 11).
NNETs are particularly relevant for studying the effects of data perturbation due to their adapt-
ability and sensitivity to data alterations. Unlike simpler models such as LR or LASSO, NNETs
can learn intricate feature interactions, making them more resistant to small perturbations.
However, they are also highly sensitive to noise, especially in deep architectures with many pa-
rameters. If perturbation significantly alters the structure of the data, NNETs may overfit to the
modified patterns, reducing their ability to generalize. Evaluating NNETs under different levels
of perturbation provides insights into their robustness and the extent to which data distortions
affect model stability. A single hidden layer NNET can be implemented in R utilizing the nnet
function in the nnet package in R (Venables and Ripley, 2002).

Random Forests (RFs): leverage bagging, aka bootstrap aggregation, to aggregate multiple
decision trees, improving stability and reducing variance (Breiman, 2001; Duroux and Scornet,
2018). They perform well with structured and unstructured data, capturing interactions and
nonlinearities without requiring strict feature assumptions. Studying the impact of perturbation
on RFs helps assess how ensemble methods mitigate distortions while maintaining predictive
performance. RFs can be implemented using the ranger function in the ranger package in R
(Wright and Ziegler, 2017).

Extreme Gradient Boosting Trees (XGBTrees): apply boosting to decision trees, se-
quentially improving predictions by weighting errors more heavily in successive iterations (Chen
and Guestrin, 2016). This results in high predictive accuracy, but can also lead to overfitting,
particularly when data perturbation alters the data distribution. Studying XGBTrees under
data perturbation can highlight how boosting algorithms handle noise and whether they main-
tain generalization capabilities. XGBTrees are accessible from the xgboost package in R (Chen
and Guestrin, 2016). For more details on XGBTrees, we refer the reader to Hastie et al. (2009)
and Chen and Guestrin (2016).
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Ensemble Techniques: In addition to the above modeling techniques, we also considered
two types of stacked ensemble regressions. The first stacked ensemble is defined as the mean of
the above eight predictive models’ predictions with equal weights. It is identified as SE_equal.
The second stacked ensemble is defined as a weighted mean of the above eight predictive models’
predictions, where the weights are inversely proportional to the training mean squared error of
each model. This implementation of the stacked ensemble is identified as SE_prop. The eight
base models of the stacked ensembles are LR, LASSO, RF, XGBTrees, NNET, Linear_SVM,
Radial_SVM, and Poly_SVM.

5 Simulation Experiments
In this section, we use extensive simulations to evaluate the impact of data perturbation, using
GADP or CGADP, on the predictive performance of the various machine learning techniques
described in the previous section.

5.1 Simulation Settings

As assumed throughout the paper, our simulations consider a database where the sensitive re-
sponse variables Y are confidential attributes that must be subjected to some sort of perturbation
before being released to the public while the predictors X = (X1, X2, . . . , Xp) are nonconfiden-
tial attributes that do not require any protection. We considered three data-generating models
to evaluate the effects of data perturbation under different structural relationships between
predictors and response variables. In all models, the predictor matrix X is generated from a
multivariate normal distribution with mean zero, unit variance, and correlation ρ. In Models
I and III, the normal predictors are transformed into a correlated uniform distribution using
the CDF of the standard normal distribution. For each model, two response variables (Y1 and
Y2) are generated with different noise levels: ε1 ∼ N(0, 0.2) and ε2 ∼ N(0, 0.4). Each model is
examined under 10, 50, and 100 predictors, where variables without assigned coefficients act as
noise predictors.

Model I (Linear Model): Adapted from McConville (2011), this model follows a linear
structure:

Yj = 0.841 + x2 + 1.5x4 + x8 + εj ,

where only three predictors contribute to the response variable, while the remaining predictors
serve as noise. This model provides a baseline for assessing how well linear and non-linear machine
learning methods perform under data perturbation.

Model II (Non-Linear Model with Threshold Effects): This model incorporates piece-
wise thresholding effects in the response function:

Yj = 1 + 1.5x1 − 0.5x2 + 4 · (x4 < 0.5) − 2 · (x4 ⩾ 0.5) + 1.5 · (x5 < 0.25) + x6 + εj ,

where the impact of x4 and x5 depends on whether they fall above or below certain thresholds.
This structure tests how data perturbation affects models that rely on non-linear relationships
and categorical-like decision boundaries.
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Model III (Smooth Non-Linear Model): Adapted from Duroux and Scornet (2018), this
model incorporates smooth non-linear transformations of predictors:

Yj = − sin(2x1) + x2
2 + x3 − exp(−x4) + εj ,

where predictor effects are governed by sinusoidal, quadratic, and exponential functions. This
model evaluates the performance of flexible machine learning techniques under data perturbation
when the response surface is highly non-linear.

These models allow us to assess the impact of data perturbation on predictive performance
under linear versus non-linear relationships, different predictor-to-response mappings, and vary-
ing levels of noise.

Under each of the above model configurations, we generated a training dataset of size
ntrain = 500, 1000 or 2000. The training set was then subjected to data perturbation using
GADP and CGADP separately leading to two perturbed versions of the training set. The privacy
parameter ϑ was varied (ϑ = 0.2, 0.4, 0.6, 0.8) to enable examining the impact of varying the
level of privacy versus data utility—noting that higher values of ϑ imply less privacy and higher
data utility and vice versa. It should be noted that while data perturbation using GADP or
CGADP was applied to both response variables (Yj ; j = 1, 2 resulting from the two levels of noise
σ = 0.2, 04) simultaneously, each response variable was modeled and predicted separately. Each
of the predictive modeling techniques described in Section 4 was fit to each of the three versions
of the training set: i) the unperturbed training set, ii) the training set with GADP perturbation,
and iii) the training set with CGADP perturbation. This process was repeated m = 1000 times.
The trained models were then used to predict the response variable values in a single fixed
testing set of size ntest = 500 and calculate the mean squared prediction error as follows:

MSEk = 1

ntest

∑

i∈test set

(
yi − ŷ

(k)
i

)2
,

where k = 1, 2, . . . , m denotes the simulation replication, yi is the value of the response variable
for the i-th observation in the test set without perturbation and ŷ

(k)
i is the predicted value in

the k-th simulation replication from a predictive model trained on i) the non-perturbed data,
ii) the perturbed data using GADP, or iii) the perturbed data using CGADP. Two performance
metrics were then obtained to assess the predictive performance of each predictive model. The
first metric is the average test MSE (AMSE):

AMSE = 1

m

m∑

k=1

MSEk.

The second metric is the ratio between the model’s AMSE when no data perturbation is applied
and its AMSE under data perturbation calculated as

AMSER = AMSEperturbed/AMSEunperturbed.

Parameter tuning was performed for all models except linear regression. For LASSO, the
penalty parameter was tuned across 100 λ values with the optimal λ selected via ten-fold cross-
validation. The NNET models were trained using maxit = 200 with the two key hyperparameters
size and decay tuned using five-fold cross-validation with the possible values being size = {3,
5, 10, 20} and decay = {0.001, 0.01, 0.1}. The RF models were trained using num.trees = 500
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with the other tuning parameters mtry = {�(1/3) ·p�, �(1/4) ·p�} and min.node.size = {5, 10}
chosen via five-fold cross-validation. The XGBTrees models were optimized using five-fold cross-
validation with hyperparameter grids set as nrounds = {10, 20, 40}, max.depth = {2, 4}, eta
= {0.2, 0.4, 0.6}, gamma = {0, 0.5, 1}, colsample.bytree = {0.2, 0.5, 1}, min.child.weight
= {0.5, 1}, and subsample = {0.4, 0.5, 0.6}. The Radial_SVM models underwent ten-fold
cross-validation to select the best gamma = {0.1, 1} and cost = {0.1, 1}. The Linear_SVM
models had their best cost chosen via ten-fold cross-validation from among {0.1, 1}. Simi-
larly, the Poly_SVM models had their hyperparameters tuned using ten-fold cross-validation
over the grids degree = {1, 2}, cost = {0.1, 1}, and gamma = {0.001, 0.1}. In all cases, the
hyperparameter grids were determined to balance computational efficiency and model accuracy.

All computations were performed using R version 4.1.0 (R Core Team, 2022). The compu-
tations were run on a compute cluster with a compute node possessing AMD EPYC CPU with
256 cores and 530 GB memory.

5.2 Simulation Results

In this section, we present key results from the simulation experiments described above. Fig-
ures 1–8 display the average mean square error ratios (AMSER) for ten machine learning (ML)
techniques under data perturbation relative to no perturbation. For brevity, we report results
for p = 10 and p = 100, while results for p = 50, which follow similar patterns, are provided in
the Supplementary Material. To illustrate how the noise level interacts with the data perturba-
tion impacts on the predictive performance, we present results for Model I with error variances
σε = 0.2 and σε = 0.4. Since Models II and III exhibit similar trends, we show AMSER graphs
only for σε = 0.2 and defer σε = 0.4 to the Supplementary Material which also includes tabula-
tions of the numerical values of the AMSE and AMSER for the best-achieving ML technique(s)

Figure 1: Average mean square error ratio (AMSER) for ten ML techniques under Model I
with p = 10 and σε = 0.2.
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Figure 2: AMSER for ten ML techniques under Model I with p = 10 and σε = 0.4.

Figure 3: AMSER for ten ML techniques under Model I with p = 100 and σε = 0.2.

under each scenario.
The results presented in Figures 1 to 8 illustrate the impact of General Additive Data

Perturbation (GADP) and Copula-based GADP (CGADP) on the predictive performance of the
ten ML techniques under variations in the number of predictors (p), correlation among predictors
(ρ), sample size (n), and privacy protection parameter (ϑ). Overall, the results demonstrate that
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Figure 4: AMSER for ten ML techniques under Model I with p = 100 and σε = 0.4.

Figure 5: AMSER for ten ML techniques under Model II with p = 10 and σε = 0.2.

perturbation affects models differently, with parametric models like Linear Regression (LR) and
LASSO showing more resilience under GADP, while flexible models such as Random Forests
(RF) and XGBTrees overfit.

For Model I, which follows a linear structure, Figures 1 and 2 reveal that LR, LASSO, and
Linear_SVM maintain the lowest AMSER, confirming that linear models perform well when
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Figure 6: AMSER for ten ML techniques under Model II with p = 100 and σε = 0.2.

Figure 7: AMSER for ten ML techniques under Model III with p = 10 and σε = 0.2.

data perturbation is primarily based on preserving means and covariances. In contrast, RF and
XGBTrees exhibit high AMSER, indicating significant degradation in performance due to their
increased sensitivity to noise introduced by perturbation. When ϑ increases, meaning less privacy
protection is applied, AMSER decreases across all models, but the reduction is more pronounced
for parametric models that rely on the stability of means and covariances. SE_equal, which as-
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Figure 8: AMSER for ten ML techniques under Model III with p = 100 and σε = 0.2.

signs equal weights to predictions from all models, outperforms SE_prop, which weights models
proportionally based on performance. The latter suffers from an overreliance on flexible models
such as RF and XGBTrees, which tend to overfit the perturbed data, leading to suboptimal
performance.

As the number of predictors increases from 10 to 100, Figures 3 and 4 show that LR and
LASSO remain robust, while nonparametric models experience a further decline in predictive
accuracy. Radial_SVM and Poly_SVM, which were more stable in the lower-dimensional set-
ting, display increased AMSER in the high-dimensional case, likely due to difficulties in tuning
hyperparameters on perturbed datasets. RF and XGBTrees continue to perform poorly, sug-
gesting that the introduction of more predictors exacerbates their vulnerability to perturbation
noise. Another key observation is that increasing correlation (ρ) leads to an increase in AMSER
for most models, likely because correlated features amplify the distortion caused by data per-
turbation, making it harder for models to generalize effectively.

Model II introduces threshold-based non-linearity, which presents additional challenges for
predictive models, as illustrated in Figures 5 and 6. The added complexity reduces the perfor-
mance of all models compared to Model I, but the effect is particularly evident for RF and
XGBTrees, which experience the most significant decline. These tree-based models, which typ-
ically excel in capturing thresholded relationships under no perturbation, exhibit substantially
higher AMSE under data perturbation. This suggests that perturbation disrupts the thresh-
olded structure, inflating AMSE of these tree-based models and consequently inflating their
AMSER. NNET consistently exhibits an AMSER close to 1, suggesting that neural networks
fail to adjust effectively to perturbed data across different scenarios. SE_equal continues to out-
perform SE_prop, reinforcing the observation that equal weighting prevents excessive reliance
on overfitting-prone models.

For Model III, which introduces smooth non-linear transformations, Figures 7 and 8 high-
light a shift in relative performance among the models. Radial_SVM and RF perform better in
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this setting compared to their results in Models I and II, benefiting from their ability to capture
non-linearity. However, AMSER remains high for XGBTrees, suggesting that its boosting mecha-
nism amplifies errors in the presence of perturbation. LR and LASSO, which performed strongly
in Model I, now show noticeable performance deterioration, reflecting the difficulty of linear
methods in modeling complex functional relationships. NNET continues to have AMSER close
to 1, meaning its prediction errors are consistently large for both perturbed and unperturbed
datasets, further reinforcing its poor adaptability to data perturbation. The results also indicate
that CGADP imposes greater challenges than GADP, particularly for parametric models like
LR, LASSO, and Linear_SVM, as it introduces noise that disrupts the marginal distributions
of features rather than merely perturbing statistical moments.

Across all models and scenarios, increasing sample size (n) generally improves performance
by reducing AMSER, but the extent of improvement varies by model. While larger sample
sizes help LR, LASSO, and SVMs maintain stability, they do not fully mitigate the overfitting
issues observed in RF and XGBTrees. Higher values of ϑ , which correspond to weaker privacy
protection, lead to a universal reduction in AMSER, but the impact is more significant for
models that rely on underlying statistical properties, such as LR and LASSO. The key takeaway
from these results is that GADP favors linear models, which align with its preservation of means
and covariances, while CGADP presents a greater challenge for parametric models by disrupting
the underlying distributions. Among flexible models, Radial_SVM and RF demonstrate some
resilience in high-dimensional settings, but XGBTrees and NNET consistently underperform
across all scenarios, making them unsuitable choices for prediction under data perturbation.

6 Real Data Application
In this section, we examine the impact of data perturbation on the predictive performance of vari-
ous modeling techniques using data from the 2015 Consumer Expenditure (CE) survey conducted
by the U.S. Bureau of Labor Statistics. The publicly available CE data, also included in the rpms
package in R (Toth, 2021), contains information on consumer unit characteristics, assets, and ex-
penditures across 47 variables for N = 68,415 consumer units. Several key variables are relevant
to our analysis. FINCBTAX represents pre-tax earnings accumulated by respondents over the
12 months preceding the survey. SALARYX measures total earnings before deductions within
the same period. TOTXEST estimates the amount of tax paid, while TOTEXPCQ captures
total expenditures for the economic quarter in which the survey was conducted. AGE indicates
the primary earner’s age in years, and SEX records the respondent’s gender (male or female).

Initial data processing involved removing outliers using the (Q1−3·IQR, Q3+3·IQR)-rule for
FINCBTAX, SALARYX, TOTXEST, and TOTEXPCQ. The TOTXEST, TOTEXPCQ, and
FINCBTAX variables were right-shifted to align with the following pre-specified distributions
for CGADP:
• AGE: mixture normal distribution.
• SEX: binomial distribution.
• TOTXEST: approximately log-normal distribution.
• TOTEXPCQ: approximately log-normal distribution.
• FINCBTAX: approximately log-normal distribution.
• SALARYX: approximately normal distribution.

After preprocessing, a stratified simple random sample of 1,000 males and 1,000 females
was drawn, resulting in a final dataset of 2,000 observations. For each simulation run, a sim-
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ple random sample was split 50:50 into a training set (1,000 observations) and a testing set
(1,000 observations). The predictors included AGE, SEX, TOTXEST, and TOTEXPCQ, while
FINCBTAX and SALARYX served as response variables subject to perturbation. Two sets of
predictive models were trained: one using perturbed training data and one using non-perturbed
training data. Regardless of how the models were trained, their performance was evaluated on
the actual values of FINCBTAX and SALARYX in the testing set. This setup mirrors the sim-
ulation experiments described in Section 5. The model parameter tuning was performed exactly
as described in Section 5. The AMSE and AMSER were calculated using the same expressions
in Section 5. The results are summarized in Tables 1 and 2.

Generally, Linear Regression (LR) and LASSO consistently achieve the lowest AMSER
across all scenarios, making them the most robust models under data perturbation. LR had the
best predictive performance (lowest AMSE) under GADP and LASSO had the best predictive
performance under CGADP. The Linear_SVM and Poly_SVM also perform relatively well,
with AMSER values lower than those observed for tree-based models such as XGBTrees and
Random Forests (RF), which tend to suffer from increased error inflation due to overfitting
on the perturbed datasets. SE_equal outperforms SE_prop, likely because SE_prop assigns
greater weight to models like XGBTrees and RF, which overfit under perturbation.

Table 1: AMSER of ten predictive modeling techniques under GADP and CGADP of the CE
data.

ϑ Response Metric LASSO LR Linear_SVM NNET Poly_SVM RF Radial_SVM SE_equal SE_prop XGBTrees

0.2 FINCBTAX GADP 1.01 1.01 1.06 1.00 1.16 6.97 3.79 1.44 3.70 5.80
CGADP 2.00 2.00 2.32 1.00 2.34 4.80 3.46 1.93 3.81 4.88

SALARYX GADP 1.01 1.00 1.03 1.00 1.07 5.46 3.23 1.74 3.08 4.76
CGADP 1.55 1.55 1.74 1.00 1.74 4.04 2.80 2.06 3.19 3.90

0.4 FINCBTAX GADP 1.00 1.00 1.03 1.00 1.04 5.49 3.14 1.35 3.13 4.68
CGADP 1.88 1.88 2.18 1.00 2.19 4.52 3.28 1.85 3.61 4.64

SALARYX GADP 1.00 1.00 1.01 1.00 1.02 4.38 2.71 1.60 2.64 3.84
CGADP 1.51 1.51 1.71 1.00 1.71 3.94 2.74 2.02 3.12 3.80

0.6 FINCBTAX GADP 0.99 0.99 1.01 1.00 1.01 3.50 2.25 1.23 2.33 3.10
CGADP 1.63 1.63 1.89 1.00 1.91 3.87 2.87 1.67 3.18 4.05

SALARYX GADP 1.00 1.00 1.00 1.00 1.00 2.91 2.00 1.41 2.04 2.64
CGADP 1.44 1.45 1.64 1.00 1.64 3.69 2.62 1.92 2.96 3.56

0.8 FINCBTAX GADP 0.99 0.99 0.99 1.00 0.99 1.72 1.39 1.10 1.47 1.64
CGADP 1.27 1.27 1.40 1.00 1.41 2.48 2.02 1.32 2.18 2.83

SALARYX GADP 1.00 1.00 1.00 1.00 1.00 1.61 1.32 1.18 1.41 1.50
CGADP 1.29 1.29 1.41 1.00 1.41 2.87 2.15 1.64 2.30 2.75

Table 2: Best performing predictive modeling technique (lowest AMSE) under GADP and
CGADP of the CE data. All values have been divided by 108 for readability.

ϑ Response GADP CGADP

0.2 FINCBTAX LR 5.06 LR 10.04
SALARYX LR 3.57 LASSO 5.52

0.4 FINCBTAX LR 5.03 LR 9.43
SALARYX LR 3.56 LASSO 5.40

0.6 FINCBTAX LR 4.99 LR 8.21
SALARYX LR 3.55 LASSO 5.15

0.8 FINCBTAX LR 4.98 LASSO 6.37
SALARYX LR 3.55 LASSO 4.60
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As ϑ increases, the models generally perform better under GADP, despite the non-normality
of the CE data. This trend suggests that the reduced privacy protection allows for better reten-
tion of statistical properties essential for accurate predictions. Notably, NNET had poor perfor-
mance under no perturbation and maintained an AMSER of approximately 1 across all condi-
tions, confirming its poor performance on the perturbed data. The Radial_SVM and Poly_SVM
achieve lower AMSER values compared to tree-based models, implying that their flexibility al-
lows them to mitigate some of the perturbation effects. However, the increased adaptability
of XGBTrees and RF appears to be a disadvantage under GADP and CGADP, leading to
worse AMSER values, particularly when ϑ is low. Overall, LR and LASSO emerge as the best-
performing predictive models across both perturbation methods. If predictive accuracy is the
primary concern under GADP, LR is the optimal choice. However, under CGADP, LASSO is
the preferred model, particularly for higher values of ϑ .

7 Discussion
This study examined the impact of data perturbation using GADP and CGADP on various
predictive machine learning techniques. Extensive simulations demonstrated that simpler para-
metric models, such as LR and LASSO, consistently perform well under both perturbation
methods due to their reliance on means and covariance structures, which GADP and CGADP
aim to preserve. The SVM model with linear kernel also shows promise as a viable alternative.
Nonparametric models, including tree-based methods and neural networks, can be effective when
the privacy parameter ϑ is large, allowing for higher data utility. However, these models tend
to overfit perturbed data, leading to reduced performance. The choice of ϑ should be guided by
the dataset’s characteristics, regulatory and ethical considerations, and empirical validation of
data utility and disclosure risk. GADP is appropriate for data that follows a multivariate normal
distribution, whereas CGADP is preferable for non-normal data as it can better preserve dis-
tributional characteristics. Conducting post-implementation experiments on CGADP-perturbed
data is recommended to assess whether the chosen marginal distributions effectively retain key
statistical properties. Ensuring that GADP and CGADP provide the expected level of data
utility and privacy protection before disseminating perturbed datasets is crucial for maintaining
analytical reliability and protecting sensitive information.

Future research could explore additional machine learning models to further understand
performance variations under data perturbation. Moreover, broader comparisons with alternative
SDC methods, such as data shuffling and coarsening, could provide deeper insights into their
trade-offs in data utility and disclosure risk. Evaluating how different SDC methods impact the
predictive performance of various machine learning models is crucial given the growing concerns
about data privacy in predictive modeling.

A key limitation of this study is the scope of hyperparameter tuning. Computational con-
straints prevented an exhaustive exploration of hyperparameter configurations, which could have
improved the performance of some models. The SVMs, in particular, incurred high computa-
tional costs due to cross-validation, while ensemble methods like XGBTrees and RF required
significant runtime for model construction. Future studies could focus on optimizing hyperparam-
eter selection and comparing different predictive model configurations to enhance performance
under GADP and CGADP. Additionally, the extensive computational demands highlight the
need for sufficient resources when employing complex models. The original simulations required
over a year to run on a combination of a 12-core desktop and a 6-core laptop CPU. Increasing
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the number of predictors or dataset size would further extend computation time. While LR and
LASSO scale efficiently, ensemble and SVM models demand more resources, emphasizing the
importance of computing power in large-scale applications.

Supplementary Material
The supplementary material includes the following: (1) README: a brief explanation of the
supplementary material; (2) a detailed description of the predictive machine learning techniques
compared in this paper and additional simulation results; and (3) R code files.
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